2020 Adaptive Management Report for the Fish Habitat Management System for Yukon Placer Mining

Appendix A: 2020 Water Quality Objective Monitoring and Aquatic Health Monitoring Report

DRAFT REPORT

Fish Habitat Management System for Yukon Placer Mining – 2020 Aquatic Health and Water Quality Objective Monitoring Results

YPS-626, Adams Creek Photo Credit: A. MacPhail

Prepared for:

Yukon Energy Mines and Resources Compliance Monitoring and Inspection 300 Main Street Whitehorse, YT Y1A 2B5

Project No. 105125-01

May 7, 2021

Prepared by:

Hemmera Envirochem Inc. 18th Floor, 4730 Kingsway Burnaby, BC V5H 0C6 T: 604.669.0424 F: 604.669.0430 hemmera.com

EXECUTIVE SUMMARY

In 2020, Hemmera was requested by Government of Yukon Energy Mines and Resources (EMR) to assist with execution of the 2020 WQOM and AHM programs, and further the interests of the Yukon government and Fisheries and Oceans Canada (DFO) in evaluating the effectiveness of the Adaptive Management Framework. Historically the monitoring has been completed directly by the Yukon government and DFO. The third-party support with the field sampling for the 2020 Water Quality Objective Monitoring (WQOM) and Aquatic Health Monitoring (AHM) annual programs was catalyzed by several factors including severe limitations in field sampling capacity and logistics imposed by human safety requirements associated with the COVID-19 pandemic. The two monitoring programs are governed by their respective protocols, the WQOM Protocol and AHM Protocol. These protocols describe the objectives, sampling design, and methodology for each program. This report focuses on WQO and AH monitoring based especially on the 2020 program.

The objective of the 2020 WQOM program was to conduct annual monitoring and reporting with some slight changes from 2019. Only grab (discrete) water samples were collected in 2020, and no automated, time integrate sampling was conducted. The objectives of the 2020 AHM included continuation focal studies that began in 2019 to inform AHM protocol re-design. The focal studies initiated in 2019 that continued in 2020 included an *in-situ* sediment analysis to attempt to determine the relationship between *in-situ* sediment characteristics and benthic invertebrate community metrics and evaluate the relationship between measurements of streambed sediment to the degree of disturbance. In addition, the inclusion of replicate sampling for stream invertebrates at a subset of monitoring locations was completed to evaluate the degree of within-site variability in invertebrate community composition. The results of the replicate study are being published separately in a different report.

Twenty-five WQOM stations were sampled in 2020. This included fourteen established WQOM sites and eleven newly established sites. Sampling occurred in the Klondike River watershed (Adams Creek, Hunker Creek and All Gold Creek), Stewart River watershed (Clear Creek), and Yukon River North watershed (Swede Creek and Ok Creek). Sampling was conducted following protocols outlined in **Appendix A** (Detailed Sampling Methods) of *Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol.* The WQO were met at the majority of monitoring sites sampled as part of the 2020 WQOM program. Observed TSS concentrations in 20% of samples collected from the Klondike River watershed were higher than their respective WQO (in 8 of 41 samples). None of the observed TSS concentrations in samples collected in the Yukon River North watershed were higher than their respective WQO. The relationship between TSS and turbidity was generally consistent across all WQOM stations in 2020.

Sixteen AHM stations were sampled in 2020. This included eleven established AHM sites and five newly established sites. Sampling occurred in the Klondike River watershed (Hunker Creek and Adams Creek) and Yukon River North watershed (Swede Creek). Stream invertebrate sampling and the habitat assessment at each site followed the Canadian Aquatic Biomonitoring Network (CABIN) method and AHM Protocol. In-stream sediment samples were collected in 2020 to provide supporting information for the invertebrate community analysis and to evaluate potential invertebrate community responses to varying sediment conditions. A placer mining development assessment was also conducted to determine the degree of placer mining at each site. Invertebrate community metrics were calculated using the on-line CABIN tools. As part of the 2020 focal studies, an evaluation of the predictive value of local streambed conditions for explaining between-site variations in benthic invertebrate metrics was conducted. In addition, as part of more exploratory work conducted in 2020, Hemmera also evaluated the predictive value of stream discharge and turbidity for explaining between-site variations in benthic invertebrate metrics and the reproducibility of AHM data by comparing sites that were sampled in 2019 and 2020.

For Hunker Creek AHM sites, total abundance was lower in 2020 in comparison to 2019 whereas family richness was higher in 2020 than in 2019. Simpsons Diversity Index and Simpsons Evenness Index were generally higher in 2020 than in 2019. The relative abundance of chironomids (Order Diptera) was much higher in 2020 than 2019 for all Hunker Creek sites, apart from YPS-078 (the most upstream site). This coincided with a decrease in 2020 in percentage of ephemeroptera, plecoptera, and trichopteran (% EPT) at the majority of the sites sampled except for YPS-078, for which there was an increase of these taxa. No discernable trends were identified when evaluating the benthic invertebrate community metrics over a longer time frame for Hunker Creek AHM sites YPS-078 (most upstream) and YPS-544 (most downstream), based on data available from 2006 through 2020. Monitoring of the same ten sites on Hunker Creek in 2019 and 2020 provided insights about the comparability of data between subsequent years of monitoring. Based on the benthic invertebrate community metrics obtained based on CABIN wadable stream protocols, we observed a reasonable agreement in overall abundance estimates per kicknet sample between 2020 and 2019 for 8 of 10 sampling locations. There was little consistency from 2019 to 2020 in the other benthic invertebrate metrics for the ten Hunker Creek stations, including Family Richness, % EPT and percent chironomids (% C). There was no statistically significant relationship ($\alpha = 0.05$) across the ten Hunker Creek sites between the 2019 and 2020 data for these indicators. In addition, there were also no statistically significant relationships between the 2019 and 2020 results for measures of streambed substrate texture and chemistry, including total nitrogen, total organic carbon content, or percent fines (silts plus clays).

In Swede Creek, total abundance at the site showed an increasing trend from 2009 to 2020 at YPS-386. Family richness decreased from 2009 to 2016 and increased from 2016 to 2020. Simpsons Diversity Index values calculated for the site were generally high; however, the low Simpsons Evenness Index values suggest that there was a high degree of dominance by one or few types of organisms. Percent Chironomidae has decreased since 2009, whereas % EPT has increased since 2009. This shift is observed in percent ephemeroptera but not in plecoptera, which remained steady since 2009.

In Adams Creek, there was a general trend of increasing total abundance from downstream to upstream. Family richness followed a similar pattern apart from YPS-625 (second most upstream site, above current placer mining activity), which had the lowest family richness of all sites sampled on Adams Creek. All sites sampled had a low percentage of EPT individuals and unexpectedly, YPS-623, (the second most downstream site, below current placer mining activity) had the highest percentage of EPT. Chironomids were the dominant order in all samples collected on Adams Creek and made up over 55% of the community at each site. The high presence of chironomids combined with the low SEI values suggest that there is a high degree of dominance by one or a few organisms within this family.

For Hunker Creek in 2019, the abundance of benthic invertebrates significantly co-varied with the fines content of sediment samples (silt-clay fraction; <63 µm) collected concurrently with kick-net sampling (generally in depositional areas adjacent to the riffle substrate in the mainstream channel). No similar relationship was observed for the five Adams Creek stations sampled in 2020. The reason for positive co-variation between total abundance and percent fines content is unclear. The remaining benthic community metrics for the Hunker Creek 2019 and 2020 monitoring and Adams Creek 2020 monitoring including taxon richness, abundance, and percent composition of EPT, or abundance and percent composition of Chironomidae did not significantly co-vary with any quantitative measure of substrate quality, based either on the standard CABIN substrate characterization approaches or accessory sediment sampling and laboratory determinations of total organic carbon or grain size.

The streambed invertebrate community metrics across all Hunker Creek sites sampled in 2020 (abundance, richness, SDI, SEI, %EPT, % C) did not vary in relation to either stream discharge or the observed local turbidity. In contrast, total invertebrate abundance decreased significantly with increasing turbidity and increasing stream flow in Adams Creek. Percent EPT showed the opposite pattern: there was a statistically significant increase in % EPT with increasing turbidity and increasing stream flow in Adams Creek.

Consistent with the 2018 and 2019 AH monitoring findings, we cannot draw conclusions based on the 2020 studies as to whether sites are in reference condition or if stream reaches adjacent to or downstream from historical placer mining have improved over time. The current methodology does not yet assess in-stream conditions in a way that allows for evaluating a direct causal relationship between placer mining activity and aquatic health. To improve the AH monitoring, Hemmera recommends four modifications to the AH protocol that includes alteration of the in-situ sampling methodology, further refinement to descriptors used to capture the intensity of assessed placer mining activities, an investigation of the proliferation of certain Chironomidae taxa and other dipteran families, and the addition of periphyton sampling to the program.

This work was performed in accordance with C00055556 and C00058622 between Hemmera Envirochem Inc. (Hemmera), a wholly owned subsidiary of Ausenco Engineering Canada Inc. (Ausenco), and Yukon Energy Mines and Resources (Client), dated July 23, 2020 (C00055556) and March 9, 2021 (C00058622) (Contract). This report has been prepared by Hemmera, based on fieldwork conducted by Hemmera, for sole benefit and use by Yukon Energy Mines and Resources. In performing this work, Hemmera has relied in good faith on information provided by others, and has assumed that the information provided by those individuals is both complete and accurate. This work was performed to current industry standard practice for similar environmental work, within the relevant jurisdiction and same locale. The findings presented herein should be considered within the context of the scope of work and project terms of reference; further, the findings are time sensitive and are considered valid only at the time the report was produced. The conclusions and recommendations contained in this report are based upon the applicable guidelines, regulations, and legislation existing at the time the report was produced; any changes in the regulatory regime may alter the conclusions and/or recommendations.

This Executive Summary is not intended to be a stand-alone document, but a summary of findings as described in the following Report. It is intended to be used in conjunction with the scope of services and limitations described therein.

TABLE OF CONTENTS

EXECU	ITIVE SU	JMMAR	Y		II			
LIST O	F ACRO	NYMS	AND ABBR	EVIATIONS	Х			
LIST O	F SYMB			OF MEASURE	х			
1.0	INTRO	DUCTIO	N		1			
	1.1	AMF O	AMF Overview/Purpose					
	1.2			ves of the 2020 Monitoring Program and Relation to Water				
		Quality	Objective N	Ionitoring and Aquatic Health Monitoring	2			
	1.3	Unique	Characteris	stics of the 2020 Monitoring Program in Light of COVID-19	3			
2.0	STUDY	LOCAT	TIONS		5			
3.0	WATE	R QUAL		TIVE MONITORING	6			
	3.1	Introdu	ction		6			
		3.1.1	Backgroun	d and Purpose	6			
	3.2	Method	lology		6			
		3.2.1	Field Meth	ods	9			
		3.2.2		Methods				
	3.3	Monitor						
		3.3.1	Total Susp	ended Solids	10			
		3.3.2	Quality As	surance and Quality Control	16			
	3.4	Discuss	sion		16			
		3.4.1	Are Water	Quality Objectives Being Achieved?	16			
		3.4.2	Turbidity-T	SS Relationships	18			
4.0	AQUAT			TORING	22			
	4.1	Introdu	ction		22			
		4.1.1	Backgrour	d and Purpose	22			
	4.2	Method	lology		23			
		4.2.1	Field Meth	ods	23			
			4.2.1.1	Benthic Invertebrates	23			
			4.2.1.2	Sediment	24			
			4.2.1.3	Habitat Characterization	24			
			4.2.1.4	Streamflow Measurements	25			
		4.2.2	Laboratory	Methods	25			
		4.2.3	Data Analy	/sis	25			
			4.2.3.1	Placer Mining Development Assessment	25			
			4.2.3.2	Benthic Invertebrate Community Composition	26			

 4.3.1.1 Degree of Placer Mining	4.3	Monitor	pring Results	
 4.3.1.1 Degree of Placer Mining		4.3.1	Summary of Aquatic Health Field Observations, Measurements and	
 4.3.1.2 In-situ Water Quality 4.3.1.3 Streamflow and Stream Channel Characteristics 4.3.1.4 Habitat Characteristics 4.3.2 Benthic Community Data 4.3.2.1 Hunker Creek 4.3.2.2 Swede Creek 4.3.2.3 Adams Creek 4.3.2.4 Replicates 4.3.3 Streambed Sediment Characteristics 4.4 Discussion 4.4.1 Reproducibility of AHM Data and Interannual Comparison 4.4.2 Benthic Invertebrate Community Characteristics and Relationship with Insitu sediment on Adams Creek and Hunker Creek 4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek 4.4 Swede Creek 5 CONCLUSION AND RECOMMENDATIONS 			Physical Characteristics	
 4.3.1.3 Streamflow and Stream Channel Characteristics			4.3.1.1 Degree of Placer Mining	
 4.3.1.4 Habitat Characteristics			4.3.1.2 In-situ Water Quality	•••
 4.3.2 Benthic Community Data			4.3.1.3 Streamflow and Stream Channel Characteristics	
 4.3.2.1 Hunker Creek			4.3.1.4 Habitat Characteristics	
 4.3.2.2 Swede Creek 4.3.2.3 Adams Creek 4.3.2.4 Replicates 4.3.3 Streambed Sediment Characteristics 4.4 Discussion 4.4.1 Reproducibility of AHM Data and Interannual Comparison 4.4.2 Benthic Invertebrate Community Characteristics and Relationship with Insitu sediment on Adams Creek and Hunker Creek 4.4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek 4.4.4 Swede Creek CONCLUSION AND RECOMMENDATIONS CLOSURE 		4.3.2	Benthic Community Data	
 4.3.2.3 Adams Creek			4.3.2.1 Hunker Creek	
 4.3.2.4 Replicates 4.3.3 Streambed Sediment Characteristics 4.4 Discussion 4.4.1 Reproducibility of AHM Data and Interannual Comparison 4.4.2 Benthic Invertebrate Community Characteristics and Relationship with Insitu sediment on Adams Creek and Hunker Creek 4.4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek 4.4.4 Swede Creek CONCLUSION AND RECOMMENDATIONS CLOSURE 			4.3.2.2 Swede Creek	
 4.3.3 Streambed Sediment Characteristics 4.4 Discussion 4.4.1 Reproducibility of AHM Data and Interannual Comparison 4.4.2 Benthic Invertebrate Community Characteristics and Relationship with Insitu sediment on Adams Creek and Hunker Creek 4.4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek 4.4.4 Swede Creek CONCLUSION AND RECOMMENDATIONS CLOSURE 			4.3.2.3 Adams Creek	
 4.4 Discussion			4.3.2.4 Replicates	
 4.4.1 Reproducibility of AHM Data and Interannual Comparison		4.3.3	Streambed Sediment Characteristics	
 4.4.2 Benthic Invertebrate Community Characteristics and Relationship with Insitu sediment on Adams Creek and Hunker Creek. 4.4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek. 4.4.4 Swede Creek. CONCLUSION AND RECOMMENDATIONS . CLOSURE. 	4.4	Discuss	ssion	
situ sediment on Adams Creek and Hunker Creek 4.4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek 4.4.4 Swede Creek CONCLUSION AND RECOMMENDATIONS CLOSURE		4.4.1	Reproducibility of AHM Data and Interannual Comparison	
Turbidity and Discharge on Adams Creek and Hunker Creek 4.4.4 Swede Creek CONCLUSION AND RECOMMENDATIONS CLOSURE		4.4.2	Benthic Invertebrate Community Characteristics and Relationship with In- situ sediment on Adams Creek and Hunker Creek	
CONCLUSION AND RECOMMENDATIONS		4.4.3	Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek	
CLOSURE		4.4.4	Swede Creek	•••
	CONC	LUSION	AND RECOMMENDATIONS	
	CLOS	URE		•••
REFERENCES	REFE	RENCES	5	

LIST OF TABLES (WITHIN TEXT)

Table 3.1	Water Quality Objective Monitoring Stations	8
Table 3.2	Hunker Creek 2020 TSS Monitoring Results	.11
Table 3.3	Adams Creek Study TSS Results	.14
Table 3.4	Yukon River North Watershed TSS Results (Swede Creek and OK Creek)	.15
Table 3.5	Clear Creek TSS Results	.15
Table 3.6	All Gold Creek TSS Results	.16
Table 3.7	Duplicate Sample Results (TSS in mg/L)	.16
Table 3.8	Klondike Watershed WQOM Results Summary	. 17
Table 3.9	Yukon River North Watershed WQOM Results Summary	.17
Table 3.10	WQOM Results Summary by Habitat Suitability Class	.17
Table 3.11	Turbidity Levels Equivalent to WQO TSS Thresholds	.21

Project No. 105125-01

Table 4.1	Sites Sampled in 2020 as part of AHM program.	.23
Table 4.2	Degree of Placer Mining Development at Sites Sampled in Hunker Creek, Adams Creek and Swede Creek	.27
Table 4.3	Observed In-Situ Parameter measurements, July 2020	.29
Table 4.4	Streamflow and Stream Channel Characteristics	. 31
Table 4.5	Habitat Characteristics	. 33
Table 4.6	Benthic Community Metrics in Hunker Creek, 2006 to 2020	. 35
Table 4.7	Benthic Community Metrics in Swede Creek	.43
Table 4.8	Benthic Community Metrics in Adams Creek	.50
Table 4.9	Dominant Chironomid Genus representation in Adams Creek	.55
Table 4.10	In-situ and CABIN Field Data Sediment Results, 2020	.57
Table 4.11	Summary of Linear Regression Results for in-situ Sediment and Benthic Community Metric Variables.	.61
Table 4.12	Summary of Linear Regression Results for Turbidity and Discharge vs Benthic Community Metric Variables.	.63
Table 5.1	Numerically dominant stream invertebrate taxa in 2020 for Adams Creek and Hunker Creek	.69

LIST OF FIGURES (WITHIN TEXT)

Figure 3.1	Log-log TSS Turbidity Relationship for Hunker Creek Samples in 2020. Solid symbols and lower line show September data. Lighter symbols and upper dashed line show July data	18
Figure 3.2	Log-log TSS Turbidity Relationship for Adams Creek Samples; Both Sampling Events Combined	19
Figure 3.3	TSS-turbidity Relationship for Majority of 2020 Sites	20
Figure 3.4	Generalized Form of TSS-turbidity Regression Equation Based on 2020 Monitoring Data	21
Figure 4.1	Relative Abundance of Major Taxonomic Groups in Hunker Creek in 2019	
Figure 4.2	Relative Abundance of Major Taxonomic Groups in Hunker Creek in 2020	37
Figure 4.3	Total Abundance of Benthic Invertebrates in Hunker Creek, 2019 and 2020	38
Figure 4.4	Family Richness of Benthic Invertebrates in Hunker Creek, 2019 and 2020	38
Figure 4.5	SDI for Benthic Invertebrates in Hunker Creek, 2019 and 2020	39
Figure 4.6	SEI for Benthic Invertebrates in Hunker Creek, 2019 and 2020	39
Figure 4.7	Percent Chironomidae in Hunker Creek, 2019 and 2020	40
Figure 4.8	Percent Ephemeroptera in Hunker Creek, 2019 and 2020	40
Figure 4.9	Percent Plecoptera in Hunker Creek, 2019 and 2020	41
Figure 4.10	Percent Trichoptera in Hunker Creek, 2019 and 2020	41
Figure 4.11	Percent EPT in Hunker Creek, 2019 and 2020	42

Figure 4.12	Relative Abundance of Major Taxonomic Groups at YPS-386 in Swede Creek,	
Figure 4.12	2009, 2016 and 2020	44
Figure 4.13	Total Abundance of Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016	
	and 2020	44
Figure 4.14	Family Richness of Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016 and 2020	45
Figure 4.15	SDI for Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016 and 2020	45
Figure 4.16	SEI for Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016 and 2020	46
Figure 4.17	Percent Chironomidae at YPS-386 in Swede Creek, 2009, 2016 and 2020	46
Figure 4.18	Percent Ephemeroptera at YPS-386 in Swede Creek, 2009, 2016 and 2020	47
Figure 4.19	Percent Plecoptera at YPS-386 in Swede Creek, 2009, 2016 and 2020	47
Figure 4.20	Percent Trichoptera at YPS-386 in Swede Creek, 2009, 2016 and 2020	48
Figure 4.21	Percent EPT at YPS-386 in Swede Creek, 2009, 2016 and 2020	48
Figure 4.22	Relative Abundance of Major Taxonomic Groups in Adams Creek	51
Figure 4.23	Total Abundance of Benthic Invertebrates in Adams Creek, 2020	51
Figure 4.24	Family Richness of benthic invertebrates in Adams Creek, 2020	52
Figure 4.25	SDI of Benthic Invertebrates in Adams Creek, 2020	52
Figure 4.26	SEI of Benthic Invertebrates in Adams Creek, 2020	53
Figure 4.27	Percent Chironomidae in Adams Creek, 2020	53
Figure 4.28	Percent Ephemeroptera in Adams Creek, 2020	54
Figure 4.29	Percent Plecoptera in Adams Creek, 2020	54
Figure 4.30	Percent EPT in Adams Creek, 2020	55
Figure 4.31	Total Invertebrate Abundance in 2019 and 2020 in Hunker Creek	59
Figure 4.32	Total Abundance vs Turbidity in Adams Creek	64
Figure 4.33	Total Abundance vs Discharge in Adams Creek	64
Figure 4.34	Percent EPT vs Turbidity in Adams Creek	65
Figure 4.35	Percent EPT vs Discharge in Adams Creek	65
Figure 5.1	Turbidity-stream discharge relationships for Adams Creek, a relatively pristine catchment, and Hunker Creek, which is heavily influenced by placer mining	68
Figure 5.2	Overall stream invertebrate abundance as Orthocladiinae or Simulidae as a function of daily TSS transport in for all Adams Creek and Hunker Creek monitoring sites	70
Figure 5.3	McNeil Sediment Sampler.	
Figure 5.4	McNeil core design, 1 liter bottle for scale	
J		

LIST OF APPENDICES

APPENDICES

- Appendix A Figures
- Appendix B Field Forms
- Appendix C Photolog
- Appendix D WQOM Data
- Appendix E Detailed Benthic Invertebrate Data
- Appendix F Stream Flow Measurements
- Appendix G CABIN Exports

LIST OF ACRONYMS AND ABBREVIATIONS

Acronym / Abbreviation	Definition
АН	Aquatic Health
AHM	Aquatic Health Monitoring Program
AM / AMF	Adaptive Management / Adaptive Management Framework
С	Chironomidae
СМІ	Compliance, Monitoring and Inspections
CABIN	Canadian Aquatic Biomonitoring Network
CSAS	Canadian Science Advisory Secretariat
DFO	Fisheries and Oceans Canada
E	Ephemeroptera
EC	Electrical Conductivity
EMR	Energy, Mines and Resources
EPT	Ephemeroptera, Plecoptera and Trichoptera
FHMS	Fish Habitat Management System
Р	Plecoptera
RCA	Reference Condition Approach
SDI	Simpson's Diversity Index
SEI	Simpson's Evenness Index
Т	Trichoptera
TSS	Total Suspended Solids
YG	Yukon Government
WQO	Water Quality Objective
WQOM	Water Quality Objective Monitoring
NTU	Nephelometric Turbidity Unit

LIST OF SYMBOLS AND UNITS OF MEASURE

Symbol / Unit of Measure	Definition
°C	Degrees Celsius
mm	Millimeters
cm	Centimeters
m	Meters
mg/L	Milligrams per liter
m/s	Meters per second (unit of stream velocity)
m ³ /s	Cubic meters per second (unit of total stream flow, or discharge)
μS/cm	Micro-Siemens per centimeter (unit of electrical conductivity, EC).

1.0 INTRODUCTION

The Government of Yukon and Department of Fisheries and Oceans Canada (**DFO**) jointly implemented in 2008 the "**Fish Habitat Management System for Yukon Placer Mining**" (**FHMS**). The FHMS is intended to achieve the appropriate statutory and desired protection and conservation of fish and fish habitat in balance with supporting a sustainable Yukon placer mining industry. The FHMS is the system for managing placer mining activities and is supported by the **Adaptive Management Framework (AMF**) which monitors the effectiveness of the FHMS and recommends on how it can be improved (AMF: YPAHWG 2010).

There are three environmental effects monitoring programs and associated protocols within the AMF, including the following: Water Quality Objectives Monitoring (**WQOM**); Aquatic Health Monitoring (**AHM**); and Economic Health.

Annual WQOM and AHM has been conducted since 2007. The FHMS covers the major portion of Yukon watersheds, comprising more than 60% of the spatial extent of the Yukon (Figure 1). These are the watersheds that are expected to have some potential for placer-based production of gold and include the vast majority of staked placer claims within the Yukon. WQOM and AHM are monitored in different watershed areas in different years, with a varying frequency and intensity of longer-term monitoring across different catchments.

Several reviews have been completed since 2018 to critically evaluate various aspects of the AMF. It has been concluded based on these reviews that the initial design and implementation of the AMF included many of the key components necessary for successful adaptive management. However, further work and adjustments have been recommended to improve the AMF. A component of these studies has been to evaluate the WQOM and AHM protocols to ensure that they are generating monitoring results which can be used in the AMF. Investigations into the data collection methods and interpretative approaches continued in 2020 and is discussed in this report.

1.1 AMF Overview/Purpose

The FHMS for Yukon Placer Mining is used to manage the effects of placer mining on fish and fish habitat. It is founded on principles of adaptive management and a risk-based approach to decision making. The FHMS specifies sets of operational and reclamation standards and requirements for placer mining based on watershed sensitivity and fish habitat suitability. These requirements are designed to support the FHMS in achieving its dual objectives of a sustainable Yukon placer mining industry alongside the conservation and protection of fish and fish habitat supporting fisheries (YPISC and YPWC 2005, YPS 2008a).

There is uncertainty about whether the FHMS will balance its two management objectives, or whether the system will shift towards one objective over the other. To monitor for and respond to this shift, Yukon government uses adaptive management. Three effects monitoring programs are used to evaluate the effectiveness of the FHMS: WQOM, AHM, and Economic Health Monitoring (EHM). The purposes of the WQOM and AHM programs are to assess if the WQO are being achieved and if aquatic ecosystem health is being maintained in streams exposed to placer mining. If water quality objectives and/or aquatic health goals are not being achieved, the data collected should ideally support an analysis about whether the results are due to placer mining activities or other causes. Whether the overall outcome of the monitoring program is acceptable or not depends on the observed conditions and decision rules prescribed in the Adaptive Management Framework (YPS 2008a).

This report focuses on the monitoring of water quality and aquatic health based especially on the 2020 program. The EHM report is found in the Adaptive Management Report for 2020 and includes information about how effective the FHMS is at providing the opportunity to maintain the viability of placer mining.

1.2 Scope and Objectives of the 2020 Monitoring Program and Relation to Water Quality Objective Monitoring and Aquatic Health Monitoring

The two monitoring programs are governed by their respective protocols, the **WQOM Protocol** and **AHM Protocol**. These protocols describe the objectives, sampling design, and methodology for each program.

The 2020 program prioritized sampling sites that were visited in 2019. WQOM and AHM were completed at the same monitoring locations in 2020. This is consistent with the AMF program execution when the protocols were first implemented (i.e., the AHM studies were conducted concurrently with WQOM studies). However, the aforementioned protocols for each of WQOM and AHM require follow-up monitoring at sites for which the monitoring provides evidence of potential adverse effects (for example, an observed TSS level that exceeds its respective WQOM) to further investigate the underlying cause(s) and ecological implications. Those sites for which there was evidence of potential adverse effects differed between WQOM and AHM and this resulted in follow-up monitoring at different sites for the two monitoring programs, and a progressively reduced alignment between the two monitoring programs in terms of watersheds and sites monitoring within a given year. The large amount of information that has been gathered on stream invertebrate community health since the inception of the program, therefore, is not consistently accompanied by parallel information on total suspended solids or other water quality data that may be indicative of placer mining activity in the same stream reaches and over the same observational period. In addition, a review of the reliance of interpretations from the AHM on the Canadian Biomonitoring Network (CABIN) Reference Condition Approach (RCA) was completed in 2018-19 by the Canadian Science Advisory Secretariat (CSAS). This review identified some limitations of the existing AHM protocol and provided some recommendations.

For the WQOM data collected from 2007 through 2020, key facets of water quality status and trends have been summarized in the draft report entitled *Fish Habitat Management System (FHMS) 14-Year Water Quality Monitoring Review* (Hemmera 2021). The WQOM are based largely on the monitoring of total suspended solids (TSS), in light of the potential influence on suspended and settled sediment loads from the managed placer mining activities.

In 2020, Hemmera was requested by Yukon Energy Mines and Resources (EMR) to assist with execution of the 2020 WQOM and AHM programs and further the interests of the Yukon government and DFO in evaluating the effectiveness of the AMF. Historically the monitoring has been completed directly by the Yukon government and DFO. The third-party support with the field sampling for the 2020 WQOM and AHM annual programs was catalyzed by several factors including severe limitations in field sampling capacity and logistics imposed by human safety requirements associated with the COVID-19 pandemic.

Just as the 2019 field season included specialized AHM studies to develop an appreciation of the degree of within-site versus between-site variation in stream invertebrate community composition, the AHM methodologies for the 2020 field season differed slightly from the established protocol, especially with regard to relative emphasis on evaluating conditions in reference areas in comparison with areas potentially influenced by placer mining, and greater alignment of the WQOM and AHM programs. In particular, the 2020 program provides a continuation of the work initiated by the Department of Fisheries and Oceans (DFO) in 2019 to achieve a better understanding of aquatic health in Yukon watercourses, and inform changes to the protocol. The 2020 AHM monitoring plan aims to understand invertebrate community response to different levels of disturbance, and to better characterize natural variability under reference conditions.

The 2020 monitoring was, nonetheless, completed in a manner that was generally consistent with previous monitoring efforts to ensure continuity with previous years of data.

The objectives of the 2020 AHM and WQOM programs were as follows:

- Conduct annual WQOM and reporting. Water quality sampling was changed slightly in 2020 with only grab samples collected and no automated, time-integrated sampling was conducted in 2020 (i.e., based on the deployment of ISCO compositing automated samplers).
- Continue focal studies that began in 2019 to inform AH protocol re-design. AHM in 2019 and 2020 did not use the CABIN stream invertebrate community multivariate analysis approach and associated Reference Condition Approach (which has previously been adapted to Yukon stream ecosystems) for the analyses, since several challenges were identified in the 2019 CSAS report. Instead, the analysis was descriptive and exploratory to try and understand invertebrate community response to different levels of disturbance and to characterize natural variability under reference conditions. The two focal studies conducted in 2019, that were continued in 2020 included:
 - Inclusion of replicate sampling for stream invertebrates at a subset of monitoring locations to evaluate the within-site variability in invertebrate community composition and metrics, and
 - An in-situ sediment analysis to attempt to determine the relationship between in-situ sediment characteristics and benthic invertebrate community metrics and correlation of sediment measurements to the degree of disturbance.

In addition, for the 2020 monitoring program, we evaluated different approaches for interpreting the overall environmental data obtained through WQO and AM monitoring, such as the estimation of TSS load carried by a water course (the product of the measured TSS concentration and instantaneous stream discharge) in reference reaches within headwater areas, in various tributary flows with or without active placer mining activity, and in mainstem flows downstream from active or recent placer operations in comparison to the estimated load immediately upstream. The 2020 monitoring locations included areas of interest to Tr'ondëk Hwëch'in, and, where possible, well-established monitoring sites.

Results of the in-situ sediment analysis are provided below in **Section 4.3.3** and **4.4.2**. However, the results of the replication study will be published in a separate report.

1.3 Unique Characteristics of the 2020 Monitoring Program in Light of COVID-19

The WQOM and AHM monitoring in 2020 faced a unique, unprecedented challenge: the COVID-19 pandemic. The pandemic introduced a set of challenges that most people around today have never dealt with. These challenges included no in-person meetings between Hemmera, DFO, TH and YG and additional health and safety guidelines (i.e. social distancing in enclosed areas, wearing masks etc.) to be followed during field work. To ensure communication between the three parties in the absence of not being able to meet in person, Hemmera, DFO and YG were able to meet and discuss details of the monitoring

program over video formats such as Microsoft Teams, Webex or Zoom. The switch to video-based meeting format came with its own set of challenges (bad connections, different software requirements, etc.) however, it still allowed for individuals to meet each other, and to discuss project components in an open forum.

Enhanced health and safety guidelines were introduced as part of the field monitoring to ensure no spread of the virus to Yukon and specifically Dawson City. Hemmera developed a COVID-19 Field Procedures document for all field work in Canada that included:

- Background on the virus itself
- Local health authority guidance
- Pre-trip planning requirements for travel and client meetings
- Transportation considerations
- Guidance around accommodation
- Personal hygiene practices
- Cleaning and disinfection, and
- Personal protective equipment.

These protocols were especially important given the fact that one of the crew members in July, and both in September were from British Columbia, which had active COVID-19 cases at that time.

2.0 STUDY LOCATIONS

Maps outlining the study locations sampled for the 2020 AHM and WQOM monitoring were completed by Yukon government. These figures are appended at the end of the report.

For the combined 2020 WQOM and AHM monitoring program, three targeted study areas were selected based on accessibility, comparability to recent monitoring data (i.e., the 2019 AHM Study, ref) and areas of interest to the Tr'ondëk Hwëch'in:

Study Area 1: Hunker Creek is a watercourse in the Klondike River Watershed that is heavily influenced by placer mining activity, with an abundance of historical data and on-going active placer activity. The mouth of Hunker Creek discharges into the Klondike River Watershed. Several WQOM and AHM sites were selected as part of a targeted study (**Appendix A**) to continue data collection in the highly impacted creek and to follow-up on AHM work completed in 2019.

Study Area 2: Adams Creek is a tributary Bonanza Creek. Adams Creek has experienced very little placer mining, while downstream areas in Bonanza Creek have experienced heavy placer mining activity recently and around the period of the 2020 sampling events. Adams Creek and Bonanza Creek are a part of the larger Klondike River Watershed. Active mining in Adams Creek is concentrated in the lower reaches of Adams Creek, with relatively undisturbed areas in the upper reaches that are currently staked for further development. One existing site and several new sites were monitored (**Appendix A**) to assess existing and potential baseline conditions prior to further placer development in the watercourse. Adams Creek defines the southern boundary of settlement land parcel R-20A and is an area of interest to the Tr'ondëk Hwëch'in.

Study Area 3: Swede Creek is minimally influenced by placer mining activity, and is a tributary to the Yukon River, adjacent to Sunnydale subdivision, as well as an area of great interest to the Tr'ondëk Hwëch'in. One site at the mouth of the creek was monitored in 2020 (**Appendix A**) as the mouth of Swede Creek is an important habitat for Pacific salmon species, including Chinook salmon. An additional site nearby on OK Creek was also monitored due to ease of access and proximity to Swede Creek.

Additional opportunistic grab water samples were collected during the September 2020 WQOM monitoring event:

All Gold Creek is a heavily placer mined watercourse in the Klondike River Watershed. The Creek was explored at the end of the sampling campaign to scope a potential reference site in the upper reaches of the creek. Historical placer impacts were found to be extensive and locating an unimpacted reference site was unsuccessful due to difficult access in the upper reaches and extent of historical placer activity. Two exploratory samples were collected during reconnaissance of Goldbottom Creek (**Appendix A**): (1) one sample in a minimally impacted area above active mining, and (2) one sample at the mouth of creek immediately downstream of all historical and active placer operations.

Clear Creek was sampled due concern from locals who observed turbid conditions area at the time of the September 2020 sampling campaign; one sample was collected to investigate if TSS levels were above the WQO (**Appendix A**).

3.0 WATER QUALITY OBJECTIVE MONITORING

3.1 Introduction

3.1.1 Background and Purpose

The purpose of the WQO monitoring program is to assess if the WQO are being achieved, and if not, whether exceedances of the WQO are due to placer mining activities or other causes (YPS 2008a, b). The WQO performance measure is total suspended solids concentration (TSS in mg/L). The WQO are established for Yukon streams based on watershed sensitivity to placer mining activity and fish habitat suitability of a stream. Streams in more sensitive watersheds or with a higher fish habitat suitability classification have more stringent WQO: lower concentrations of TSS are tolerated within these watercourses. Streams in less sensitive watersheds or with a lower fish habitat suitability classification have less stringent WQO, and a higher TSS concentration threshold is established for these watercourse. The WQO for a specific stream and larger watershed are found in the placer mining <u>Watershed Authorizations</u>¹ and can also be viewed on Government of Yukon's digital map <u>GeoYukon</u>².

Monitoring through stream sample collection and analysis supports a determination about whether the observed TSS is below or above the WQO. Whether the results of the monitoring program are acceptable or not within the context of adaptive management depends on the conditions that are observed and the criteria for decision making:

- Any failure to achieve the WQO in highly sensitive habitat or habitat of moderate-high sensitivity is generally considered to be unacceptable.
- The expected significance of a failure to achieve WQO in other habitat classes will depend upon the frequency and magnitude of the failure.
- TSS results attributable to lasting natural occurrences are not considered to be an unacceptable outcome.
- Results attributable to non-compliance at placer mining operations will be dealt with as an enforcement issue and not adaptive management issues.

These different criteria are applied to the 2020 AQOM data in the results and discussion section below. The Water Quality Objective Monitoring Protocol guides sampling design for the annual monitoring program, including locations, timing, frequency, and methods employed (YPS 2008).

3.2 Methodology

Twenty-five WQOM stations were sampled in 2020 (**Table 3.1**), including 14 established WQOM sites and an additional 11 new sites. Five new sites from Adams Creek were selected as combined WQOM and AHM monitoring sites; however, most historical sites are designated as either a WQOM sites or AHM as these have typically been separate monitoring programs. An additional 10 AHM sites were sampled for TSS during the 2020 monitoring program on Hunker Creek as TSS is within the water quality analysis suite for the AHM program.

¹ Available online: https://yukon.ca/en/doing-business/licensing/find-watershed-authorization-placer-mining

² Available online: https://mapservices.gov.yk.ca/GeoYukon/

The WQOM sites were sampled from July 28th to 30th in conjunction with the AHM sampling program and sampled again in the period from September 22nd to 25th to capture low-flow conditions. Additional exploratory and/or opportunistic samples were collected during the September 2020 sampling campaign to explore areas which may serve as potential reference sites for continued monitoring (e.g., KL_HU10) or could provide additional information on sediment imports for streams and watersheds sampled during the 2020 monitoring program (e.g., opportunistic sample collected on Stampede Creek prior to confluence of Adams Creek to investigate potential sediment inputs from Stampede Creek to Adams Creek).

Table 3.1 Water Quality Objective Monitoring Stations

Watershed	Study Area	WQOM Site ID	AHM Site ID	Watercourse	Site Description	Site Type	Habitat Classification	Site Status
		KL_BO_AD01	YPS-622	Adams Creek	Adams Creek mouth	Test	Low	New
		KL_BO_AD02	YPS-623	Adams Creek	Adams Creek downstream placer settling pond (PM18-006)	Test	Low	New
		KL_BO_AD03	YPS-624	Adams Creek	Adams Creek upstream placer operation (PM10-051)	Test	Low	New
	Adams Creek and Tributaries	KL_BO_AD04	YPS-625	Adams Creek	Adams Creek downstream Stampede Gulch	Test	Low	New
		KL_BO_AD05	YPS-626	Adams Creek	Adams Creek upstream Hawley Gulch	Potential Ref.	Low	New
		KL_BO_AD06	-	Adams Creek	Adams Creek above all mining	Potential Ref.	Low	New
		KL_BO_AD_SG01	-	Stampede Gulch	Stampede Gulch near confluence with Adams Creek	Undefined	Low	New
		KL_AL01	-	All Gold Creek	All Gold Creek below all mining	Test	Moderate-Low	Established
Klondike River	All Gold Creek	KL_AL02	-	All Gold Creek	All Gold Creek above most mining	Test	Low	New
		KL_HU01	-	Hunker Creek	Hunker Creek below all mining	Test	Moderate-Low	Established
		KL_HU02	-	Hunker Creek	Hunker Creek downstream of Hawley Gulch	Test	Moderate-Low	Established
		KL_HU03	-	Hunker Creek	Hunker Creek downstream of Last Chance Creek	Test	Low	Established
		KL_HU_KM10	-	Hunker Creek	Hunker Creek at KM10	Test	Low	Established
		KL_HU04	-	Hunker Creek	Hunker Creek upstream of Last Chance Creek	Test	Low	Established
		KL_HU05	-	Hunker Creek	Hunker Creek downstream of Goldbottom Creek	Test	Low	Established
	Hunker Creek and Tributaries	KL_HU_GO01	-	Goldbottom Creek	Goldbottom Creek mouth	Test	Low	Established
		KL_HU06	-	Hunker Creek	Hunker Creek upstream of Goldbottom Creek	Test	Low	Established
		KL_HU_KM20	-	Hunker Creek	Hunker Creek at KM20	Test	Low	Established
		KL_HU07	-	Hunker Creek	Hunker Creek above all mining left fork	Test	Low	Established
		KL_HU08	-	Hunker Creek	Hunker Creek right fork	Test	Low	Established
		KL_HU09	-	Hunker Creek	Hunker Creek above all mining and downstream of right and left fork	Potential Ref.	Established	Established
		KL_HU10	-	Hunker Creek	Hunker Creek above all mining (upstream right fork)	Potential Ref.	Low	New
tewart River	Clear Creek	YN_CLE02	-	Clear Creek	Clear Creek upstream highway bridge	Test	Moderate-High	Established
		YN_OK01	-	OK Creek	OK Creek mouth	Test	Moderate-High	Established
Yukon River North	Swede Creek and Ok Creek	YN_SW01	YPS-386	Swede Creek	Swede Creek mouth	Test	Area of special consideration	Established

3.2.1 Field Methods

At each WQO monitoring station, in-situ field measurements (temperature, pH, specific conductivity, dissolved oxygen, turbidity) were collected, and a water sample was obtained. Field forms and notes are provided in **Appendix B**. In-situ field measurements and water samples were collected at all WQO monitoring sites visited in 2020. All sites were sampled for laboratory measured TSS, and settable solids. Representative photos were taken at each site and are provided in **Appendix C**.

Stream water samples were collected using sampling methods outlined in Appendix A (Detailed Sampling Methods) of *Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol* (Yukon Placer Water Quality Working Group, 2016 *draft*). Water samples were collected using a grab sample method by either wading into the stream or river, or sampling from the stream bank when stream channels were very narrow. Sample collection followed the following key techniques, outlined in detail in Appendix A of *Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol* (Yukon Placer Water Quality Working Group, 2016):

- Whenever safe and practical, samples were be collected at mid-point (thalweg area) rather than nearshore areas or side-channels, typically by wading into the centre of the stream. When streams were unsafe to enter or very narrow (narrow enough to reach across safely to midpoint from stream bank), samples were collected from the shore.
- Samples were collected in a location where water was flowing freely and free of floating debris.
- When wading into the stream, the technician entered the stream downstream from the monitoring location, then waded upstream to the collection point and waited for any re-suspended sediment to be carried away prior to sampling.
- To collect the sample, a pre-cleaned sample bottle was plunged beneath the stream surface with the opening facing down, and immediately oriented upstream to allow the current to fill the bottle. Care was taken to avoid collecting scum and film.
- Once the bottle was full, it was removed it from the water by forcing it forward (into the current) and upwards, and immediately capped.

Samples collected for analysis of TSS were collected in 1L pre-cleaned Nalgene bottles, stored in coolers, and submitted to the CMI laboratory for TSS analysis within three (3) days of collection.

In-situ field measurements were collected using a YSI PRO Plus multimeter by submerging the meter and waiting for readings to stabilize prior to recording. Field turbidity measurements were collected by using a portable HACH Turbidity Meter instrument that was routinely calibrated.

Stream flow measurements were collected using a hand-held water velocity meter after sample collection (not prior as to risk disturbing stream bed sediments), following methods outlined in Appendix B (Flow Measurements) of the *Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol* (Yukon Placer Water Quality Working Group, 2016):

- The bankful width was measured using measuring tape secured across the length of the stream, and the stream was divided into five (5) segments;
- Water depth and flow was measured at each segment;

• The flow measurement was obtained by repeatedly raising, lowering and sweeping the head of the flow velocity meter up and down, side to side in the water column, for at least one minute, allowing the on-board computer to make multiple velocity measurements and compile an average.

Flow measurements of each segment were used to calculate total discharge at each monitoring site, where:

 $V = average \ velocity \ measurement$ $W = width \ of \ segment$ $D = depth \ of \ segment$ $Station \ discharge \ (Q_{segment}) = V \ \times W \ \times D$ $Total \ discharge \ (Q_T) = Q_{segment \ A} + Q_{segment \ B} + Q_{segment \ C} + Q_{segment \ D} + Q_{segment \ E}$

3.2.2 Laboratory Methods

Sediment load (TSS) analysis was conducted by the CMI Water Lab following the standard operating procedure outlined in Standard Methods – For the Examination of Water and Wastewater (APHA 2012). In summary, (i) a 250 mL aliquot was extracted from the homogenized sample bottle and filtered using a pre-weighted 55 mm diameter 934-AH glass microfiber filter, (ii) the filter was dried in an oven for 4 hours at 103-105 ° and moved to a desiccator to balance temperature before weighting, (iii) the final weights of the filter were weighed to four decimal precision (in grams) to determine the filtered sediment load and to calculate TSS in mg/L where TSS = [sediment mass in grams/sample volume in mL].

3.3 Monitoring Results

3.3.1 Total Suspended Solids

The purpose of the WQO monitoring program is to assess if the WQO are being achieved, where the WQO performance measure is the total suspended solids concentration (TSS in mg/L), and also to determine if observed exceedances of the WQO are due to placer mining activities or other causes. The TSS results for the three targeted studies (Hunker Creek, Adams Creek and Swede Creek), and additional exploratory/opportunistic samples (Clear Creek, All Gold Creek) are summarized below with respect to site habitat suitability classification.

Hunker Creek

Monitoring in 2020 on Hunker Creek included twelve WQOM stations from the mouth to the upper reaches, and one station at the mouth of the Goldbottom Creek tributary (KL_HU_GO01) (**Figure 1**). **Table 3.2** presents TSS results in order from the most northerly station at the mouth of Hunker Creek (KL_HU01), upstream to the stations above active mining operations in the southern reaches (KL_HU10).

The majority of Hunker Creek is classified as low habitat suitability, with the exception of two stations located near the mouth of the creek prior to confluence with the Klondike River that are classified as Moderate-Low habitat suitability sites: KL_HU01 and KL_HU02. The TSS levels for KL_HU01 and KL_HU02 were observed to be in the range from 90.8 to 204.4 mg/L and were consistently higher than the WQO of 80 mg/L for both the July and September monitoring events. The 2020 results are comparable to 2019 results, with TSS ranging from 2.7 to 19.4 mg/L at station KL_HU01 in 2019 (KL_HU02 was not sampled in 2019). Higher frequency sampling was conducted in 2019 from June 19th to September 24th, with three of 113 samples exceeding the WQO between July 17th and July 19th.

Table 3.2 Hunker Creek 2020 TSS Monitoring Results

Site ID	Habitat Classification	WQO (TSS in mg/L)	Sample Date	Measured TSS (mg/L)	Above or Below WQO?
		WQO	M Sites		
			28-Jul-20	204.4	Above
KL_HU01	Moderate-Low	80	24-Sep-20	90.8	Above
KL 11100	Madarata Law	00	28-Jul-20	194.4	Above
KL_HU02	Moderate-Low	80	24-Sep-20	91.2	Above
	Law	200	28-Jul-20	193.2	Below
KL_HU03	Low	200	24-Sep-20	48.4	Below
	Low	200	28-Jul-20	349.6	Above
KL_HU_KM10	Low	200	24-Sep-20	24.4	Below
	Low	200	28-Jul-20	240.4	Above
KL_HU04	Low	200	24-Sep-20	53.6	Below
	Law	200	29-Jul-20	21.6	Below
KL_HU05	Low	200	24-Sep-20	20.8	Below
	Low	200	29-Jul-20	5.2	Below
KL_HU_GO01	Low	200	24-Sep-20	18.8	Below
	Low	200	29-Jul-20	28.4	Below
KL_HU06			24-Sep-20	27.2	Below
KL_HU_KM20		200	29-Jul-20	16.8	Below
	Low	200	24-Sep-20	35.6	Below
KL_HU07	Law	200	29-Jul-20	3.6	Below
KL_H007	Low	200	24-Sep-20	2.0	Below
		200	29-Jul-20	3.2	Below
KL_HU08	Low	200	24-Sep-20	2.8	Below
KL_HU09	Low	200	29-Jul-20	13.6	Below
KL_H009	Low	200	24-Sep-20	1.2	Below
KL_HU10	Low	200	24-Sep-20	0.8	Below
		AHM	/ Sites		
	Low	200	28-Jul-20	230.4	Above
YPS-051	Low	200	24-Sep-20	34.0	Below
		200	29-Jul-20	3.6	Below
YPS-078	Low	200	24-Sep-20	1.2	Below
VDC 070		200	29-Jul-20	37.6	Below
YPS-079	Low	200	24-Sep-20	26.8	Below
YPS-080	Low	200	29-Jul-20	36.0	Below

Site ID	Habitat Classification	WQO (TSS in mg/L)	Sample Date	Measured TSS (mg/L)	Above or Below WQO?
YPS-544	Moderate-Low	80	28-Jul-20	229.6	Above
YPS-611	Low	200	29-Jul-20	44.4	Below
YPS-612	Low	200	28-Jul-20	92.8	Below
YPS-613	Low	200	28-Jul-20	92.4	Below
	Moderate-Moderate	50	28-Jul-20	313.6	Above
YPS-614			24-Sep-20	27.6	Below
YPS-621	Low	200	29-Jul-20	85.2	Below

Stations in low habitat suitability area typically are below the WQO of 200 mg/L, however two samples collected in July 2020 had TSS concentrations that were higher than the WQO (350 mg/L TSS at KL_HU_KM10, and 240 mg/L at KL_HU04). In 2019, TSS ranged from 9.6 to 1075 mg/L at KL_HU04 with 3 of 93 samples exceeding the WQO, and TSS ranged from 5.6 to 396 mg/L at station KL_HU_KM10 with 2 of 110 samples exceeding the WQO. Relative to 2020, for which TSS WQO exceedances were observed only in July, TSS WQO exceedances were observed at KL_HU_KM10 and KL_HU04 in mid-July, mid-August and early-September in 2019 (**Appendix D**).

Long-terms trends in Hunker Creek are summarized in the Fish Habitat Management System (FHMS) 14-Year Water Quality Monitoring Review (Hemmera, 2021) which summarizes similar findings to the 2019 and 2020 program, where the highest TSS exceedances are observed in the lower reaches in the stream, especially at stations with the more stringent WQO for the Moderate-Low habitat suitability class. Similarly, occasional WQO exceedances (<30% samples) are observed in the low habitat suitability classes since 2008.

Placer disturbance (historical and active) is evident from the mouth of Hunker Creek to at least KM20 on the access road (i.e., KL_HU_KM). Stretches of the creek have clearly been reworked and rerouted, and in some sections evidence of operations (equipment, activity such as moving material or sluicing) is visible from the road. TSS levels are generally lower at stations in the upper sections of the creek above the bulk of placer disturbance, in range from 0.8 to 13.6 mg/L in 2020. It is not clear, however, if the lower suspended sediment loads observed at these stations is due to decreased placer activity or simply due to their locations being in the upper reaches where sediment inputs from tributaries may be lower.

A new potential reference station was established for Hunker Creek during the September 2020 sampling event (Station KL_HU10). Field staff drove up the Hunker Creek right fork to the end of the access road (near station KL_HU08) and hiked for approximately 600 m to locate a potential reference station. The area selected appeared unimpacted by anthropogenic activity with the exception of a footpath adjacent to the creek and placer stakes along the footpath. Not surprisingly, the upper reaches of Hunker were observed to occupy narrow steam channel with visibly lower flow discharge relative to the downstream reaches, where the channel is wide with considerable flow and relatively higher sediment inputs from feeding tributaries. Thus, comparison of TSS in the reference station in the narrow channel in the upper reaches and the larger channel lower in the valley will need to consider the variable stream characteristics before attributing TSS levels to placer or other anthropogenic influence.

Additional TSS water samples were collected along Hunker Creek at AHM monitoring stations during the 2020 monitoring program to support interpretation of AHM data interpretation and analysis. The TSS for samples collected at the additional AHM sites are presented in **Table 3.2** with the habitat suitability classes for the given stream reach. Of the 17 TSS samples collected on Hunker Creek for the AHM program, 3 samples had a TSS concentration that was greater than the WQO. The exceedances at YPS-051 and YPS-544 are consistent with the exceedances and TSS concentrations at nearby stations KL_HU_KM10 and KL_HU01, respectively. There is no WQOM station near AHM station YPS-61, which is located in an area classified as Moderate High habitat suitability. The TSS concentration in the water sample collected on July 28th was 314 mg/L, relative to the WQO of 50 mg/L for the stream reach.

The TSS concentrations were an order of magnitude higher for the July sampling event relative to results from the September sampling event for all WQOM (and AHM) stations downstream from Goldbottom Creek. Stations upstream from Goldbottom Creek typically exhibited TSS concentrations for the two sampling events that were similar.

Adams Creek

One established WQOM station (KL_BO_AD01) and five new stations were sampled in conjunction with the 2020 AHM program on July 30th, 2020. All five stations were sampled again on September 23rd, 2020. An additional station (KL_BO_AD06), farther upstream, was investigated in September, and sampled as an additional reference station for Adams Creek above all anthropogenic influence.

Two placer operations are currently active on Adams Creek, one near the mouth and another approximately 1 km upstream. The established WQOM station KL_BO_AD01 is located downstream at the mouth of Adams Creek, and the new KL_BO_AD02 station was established immediately downstream from the operation's settling pond. Continuing upstream, additional sites were established and sampled as follows:

- KL_BO_AD03: located immediately upstream from the active mining operations
- KL_BO_AD04: upstream above all active mining in an area with remnants of historical placer workings
- KL_BO_AD_SG01: one opportunistic sample was collected from the mouth of Stampede Gulch immediately prior to confluence with Adams Creek to investigate potential sediment inputs from Stampede Gulch to Adams creek
- KL_BO_AD05: upstream of all active placer and historical mining, upstream of Stampede Gulch
- KL_BO_AD06: upstream of all active placer and historical mining (approx. 1 km upstream of KL_BO_AD05)

During the September 23, 2020 field work on Adams Creek, sampling and observations were completed at the five stations working upstream, starting in the morning. The morning samples were completed prior to any evident active placer operations for that day. When returning downstream to depart from Adams Creek, we noticed a marked increase in turbidity at the two stations downstream from operations that had become active following the morning observations. A second set of water samples was, therefore, collected at these two stations to better capture the change in TSS before and after the commencement of placer operations for the day (**Table 3.3**). TSS levels in the morning were well below the 200 mg/L WQO (15.2 and 10 mg/L at stations KL_AD01 and KL_AD02). TSS in the samples collected in the afternoon were above the WQO and ranged from 725-728 mg/L. Future programs should consider sampling during a typical

work-day window (10 am to 4 pm) to have a better chance at capturing conditions while placer operations are active. Alternatively, an automated ISCO sampler could be installed to collect samples multiple times a day to better inform variability at the mouth of Adams Creek.

With the exception of the two samples discussed above, TSS levels in Adams Creek were very low at the time of sampling (morning of September 23rd) and ranged from 0.4 to 15.2 mg/L. TSS concentrations observed at potential reference sites above active and historical monitoring ranged from 0.8 to 4.4 mg/L. Results from the sample collected from the mouth of Stampede Gulch reported 0.4 mg/L TSS, demonstrating minimal sediment inputs from Stampede Gulch to Adams Creek.

There was no discernible seasonal difference in TSS concentrations in samples from Adams Creek collected in July or September of 2020.

Site ID	Habitat Classification	WQO (TSS in mg/L)	Sample Date	Measured TSS (mg/L)	Above or Below WQO?
KL_BO_AD_SG01	Low	200	23-Sep-20	0.8	Below
			30-Jul-20	13.6	Below
KL_BO_AD01	Low	200	23-Sep-20 (AM)*	15.2	Below
			23-Sep-20 (PM)*	725	Above
			30-Jul-20	9.6	Below
KL_BO_AD02	Low	200	23-Sep-20 (AM)*	10	Below
			23-Sep-20 (PM)*	728	Above
KL_BO_AD03	Low	200	30-Jul-20	2.8	Below
KL_BO_AD03	LOW	200	23-Sep-20	2.4	Below
KL BO AD04	Low	200	30-Jul-20	2.8	Below
KL_BO_AD04	LOW	200	23-Sep-20	0.4	Below
	Low	200	30-Jul-20	2	Below
KL_BO_AD05	LOW	200	23-Sep-20	4.4	Below
KL_BO_AD06	Low	200	23-Sep-20	0.8	Below

Table 3.3 Adams Creek Study TSS Results

*Samples collected prior to placer operations in the morning, and again following commencement of placer operations in the afternoon.

Swede Creek and other Creeks in the Yukon River North Watershed

Swede Creek is a watercourse in the Yukon River (North) watershed with multiple placer claims slated for potential future placer development on the watercourse. Swede Creek was deemed to be minimally influenced by past and current placer mining activity, however. One site (YPS-386) was sampled 300 m upstream from AQOM station (YN-SW01) at the mouth of the creek in 2020. The mouth of Swede Creek is an important habitat for Pacific salmon species (i.e., Chinook salmon) and the habitat suitability classification for this site is an *area of special consideration* with the most stringent water quality objective of the YG specified habitat classes (25 mg/L).

The measured TSS concentration near the mouth of Swede Creek (**Table 3.4**) was very low for both of the July (2.0 mg/L) and September (1.6 mg/L) monitoring events. Suspended solids in Swede Creek are well below the WQO and do not appear to pose a risk to fish habitat.

Additional samples were collected opportunistically at OK Creek on the way to sampling Swede Creek, as the site is a Moderate-High suitability class and a potential fish habitat. TSS results were well below the 25 mg/L WQO: 6.0 mg/L (July) and 5.6 mg/L (September).

Site ID	Watercourse	Habitat Classification	WQO (TSS in mg/L)	Sample Date	Measured TSS (mg/L)	Above or Below WQO?		
YN SW01	SW01 Swede A	Swede Area of special Creek consideration	Area of special	25	30-Jul-20	2.0	Below	
111_30001	Creek		25	23-Sep-20	1.6	Below		
	Area of special	Area of special	Area of special	OK Creek Area of special 25	25	30-Jul-20	6.0	Below
YN_OK01	OK Cleek	consideration	25	23-Sep-20	5.6	Below		

Table 3.4 Yukon River North Watershed TSS Results (Swede Creek and OK Creek)

Clear Creek

While mobilizing for the September field program, CMI was notified of concerns from locals who had noted a recent increase in turbidity in Clear Creek (within the Stewart River Watershed). We collected a sample on the way to the planned study sites at an established WQOM on Clear Creek upstream from a bridge crossing (ST_CL02). The measured TSS concentration in a grab sample from ST_CL02 in Clear Creek, with a Moderate-Moderate habitat suitability classification, was lower than the WQO of 50 mg/L: the TSS concentration in the water sample collected on September 23rd was 30.4 mg/L (**Table 3.5**).

Table 3.5 Clear Creek TSS Results

Site ID	Watercourse	Habitat Classification	WQO (TSS in mg/L)	Sample Date	Measured TSS (mg/L)	Above or Below WQO?
ST_CL02	Clear Creek	Moderate-Moderate	50	22-Sep-20	30.4	Below

All Gold Creek

All Gold Creek watercourse in the Klondike River Watershed is an intensively placer mined. All Gold Creek was explored at the end of the sampling campaign to locate a potential reference site in the upper reaches of the creek. Historical placer impacts were found to be extensive and locating an unimpacted reference site was not feasible due to difficult access in the upper reaches and extent of historical placer activity.

Although the search for an ideal reference site was unsuccessful, two exploratory samples were collected during reconnaissance of Goldbottom Creek on September 24th:

- KL_AL01: mouth of All Gold Creek downstream from placer operations in a heavily reworked zone.
- KL_AL02: new site selected immediately upstream from Lucky Creek and placer infrastructure (possibly an historical placer operations), as far as access would allow with a small truck. The placer operation downstream from Lucky Creek appeared to be inactive; however, we are unsure about the extent of historical or active placer activity upstream of the station.

TSS results in All Gold Creek were relatively low (2.8-6.8 mg/L) and similar at the station upstream of activity and at the station downstream from all placer operations (**Table 3.6**).

Site ID	Watercourse	Habitat Classification	WQO (TSS in mg/L)	Sample Date	Measured TSS (mg/L)	Above or Below WQO?
KL_AL01	All Gold Creek	Moderate-Low	80	25-Sep-20	6.8	Below
KI_AL02	All Gold Creek	Low	200	25-Sep-20	2.8	Below

Table 3.6All Gold Creek TSS Results

3.3.2 Quality Assurance and Quality Control

Five duplicate samples were collected and measured for quality-assurance and quality-control. The methodology for TSS measurement is very simple and not prone to error; however, a small subset of duplicates was selected to demonstrate reproducibility of the data and sample heterogeneity.

The relative percent difference (RPD) for duplicate-sample pairs ranged from 6% to 67%. An RPD of less than 10% was observed for any sample with a TSS concentration greater than 50 mg/L. Some sample heterogeneity is to be expected due to the nature of sample collection, and TSS results should be considered to have a margin of error of approximately \pm 7 mg/L based on the maximum difference for the results of the five duplicate-sample pairs (**Table 3.7**).

Table 3.7Duplicate Sample Results (TSS in mg/L)

Site ID:	YN_SW01	KL_HU03	KL_AL01	KL_BO_AD02	YPS-621
Sample TSS (mg/L)	0.8	51.6	5.6	13.6	85.2
Duplicate TSS (mg/L)	1.6	48.4	6.8	9.6	92.4
RPD	67%	6%	19%	34%	8%

3.4 Discussion

3.4.1 Are Water Quality Objectives Being Achieved?

The WQO were being achieved at the majority of monitoring sites sampled as part of the 2020 WQOM program. Observed TSS concentrations in 20% of samples collected from the Klondike River watershed were higher than their respective WQO (in 8 of 41 samples) (**Table 3.8**). None of the observed TSS concentrations in samples collected in the Yukon River North watershed were higher than their respective WQO (**Table 3.8**).

Exceedances in the Klondike watershed were measured in samples collected at the mouth of the Hunker Creek in a Moderate-Low habitat suitability zone, and the two opportunistic samples collected at the mouth of Adams Creek at a time of day after initiation of placer operations, which resulted in a visible increase in turbidity in the creek (Low habitat suitability). The TSS concentration was lower than the WQO when samples were collected the same morning prior to operations starting for the day (**Table 3.8**). Long-term trends in the Klondike River watershed areas are presented in the Fish Habitat Management System (FHMS) 14-Year Water Quality Monitoring Review (Hemmera, 2021 draft).

In the Yukon River North watershed, no exceedance of WQO criteria were observed in Clear Creek during the September 22nd sampling event following requests from locals to check water-quality in the visibly turbid stream; Clear Creek is classified as a Moderate-High habitat suitability. All samples collected in Swede Creek (high habitat suitability) and OK Creek (Moderate-High habitat suitability) were below their respective WQO (**Table 3.9**).

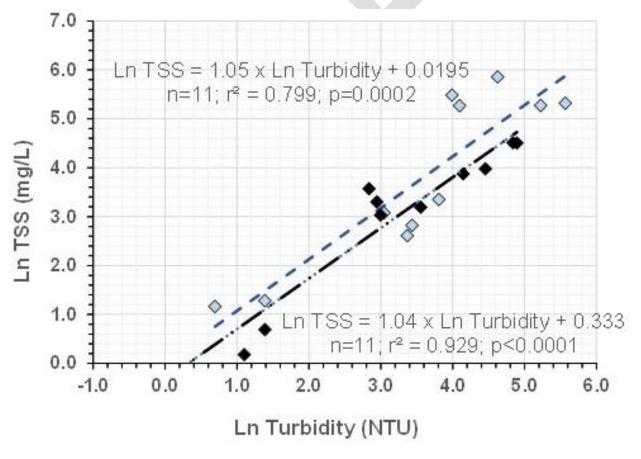
Overall, 17% of samples collected during the 2020 WQOM program exceeded TSS criteria, particularly in areas with higher suitability classes and thus lower acceptable TSS levels (**Table 3.10**).

	All Gold Creek	Adams Creek	Gold-bottom Creek	Hunker Creek	Stampede Gulch	Entire Watershed
n stations	2	6	1	12	1	22
n samples	2	13	2	23	1	41
min TSS (mg/L)	2.8	0.4	5.2	0.8	0.8	10.0
max TSS (mg/L)	6.8	728	18.8	350	0.0	1100
WQO (TSS in mg/L)	80 - 200	200	200	50 - 200	200	50 - 200
n WQO Exceedances	0	2	0	6	0	8
% Exceeding	0%	15%	0%	26%	0%	20%

Table 3.8 Klondike Watershed WQOM Results Summary

Table 3.9 Yukon River North Watershed WQOM Results Summary

	OK Creek	Swede Creek	Entire Watershed
n stations	1	1	3
n samples	2	2	5
min TSS (mg/L)	5.6	1.6	37.6
max TSS (mg/L)	6	2	38.4
WQO (TSS in mg/L)	25	25	25
n WQO exceedances	0	0	0
% Exceeding	0%	0%	0%


Table 3.10 WQOM Results Summary by Habitat Suitability Class

Habitat Suitability:	Low	Moderate- Low	Moderate- Moderate	Moderate -High	Area of Special Consideration	Entire 2020 Program
n stations	19	3	1	2	1	25
n samples	36	5	1	2	2	46
min TSS (mg/L)	0.4	6.8	30.4	5.6	1.6	14.4
max TSS (mg/L)	728	204	30.4	30.4	2.0	965
# WQO exceedances	4	4	0	1	0	8
% Exceeding	11%	80%	0%	50%	0%	17%

3.4.2 Turbidity-TSS Relationships

Turbidity is routinely used as a surrogate measure of TSS since it can be measured in the field in real-time using an appropriately calibrated hand-held or fixed position turbidity meter. The use of turbidity for water quality monitoring, however, requires an understanding of the quantitative relationship between TSS and turbidity, which can vary across water courses and seasons to the extent that the suspended sediment composition reflect different proportions of particle types such as organic detritus versus coarser aluminosilicate sands versus finer textured silts and clay. To evaluate the utility of real-time discrete and near continuous turbidity measurements for advancing the objectives of the WQOM, turbidity and TSS relationships were examined for the 2020 monitoring in the Klondike River Watershed, with a focus on Hunker Creek and Adams Creek. Turbidity in the Yukon River North watershed (OK Creek and Swede Creek) were generally below detection of the portable field meter and therefore not included in the comparison.

The slope of the log-log linear regression relationship between TSS and turbidity for Hunker Creek stations was the same for the July and September sampling periods (**Figure 3.1** and **Figure 3.2**). The intercept was slightly different between the two sampling periods, reflective of a higher TSS for a given turbidity measurement in July than September.

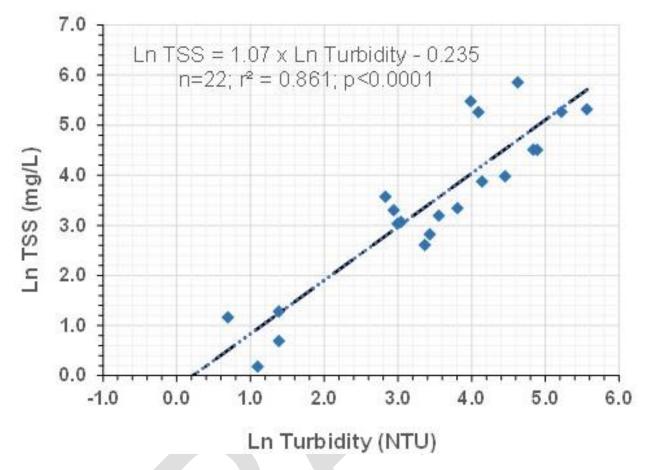
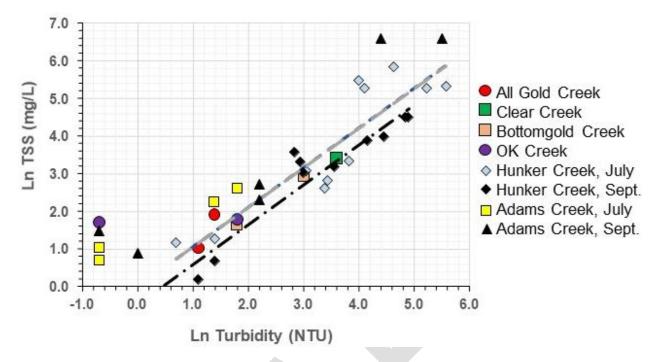



Figure 3.2 Log-log TSS Turbidity Relationship for Adams Creek Samples; Both Sampling Events Combined

The TSS and turbidity in Adams Creek were very low in both July and September, with the exception of the monitoring during the afternoon of September 23rd, 2020, at stations YPS-622 and 623. The elevated TSS was observed to be directly related to placer mining in the lower reaches of Adams Creek, near its mouth. For the purpose of evaluating this bivariate relationship, turbidity values recorded as below the detection limit were substituted with an assumed value of 0.5 NTU.

The relationship between TSS and turbidity was generally consistent across all WQOM stations monitoring in 2020 (**Figure 3.3**: data for Swede Creek and Stampede Gulch stations are not included since all turbidity measurements were lower than the detection limit). Excluding those samples with a non-detected turbidity value, the overall regression relationship for the natural log of TSS on the natural log of turbidity is illustrated in **Figure 3.3**.

Figure 3.3 TSS-turbidity Relationship for Majority of 2020 Sites

The overall regression of the natural logarithm of TSS on the natural logarithm of turbidity is provided in **Figure 3.4** for all 2020 data combined. The associated equations for the upper and lower 95% confidence limits on the log-log linear relationship provided in **Figure 3.4** are as follows:

Lower 95% Confidence Limits:	Ln TSS = 1.20 x Ln Turbidity + 0.59	[1]
Upper 95% Confidence Limits:	Ln TSS = 0.881 x Ln Turbidity - 0.46	[2]

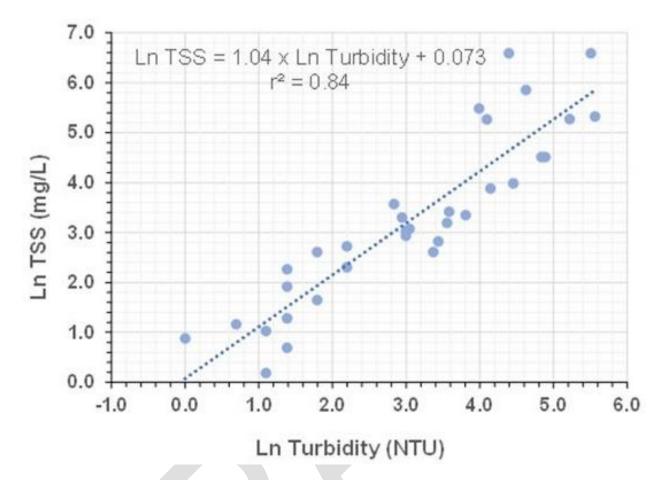


Figure 3.4 Generalized Form of TSS-turbidity Regression Equation Based on 2020 Monitoring Data

Based on this regression relationship, the turbidity associated with various WQO based on TSS concentrations are provided in **Table 3.11**.

Table 3.11 Turbidity Levels Equivalent to WQO TSS Thresholds

TSS WQO (mg/L)	Predicted Turbidity for WQO average (lower 95%, upper 95%)
25 mg/L	20.1 NTU (8.9 NTU, 65 NTU)
50 mg/L	40.5 NTU (20.1 NTU, 154 NTU)
200 mg/L	154 NTU (51 NTU, 693 NTU)

4.0 AQUATIC HEALTH MONITORING

4.1 Introduction

4.1.1 Background and Purpose

AH monitoring provides information about how effective the FHMS is at protecting fish and fish habitat. The key questions it addresses are (YPS 2008a):

- Are there stream systems and watersheds exposed to placer mining where aquatic health is not being maintained in reference condition (i.e. the same condition as streams not exposed to human activity)? If so, is this due to placer mining activity or to other causes?
- Are the test sites in habitats of higher sensitivity in reference condition? If not, is this due to placer mining activity or to other causes?
- Where historically mined sites are not in reference condition is there an overall improvement over time?

For streambed invertebrate community monitoring and interpretations based on Environment and Climate Change Canada (ECCC) Canadian Aquatic Biomonitoring Network (CABIN) protocols for wadable streams, the term "reference condition" has a formally specified meaning, in relation to the multivariate community composition of streambed invertebrate communities sampled in regionally representative reference stream reaches.

Due to current deliberations about the Yukon Regional Reference Model and the AH protocol design, the reference condition approach (RCA) was not used in 2018-2020. Instead, the Intergovernmental Management Group is working on an AH protocol redesign informed by the 2019 Canadian Science Advisory Secretariat (CSAS) protocol evaluation and other specialized studies. An interim approach, and targeted studies have been carried out in 2019 and 2020, to begin to answer several key questions that will be used to inform a revised approach to aquatic health monitoring.

Consistent with the 2018 and 2019 AHM report, results from the 2020 monitoring program were not compared to the 2013 Yukon Regional Reference Model. Instead, an interim assessment approach has been used for the 2020 samples, which relies on characterization of physical habitat, degree of placer mining development, evaluation of several invertebrate community metrics and a qualitative description of the invertebrate community in comparison to local reference sites. Several targeted studies were carried out as part of the 2019 AHM program to answer key questions to inform the study redesign. The targeted studies for 2019 were as follows:

- Replicate study to better characterize within-site variability in benthic invertebrate community composition to evaluate the need to incorporate site replication into the study design.
- In-situ sediment sampling to explore benthic invertebrate community response to selected sediment parameters, and whether in-situ sediment results are an indicator of placer mining activity.

Many of the same sites in 2019 were monitored in 2020 as in other previous years (e.g. 2019 Hunker Creek), and so we have considered similarities and differences between the years of data where feasible. Given the limited replicate samples conducted in 2020 (n=3), a replicate study will be conducted as part of the larger aquatic health synthesis that will include aquatic health sampling conducted in the past five years.

Results of the in-situ sediment analysis are provided below in **Section 4.3.3** and **4.4.2**. However, the results of the replication study will be provided in a separate report.

4.2 Methodology

4.2.1 Field Methods

The AHM program was conducted by Hemmera employees Andrew MacPhail and Andrew Brown. Sampling was conducted on Hunker Creek on July 28th and July 29th and on Adams Creek and Swede Creek on July 30th. A total of 16 sites were sampled in the Klondike River (15) and Yukon River (1) watersheds (**Table 4.1**).

YPS-626

YPS-386

Total

			1 0
Watershed	Sub-Watershed	Reference sites	Test sites
Klondike River	Hunker Creek	n/a	YPS-078 YPS-611 YPS-079 YPS-080 YPS-614 YPS-051 YPS-621 YPS-613 YPS-612 YPS-544
	Adams Creek	YPS-626	YPS-622 YPS-623 YPS-624 YPS-625

n/a

Table 4.1 Sites Sampled in 2020 as part of AHM program.

4.2.1.1 Benthic Invertebrates

Swede Creek

Yukon River

Annual sampling of benthic invertebrates is carried out over a three-week period beginning no earlier than the second week of July and extending no later than the start of the second week of August of each year. Repeat site visits are sampled at the same location each visit while new site locations are chosen based on ease of access as well as representation of the sample stream. Stream invertebrate sampling followed the Canadian Aquatic Biomonitoring Network (CABIN) method, which involved 3-minute travelling kick sampling in riffle habitats into a net with a triangular aperture measuring 36 cm per side and mesh 400 µm openings (Environment Canada 2012a). During sampling, the field technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the net being held immediately downstream of the technician's feet, the detritus and invertebrates dislodged from the substrate were conveyed into the kick-net by the stream current and collected. After three minutes of sampling time, the sampler returned to the stream bank with the sample. The kick-net was rinsed with water to move debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar and preserved using a solution of approximately 10% buffered alcohol in ambient water. The sampling was replicated three times (i.e. three kicks instead of one) at YPS-612, YPS-622 and YPS-626.

More information regarding field sampling procedures can be found in the CABIN field sampling protocol (http://www.ec.gc.ca/rcba-cabin/default.asp?lang=en&n=74876ADD-1) as well as in the AHM Protocol.

Grand Total

10

5

1

16

4.2.1.2 Sediment

Collection of in-situ sediment samples was carried out to answer the following key question:

• How does the benthic invertebrate community respond to varying sediment parameters?

To further characterize substrate conditions at each site, in-stream sediment samples were collected in 2020 to provide supporting information for the invertebrate community analysis and to evaluate potential invertebrate community responses to varying sediment conditions.

Representative sediment samples were collected from three locations within the sample area using a metal spoon. Areas selected for sampling were typically depositional areas (i.e. typically located on the banks of creeks where velocities are slowed down due to an in-stream feature and the suspended sediment can drop out of suspension from the water column). Ideally, samples would be collected within the main channel, however, due to the inability to keep any sediment on the sampling spoon while removing the sediment from the channel, depositional areas are targeted.

The three grab samples were homogenized in a stainless-steel bowl and approximately 300-550g was transferred to a sediment bag for storage in a cool dark environment until submission to the analytical laboratory. Additional data that were recorded included depth of easily penetrable sediments, depth of sediment sampled, sediment texture and colour, as well as other descriptive sample characteristics. Samples were submitted to ALS Environmental Laboratories for analysis of particle size, total organic carbon, total nitrogen, and moisture.

Sediment parameters analyzed in the laboratory were used to support the interpretation of the invertebrate community results. Total abundance, richness, % EPT (percent of community composed of ephemeroptera, plecoptera and trichophtera), and % C (percent of community composed of chironomid dipterans) were plotted against the sediment parameters to visually explore potential relationships.

4.2.1.3 Habitat Characterization

Environmental variables can provide explanatory information for data interpretation. Stream habitat characteristics were measured during field sampling and are used to inform potential differences observed in the stream invertebrate communities that could be due to environmental factors rather than anthropogenic influences.

A habitat assessment was conducted at each site following CABIN field sampling protocols as well as in the AHM protocols. Data collected during site visits includes basic water chemistry (YSI Probe: pH, temperature, conductivity, dissolved oxygen), detailed water chemistry (laboratory analysis: nutrients, physical and chemical properties and metals), environmental variables (stream width, depth, slope and velocity, riparian vegetation and site characteristics), stream substrate characterisation (100 pebble count) and invertebrate community samples using a kick net. All information is recorded on a standard field form and several standardized photos are taken of each site while on the ground and from the air, when possible (Appendix B – Field Forms, Appendix C - Photolog).

4.2.1.4 Streamflow Measurements

Stream flow measurements were collected using a hand-held water velocity meter (Global Water Flow Probe) after sample collection (not prior as to risk disturbing stream bed sediments), following methods outlined in Appendix B (Flow Measurements) of the *Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol* (Yukon Placer Water Quality Working Group, 2016):

- The bankfull width was measured using measuring tape secured across the length of the stream, and the stream was divided into five (5) segments;
- Water depth and flow was measured at each segment;
- The flow measurement was obtained by repeatedly raising, lowering and sweeping the head of the flow velocity meter up and down, side to side in the water column, for at least one minute, allowing the on-board computer to make multiple velocity measurements and compile an average.

Flow measurements of each segment were used to calculate total discharge at each monitoring site, where:

 $V = average \ velocity \ measurement$ $W = width \ of \ segment$ $D = depth \ of \ segment$ $Station \ discharge \ (Q_{segment}) = V \ \times W \ \times D$ $Total \ discharge \ (Q_{T}) = Q_{segment \ A} + Q_{segment \ B} + Q_{segment \ C} + Q_{segment \ D} + Q_{segment \ E}$

4.2.2 Laboratory Methods

Samples were sent to Cordillera Consulting in Summerland, British Columbia, for sorting and taxonomic identification. Organisms were identified to the lowest practical level (e.g. typically genus or species). At the beginning of the sorting process, each sample was examined and evaluated for estimation of total invertebrate numbers. If the total number was estimated to be greater than 600, then the laboratory's sub-sampling protocol was followed. A minimum of 5% of each sample was sorted, in accordance with Quality Assurance/Quality Control (QA/QC) requirements of Environment Canada (2014). Sorting efficiency and sub-sampling accuracy and precision were quantified using methods specified by Environment Canada (2012b, 2014). Based on the QA/QC results, the data were judged to be of acceptable quality. The enumeration and identification report from Cordillera Consulting is included in **Appendix E**.

4.2.3 Data Analysis

4.2.3.1 Placer Mining Development Assessment

The degree of placer mining at each site was estimated using the following approach. When possible during 2016 to 2020 field sampling, streams were flown upstream of sampling locations and photographs were taken along with notes about placer activity. Based on the information collected, the proximity of recent (<2 years) placer mining development as well as older (>2 years) placer mining development was assessed.

The intensity of placer mining development (low, moderate, high) was estimated from aerial photographs taken during field sampling, as well as from aerial photographs available on the Yukon Placer Watershed Atlas. The intensity of placer mining presented in this report is based on a visual estimate of placer mining development within the watershed upstream of each sample location and may not reflect actual placer

mining activities that would be expected to affect aquatic health. In the future, additional sources of information will be incorporated from Yukon government databases, mining inspection reports, and GIS mapping exercises.

4.2.3.2 Benthic Invertebrate Community Composition

The following variables were calculated to characterize benthic invertebrate communities:

- Community metrics including total abundance, family level taxonomic richness, Simpson's Evenness Index (SEI), Simpson's Diversity Index (SDI), % Chironomidae (C), % Ephemeroptera (E), % Plecoptera (P), % Trichoptera (T), and EPT (Ephemeroptera, Plecoptera, Trichoptera) individuals
- Relative abundance of major taxonomic groups (e.g., Ephemeroptera, Plecoptera, Trichoptera, Diptera)

Invertebrate community metrics were calculated using the on-line CABIN tools based on family-level taxonomic identification.

The metrics are described as follows:

- Total abundance absolute number of individuals standardized for each kick per CABIN sampling protocols.
- Family level taxonomic richness total number of taxonomic families identified at a site.
- Simpson's Diversity Index measures the proportional distribution of organisms in the community, which takes into account the number of species present and how evenly the abundance is distributed among these taxa. Values range from 0 to 1; values closer to 1 indicate that a higher diversity of taxa compared to sites with values closer to 0.
- Simpson's Evenness Index is a measure of how evenly the abundance is distributed among the taxa present at a site. Values range from 0 to 1; values closer to 1 indicate equal numbers of all taxa present in a sample and values closer to zero indicate a high degree of dominance by one or a few organisms.

Total abundance at each site was presented graphically to provide a visual comparison of trends in abundance over time. Relative abundances of major taxonomic groups were also summarized and presented graphically to provide a visual representation of broad level taxonomic composition and total invertebrate abundance at each site.

4.3 Monitoring Results

4.3.1 Summary of Aquatic Health Field Observations, Measurements and Physical Characteristics

4.3.1.1 Degree of Placer Mining

Placer mining development upstream of sites sampled in Hunker Creek was estimated as high, with the exception of YPS-078 (Hunker Creek upstream of Ontario Creek) which was estimated as moderate-low. In Adams Creek, placer mining development varied from high in the lower reaches near its confluence with Bonanza Creek and low farther up the Adams Creek in the headwaters. On Swede Creek, active placer mining was occurring approximately 4 km upstream of YPS-386; however, there was no evidence of active or historical mining within the reach assessed at YPS-386 (**Table 4.2**).

Name	Site	Degree of Placer Mining (low, mod, high)	Upstream Distance to Active (within 2 years) Mining Development (km)	Upstream Distance to old (older than 2 years) Mining Development (km)	Comments
		I	Hunker Creek		
Hunker Creek downstream of Hester Creek inflow	YPS-051	High	0.0	0.0	Active placer near site. Ford upstream of site.
Hunker Creek upstream of Ontario Creek	YPS-078	Mod-low	0.2	0.0	Site very close to Hunker Creek Rd.
Hunker Creek upstream of Gold Bottom Creek	YPS-079	High	0.0	0.0	Active placer upstream of site.
Hunker Creek downstream of Gold Bottom Creek	YPS-080	High	0.5	0.0	Active placer upstream of site.
Hunker Creek	YPS-544	High	0.2	0.2	Water pipe and foot bridge near site
Hunker Creek	YPS-611	High	0.6	0.0	Could hear active placer mining activity upstream
Hunker Creek	YPS-612	High	1.0	0.0	Old bridge upstream of site.
Hunker Creek	YPS-613	High	0.5	0.0	Active placer upstream of site.
Hunker Creek	YPS-614	High	1.0	0.0	Active placer upstream of site.
Hunker Creek	YPS-621	High	3.0	0.0	Active placer upstream of site.

Table 4.2 Degree of Placer Mining Development at Sites Sampled in Hunker Creek, Adams Creek and Swede Creek.

Yukon Energy Mines and Resources Fish Habitat Management System for Yukon Placer Mining – 2020 AH and WQ Objective Monitoring Results

Name	Site	Degree of Placer Mining (low, mod, high)	Upstream Distance to Active (within 2 years) Mining Development (km)	Upstream Distance to old (older than 2 years) Mining Development (km)	Comments
			Adams Creek		
Adams Creek below active mining just before confluence with Bonanza River	YPS-622	High	0.2	0.0	Below all mining activities. At creek before going under Bonanza Creek road
Adams Creek below active mining	YPS-623	High	0.1	0.0	Right below active workings, no sluicing evident at time of sampling
Adams Creek just upstream of active mining	YPS-624	High-moderate	0.0	0.0	Out of active mining area but still in historical mining area.
Adams Creek upstream of all active mining	YPS-625	Moderate	0.0	0.0	Out of active mining area but still in historical mining area.
Adams Creek upstream of all active and historical mining	YPS-626	Low	0.0	0.0	Above all placer mining influence.
			Swede Creek		
Swede Creek before confluence with Yukon River.	YPS-386	Low	3.8	n/a	Section of reach assessed is staked for placer but not evidence of placer disturbance near site.

4.3.1.2 In-situ Water Quality

Field *in-situ* water quality data were collected successfully and consistently at each of the stations visited. A summary of field parameter measurements for the stations, including air temperature, surface water temperature, field pH, surface water conductivity, concentrations of dissolved oxygen and turbidity readings are presented below in **Table 4.3**. Field forms for each station are provided in **Appendix A**.

Table 4.3Observed In-Situ Parameter measurements, July 2020

						Param	ieter		
Station	Station Type	Date (dd/mm/yyyy)	Air Temperature (°C)	Water Temperature (°C)	pH (pH units)	Conductivity (µs/cm)	Specific Conductivity (µScm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
				Hu	nker Cre	ek			
YPS-078	Test	29/07/2020	17	6.0	7.69	317.2	446.1	9.73	8.95
YPS-611	Test	29/07/2020	17.5	9.6	7.64	392.3	583.3	9.02	56.2
YPS-079	Test	29/07/2020	14	8.5	7.97	377.9	489.3	8.95	49.5
YPS-080	Test	29/07/2020	10.5	6.8	8.00	330.1	454.3	9.74	73.1
YPS-614	Test	28/07/2020	14	8.7	7.88	479.1	365.1	9.35	132
YPS-051	Test	28/07/2020	13.1	8.8	7.53	437.4	570.9	8.82	128
YPS-621	Test	29/07/2020	10.5	7.3	7.46	445.1	604.4	9.54	73.1
YPS-613	Test	28/07/2020	15.1	9.0	7.84	510.0	664.0	9.30	61.9
YPS-612	Test	28/07/2020	13	9.6	7.78	558	712	8.67	76.6
YPS-544	Test	28/07/2020	10.5	10.6	7.58	612	766	8.48	391
				Ad	ams Cre	ek			
YPS-622	Test	30/07/2020	6.5	3.5	7.78	289.0	436.0	10.79	4.04
YPS-623	Test	30/07/2020	11	4.2	7.75	298.6	441.2	10.51	3.11
YPS-624	Test	30/07/2020	15	4.1	7.53	261.9	387.5	10.48	1.50
YPS-625	Test	30/07/2020	20	5.2	7.73	250.2	359.1	10.25	2.01
YPS-626	Potential Reference	30/07/2020	22	4.3	7.66	137.9	202.9	10.34	17.1
				Sv	vede Cre	ek			
YPS-386	Test	30/07/2020	23	8.9	7.40	153.9	200.7	8.92	1.8

Hunker Creek

Air temperature at the time of sampling on Hunker Creek ranged from 10.5°C to 17.5 °C. Water temperature was highest at the most downstream site (YPS-078, 6.0°C). Similar to water temperature, conductivity was highest at the most downstream site (YPS-544,612 μ S/cm) and lowest at the most upstream site (YPS-078, 317.2 μ S/cm). Specific conductivity followed a similar pattern with the highest specific conductivity at the most downstream site (YPS-544, 766 μ S/cm), however, the lowest specific conductivity was found at YPS-614 (365.1 μ S/cm). pH in Hunker Creek was slightly alkaline and ranged from 7.46 at YPS-621 to 8.00 at YPS-080. Dissolved oxygen values ranged from 9.74 mg/L at YPS-080 to 8.48 mg/L at YPS-544. As expected, the highest turbidity occurred at the most downstream site (YPS-078, 8.95 NTU).

Adams Creek

Air temperature at the time of sampling on Hunker Creek ranged from 6.5° C to 22° C. Water temperature ranged from 3.5° C at YPS-622 to 5.2° C at YPS-625. pH in Adams Creek was slightly alkaline and ranged from 7.66 at YPS-626 to 7.78 at YPS-622. Both conductivity and specific conductivity were highest at the most downstream site, YPS-622 with values of 289 and 426 µS/cm, respectively. Both parameters decreased as sampling progressed upstream, with the lowest values occurring at YPS-626 with values of 137.9 µS/cm for conductivity, and 202.9 µS/cm for specific conductivity. Dissolved oxygen values ranged from 10.79 mg/L at YPS-622 to 10.25 mg/L at YPS-625. As expected, the highest turbidity occurred at the most downstream site (YPS-622, 4.04 NTU) and decreased upstream with the lowest turbidity occurring at YPS-624 (1.50 NTU).

Swede Creek

Air temperature at the time of sampling Swede Creek was approximately 23°C, the highest of the three days sampled. Water temperature was 8.9°C and the pH was slightly alkaline at 7.40. Conductivity and specific conductivity were 153.9 μ S/cm and 200.7 μ S/cm, respectively. Dissolved oxygen was 8.92 mg/L and the turbidity was low with a value of 1.80 NTU.

4.3.1.3 Streamflow and Stream Channel Characteristics

Streamflow and Stream Channel Characteristics for the July 2020 AHM survey are summarized below in **Table 4.4** Additional flow measurements were also measured at select AHM and WQOM sites during the September 2020 WQOM sampling program; all AHM and WQOM site flow measurements are tabulated in **Appendix F**.

Table 4.4 Streamflow and Stream Channel Characteristics

Channel Chara	cteristics	YPS-544	YPS-612	YPS-613	YPS-621	YPS-051	YPS-614	YPS-080	YPS-079	YPS-611	YPS-078	YPS-622	YPS-623	YPS-624	YPS-625	YPS-626	YPS-386
Channel Width (m)	Wetted	6.1	7.8	8.0	8.0	7.7	5.2	4.2	4.2	3.1	2.9	4.0	2.5	3.8	3.2	2.3	22.5
Channel Depth (m)	Mean	0.32	0.20	0.15	0.17	0.16	0.19	0.32	0.11	0.14	0.09	0.17	0.19	0.12	0.10	0.16	0.36
Channel Velocity (m/s)	Mean	0.36	0.46	0.42	0.28	0.44	0.44	0.28	0.46	0.36	0.22	0.50	0.54	0.36	0.28	0.08	0.82
Discharge (m ³ /s)	Run	0.58	0.59	0.43	0.43	0.44	0.39	0.28	0.16	0.16	0.06	0.18	0.22	0.15	0.08	0.05	5.93

Hunker Creek

Wetted channel width was widest in the lower elevations of Hunker Creek and decreased upstream. Wetted channel width on Hunker Creek ranged from 8.0 m at YPS-613 and YPS-621 to 2.9 m at YPS-078. Stream discharge, mean channel velocity and mean channel depth followed a similar pattern to wetted channel width, with the highest values in the lower elevation sites and a general decrease in upstream sites. The maximum stream discharge measured on Hunker Creek was 0.590 m³/s (mean channel velocity of 0.46 m/s) at YPS-612 and the minimum was 0.060 m³/s (mean channel velocity of 0.22 m/s) at YPS-078. Mean channel depth was highest at YPS-080 and YPS-544 (0.32 m at both sites) and lowest at YPS-078 (0.09 m).

Adams Creek

Wetted channel width varied on Adams Creek with a range of 2.3 m at YPS-626 (most upstream site) to 3.8 m at YPS-624. Mean channel depth was highest in the downstream sites YPS-623 and YPS-624 with values of 0.17 m and 0.19 m, respectively. Stream discharge was highest at YPS-622 and YPS-623 with values of 0.180 m³/s and 0.220 m³/s. The higher discharge at YPS-623 compared to YPS-622 (which would be the most downstream site and in theory would have the highest discharge) is likely due to the confined nature of the stream morphology at YPS-623. Mean channel velocity followed a similar pattern with values of 0.50 m/s and 0.54 m/s for YPS-622 and YPS-623, respectively.

Swede Creek

Wetted channel width at YPS-386 on Swede Creek was 22.5 m. This was the widest channel sampled during the 2020 monitoring event. Mean channel depth was 0.36 m with a mean channel velocity of 0.82. Stream discharge measured at the site was 5.93 m³/s.

4.3.1.4 Habitat Characteristics

Habitat characteristics are summarized below in Table 4.5.

Table 4.5Habitat Characteristics

Habita	t Characteristics	YPS-078	YPS-079	YPS-080	YPS-544	YPS-614	YPS-051	YPS-611	YPS-612	YPS-613	YPS-621	YPS-622	YPS-623	YPS-624	YPS-625	YPS-626	YPS-386
	Pool	Yes	Yes	No	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Stream	Rapid	No	No	Yes	No	No	Yes	No	No	No	No	No	No	No	No	Yes	No
morphology	Riffle	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Run	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes
G	radient (%)	3	3	2	3	2	2	2	3	3	3	3	3	3	3	3	3
	General Composition	49% pebble, 51% cobble	84% pebble, 16% cobble	35% pebble, 65% cobble	86% pebble, 7& cobble, 7% gravel	60% pebble, 50% cobble	56% pebble, 44% cobble	42% pebble, 57% cobble	1% gravel, 34% pebble, 65% cobble	6% gravel, 90% pebble, 4% cobble	51% pebble, 49% cobble	59% pebble,41 % cobble	47% pebble, 53% cobble	54% pebble, 45% cobble	41% pebble, 58% pebble	46% pebble, 54% cobble	36% pebble, 63% cobble, 1%boulder
Substrate Properties	Average size (cm)	6.4	4.4	7.7	3.4	5.5	5.8	6.4	6.9	2.8	5.7	5.6	6.1	6.2	6.8	6.6	7.5
Fropenies	Average Embeddedness (%)	25	25	25	50	25	25	25	25	25	0	25	0	25	0	0	50
	Dominant Interstitial Material	Sand	Sand	Sand	Sand	Gravel	Gravel	Gravel	Sand	Sand	Sand	Sand	Sand	Sand	Gravel	Sand	Sand
Aquatic	Macrophyte coverage (%)	0	0	0	1-25	0	0	0	0	0	1-25	0	0	0	0	0	1-25
Vegetation	Periphyton (mm)	0.5-1	<0.5	<0.5	<0.5	<0.5	<0.5	0.5-1	<0.5	<0.5	<0.5	<0.5	0.5-1	0.5-1	0.5-1	0.5-1	0.5-1
Riparian Features	Vegetation Types Present	Ferns/gra ss Shrubs Deciduou s trees	Ferns/grass Shrubs Deciduous trees	Ferns/gra ss Shrubs Deciduou s trees	Ferns/grass Deciduous trees	Ferns/grass Shrubs Deciduous trees	Ferns/grass Shrubs Deciduous trees	Ferns/gra ss Shrubs Deciduou s trees	Ferns/grass Deciduous trees	Ferns/grass Deciduous trees	Ferns/grass Shrubs Deciduous trees	Ferns/gra ss Shrubs	Ferns/gra ss Shrubs Deciduou s trees	Ferns/gra ss Shrubs Deciduou s trees	Ferns/gra ss Deciduou s trees	Ferns/gra ss Shrubs Deciduou s trees	Ferns/grass Shrubs Deciduous trees Coniferous trees
realules	Dominant Vegetation Type	Shrubs	Ferns/grass es	Shrubs	Deciduous trees	Deciduous trees	Deciduous trees	Shrubs	Deciduous trees	Deciduous trees	Deciduous trees	Shrubs	Shrubs	Shrubs	Deciduou s trees	Shrubs	Coniferous trees
	Canopy Coverage (%)	1-25	1-25	1-25	1-25	1-25	1-25	1-25	1-25	1-25	1-25	1-25	1-25	26-50	26-50	26-50	1-25

Hunker Creek

Pools were identified within the stream reach for YPS-078, YPS-079, YPS-544, YPS-614, YPS-611, YPS-613 and YPS-621. Rapids were noted at YPS-051 and YPS-080 and except for YPS-613, all sites had riffle sections within their reach. Stream reaches with a run section included all sites except YPS-078. The gradient on Hunker Creek was steady at a 2-3% grade. Results of the stream substrate characterisation (100 pebble count) indicated pebble and cobble as the dominant substrates with some gravel documented at YPS-544, YPS-612, and YPS-613. Average size of substrate ranged from 3.4 cm at YPS-544 to 7.7 cm at YPS-080. Average embeddedness was 25% (1/4) at all sites except for YPS-544 (50%) and YPS-612 (0%) and the dominant interstitial material was sand and gravel. Macrophyte coverage was non-existent at all sites except for YPS-621 which had a coverage of 1-25%. Periphyton was also not present at most of the sites with only YPS-611 showing evidence of periphyton cover (1-5mm). The dominant vegetation type included shrubs, ferns/grasses and deciduous trees but was highly variable from site to site. Canopy coverage remained stable throughout Hunker Creek with all sites falling within the 1-25% range.

Adams Creek

Pools and riffle sections were identified within the stream reach for all sites sampled on Adams Creek. Rapids were identified at YPS-626 but at no other sites and no run sections were encountered. The gradient on Adams Creek was steady at a 3% grade. Results of the stream substrate characterisation (100 pebble count) indicated pebble and cobble as the dominant substrates. Average size of substrate ranged from 5.6 cm at YPS-622 to 6.8 cm at YPS-625. The dominant interstitial material was sand with the exception YPS-625 which was dominated by gravel. Average embeddedness was 25% (1/4) at YPS-622, YPS-624 and YPS-626 and 0% at YPS-623 and YPS-625. No macrophyte coverage was observed at any of the sites sampled on Adams Creek. A thin layer of periphyton (0.5-1mm) was observed at all sites except for YPS-622. Shrubs were the dominant riparian vegetation type at all sites apart from YPS-615 which was dominated by deciduous trees. Canopy coverage ranged from 1-25% at YPS-624 and YPS-623 and YPS-623 and increased as sampling moved upstream with a range of 26-50% at YPS-623, YPS-624 and YPS-625.

Swede Creek

Riffle and run sections were observed at YPS-386 but no pools or rapids. Similar to Hunker Creek and Adams Creek, gradient was at 3% grade. Results of the stream substrate characterisation (100 pebble count) indicated pebble and cobble as the dominant substrates as well as a very small percentage of boulder. Average size of substrate was 7.5 cm, the average embeddedness was 25% (1/4) and sand made up the interstitial material. There was 1-25% macrophyte coverage within the reach and a thin layer (0.5-1mm) of periphyton. Coniferous trees were the dominant riparian vegetation type and canopy coverage was 1-25% within the reach.

4.3.2 Benthic Community Data

The following sections present the benthic community data calculated from each site. CABIN exports for each site sampled on Hunker Creek, Adams Creek and Swede Creek are presented in **Appendix G**.

4.3.2.1 Hunker Creek

Benthic invertebrate community metrics measured for Hunker Creek stations are provided in **Table 4.6** and **Figure 4.1** through **Figure 4.11**.

Table 4.6Benthic Community Metrics in Hunker Creek, 2006 to 2020

Watercourse Name	Site	Year	Total Abundance	Family Richness	SDI	SEI	% C	% E	% P	% T	% EPT
		2006	596	12	0.53	0.18	19	69	4	1	74
		2008	555	15	0.35	0.1	80	10	5	0	15
		2010	943	16	0.69	0.2	51	17	2	1	20
Hunker Creek		2012	665	19	0.75	0.21	4	55	7	0	63
upstream of Ontario	YPS-078	2013	234	14	0.79	0.33	37	30	10	1	41
Cr.		2016	294	19	0.85	0.35	21	34	3	2	38
		2018	443	16	0.61	0.16	13	74	3	1	78
		2019	833	18	0.81	0.3	25	32	6	1	40
		2020	384	19	0.63	0.14	11	68	8	1	77
Liveker Creek	YPS-611	2019	2,371	19	0.84	0.33	21	7	18	28	54
Hunker Creek	195-011	2020	1,955	14	0.74	0.27	51	20	4	11	35
Hunker Creek		2006	1,276	10	0.49	0.2	67	23	1	1	25
upstream of Gold	YPS-079	2019	889	10	0.41	0.17	76	13	2	8	23
Bottom Cr.		2020	484	16	0.65	0.18	91	6	1	2	8
Hunker Creek		2006	852	12	0.47	0.16	15	72	4	1	76
downstream of Gold	YPS-080	2019	3,655	19	0.57	0.12	6	64	15	11	91
Bottom Cr.		2020	315	21	0.83	0.29	51	16	1	24	41
Hunker Creek		2019	3,027	13	0.62	0.2	7	60	20	4	84
Hunker Creek	YPS-614	2020	220	14	0.80	0.35	67	16	0	11	27

Yukon Energy Mines and Resources Fish Habitat Management System for Yukon Placer Mining – 2020 AH and WQ Objective Monitoring Results

Watercourse Name	Site	Year	Total Abundance	Family Richness	SDI	SEI	% C	% E	% P	% T	% EPT
		2005	189	11	0.26	0.12	8	87	1	0	88
Hunker Creek		2006	445	13	0.6	0.19	20	60	1	1	62
downstream of Hester Creek inflow	YPS-051	2019	462	20	0.68	0.16	11	52	3	10	66
		2020	219	25	0.89	0.37	63	18	1	2	21
		2019	1,267	19	0.73	0.2	13	48	4	14	66
Hunker Creek	YPS-621	2020	1,044	18	0.83	0.32	43	34	2	6	42
Liberthan One als		2019	1,068	21	0.77	0.2	6	38	22	24	84
Hunker Creek	YPS-613	2020	381	27	0.77	0.49	62	19	2	2	24
Likuskas Orașik		2019	2,239	20	0.68	0.16	5	50	13	27	90
Hunker Creek	YPS-612	2020	1,110	14	1	0	86	5	0	2	6
		2006	340	15	0.77	0.29	36	11	0	2	12
		2013	40	6	0.67	0.51	31	49	0	10	59
		2014	45	4	0.64	0.7	0	49	0	0	49
		2015	143	12	0.73	0.31	32	37	3	4	43
Hunker Creek	YPS-544	2016	270	15	0.58	0.16	59	28	1	3	32
		2017	242	15	0.67	0.2	48	30	2	6	38
		2018	332	13	0.62	0.2	54	30	2	1	33
		2019	730	19	0.75	0.21	35	34	4	10	47
		2020	198	23	0.56	0.26	85	1	0	1	1

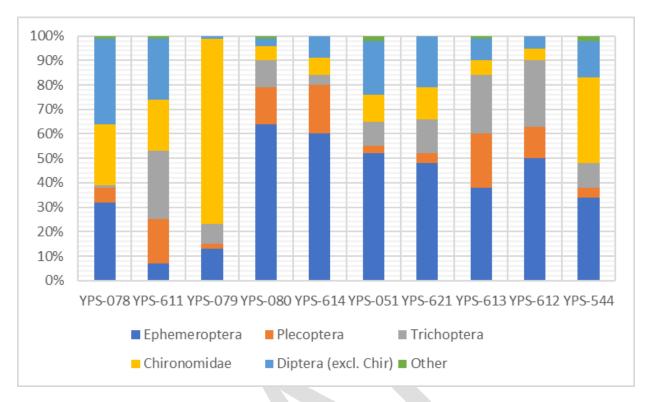


Figure 4.1 Relative Abundance of Major Taxonomic Groups in Hunker Creek in 2019

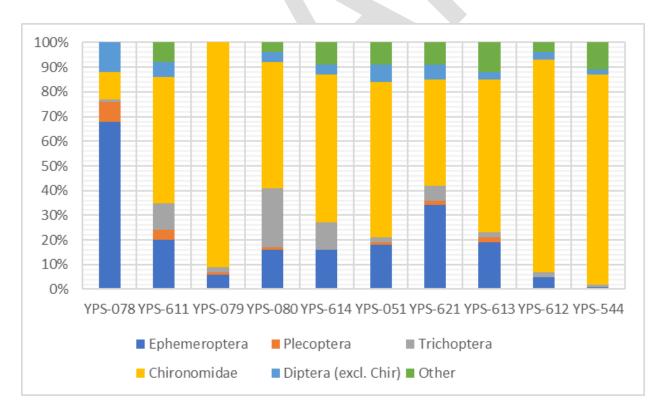


Figure 4.2 Relative Abundance of Major Taxonomic Groups in Hunker Creek in 2020

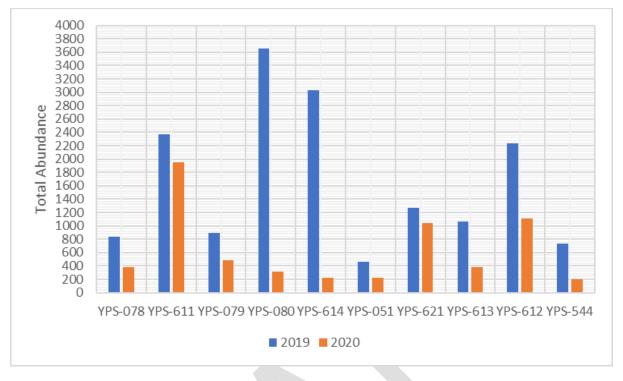


Figure 4.3 Total Abundance of Benthic Invertebrates in Hunker Creek, 2019 and 2020

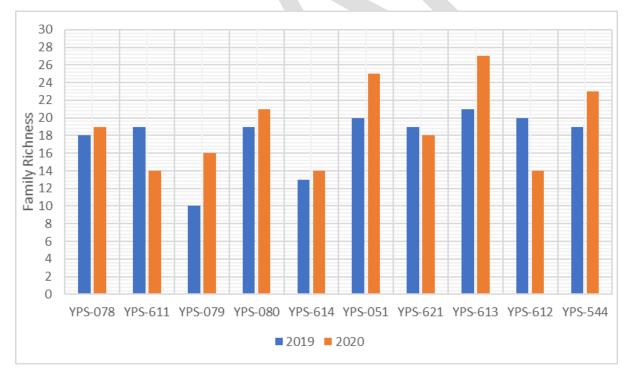


Figure 4.4 Family Richness of Benthic Invertebrates in Hunker Creek, 2019 and 2020

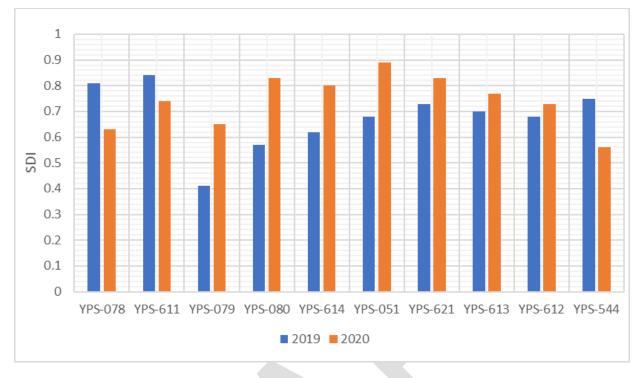


Figure 4.6 SEI for Benthic Invertebrates in Hunker Creek, 2019 and 2020

Figure 4.8 Percent Ephemeroptera in Hunker Creek, 2019 and 2020

Figure 4.10 Percent Trichoptera in Hunker Creek, 2019 and 2020

Figure 4.11 Percent EPT in Hunker Creek, 2019 and 2020

Total abundance at all sites was lower in 2020 in comparison with 2019 (**Figure 4.3**), especially at sites YPS-080 and YPS-614. Total abundance in 2020 ranged from 1955 at YPS-611 and 198 at YPS-544. The differences in total abundance between the two years might reflect differences in the area of streambed covered during kick-net sampling, while the time spent kick-netting should have been standardized.

Family richness (**Figure 4.4**), a simple measure of biodiversity, was higher at most Hunker Creek sites in 2020 than in 2019, except for sites YPS-611 and YPS-612. Family richness in 2020 ranged from 27 at YPS-613 to 14 at YPS-614 and YPS-611.

Simpson's Diversity Index (SDI) (**Figure 4.5**) was also higher in 2020 than 2019 at most sites, except for YPS-078, YPS-611 and YPS-544. SDI values were generally high in 2020 and ranged from 0.89 at YPS-051 to 0.56 at YPS-544. Similarly, Simpson's Evenness Index (SEI) (**Figure 4.6**) was higher in 2020 than 2019 at most sites, except for YPS-078 and YPS-611. SEI values were generally low and ranged from 0.14 at YPS-078 to 0.49 at YPS-613.

The relative abundance of chironomids (Order Diptera) (**Figure 4.7**) was much higher in 2020 than 2019 for all Hunker Creek sites, with the exception of YPS-078 (the most upstream site). This coincided with a decrease in 2020 in percentage of ephemoptera, plecoptera, trichoptera, at the majority of the sites sampled (**Figure 4.8**), except for YPS-078 which saw an increase of these taxa. The percentage of chironomids in 2020 ranged from 86% at YPS-612 to 11 at YPS-078. Percent EPT ranged from 77% at YPS-078 to 1% at YPS-544.

The differences in total stream invertebrate abundance observed at the ten Hunker Creek AHM sites between 2019 and 2020 might be accounted for by differences in sampling approaches of field personnel (i.e., a shorter overall distance travelled over the streambed in 2020 while kick-netting, or between-year differences in the degree to which the substrate was worked). Such methodological differences, however, would not account for the marked between-year differences in community composition, and particularly the much higher proportion of the community in 2020 compared with 2019 made of dipteran insects (including chironomids) and much lower proportion of EPT. Future work will involve analyses to attempt to identify any predictable trends in the benthic invertebrate data from the past 5 years using different methods than are currently employed.

No discernable trends were identified when evaluating the benthic invertebrate community metrics over a longer time frame for Hunker Creek AHM sites YPS-078 (most upstream) and YPS-544 (most downstream), based on data available from 2006 through 2020 (**Table 4.6**). The high degree of between-year variability in % EPT and % C is nonetheless striking. The coefficient of variation for other community metrics such as abundance and family richness was much lower than for % EPT and % C.

Total abundance at YPS-544 appeared to be following an upward trend from 2013 to 2019, but then decreased again in 2020, whereas abundance at YPS-078 has fluctuated non-systematically from year to year. Family richness at YPS-078 has been steady since 2006 with limited family diversity. In contrast, family richness at YPS-544 has been more variable between monitoring years, with a family richness as low as 4 in 2014 and as high as 23 in 2020. SDI values are generally high at both sites (>0.50, except at YPS-078 in 2008 (0.35)) and don't appear to following any specific trends over time. SEI, conversely, has been generally low over the years of sampling with the exception of 2013 and 2014 at YPS-544.

4.3.2.2 Swede Creek

Benthic invertebrate community metrics obtained for Swede Creek in 2009, 2016 and 2020 (YPS-386) are provided in **Table 4.7** and illustrated in **Figure 4.13** to **Figure 4.21**. The benthic community composition at YPS-386 from the three years of monitoring was summarized as a percentage of the major taxonomic orders present and is presented in **Figure 4.12**.

Watercourse Name	Site	Year	Total Abundance	Family Richness	SDI	SEI	% C	% E	% P	% T	% EPT
		2009	858	25	0.80	0.20	40	23	8	1	32
Swede Creek	YPS- 386	2016	1109	19	0.81	0.28	37	31	10	0	41
		2020	2136	33	0.90	0.31	16	44	8	3	55

Table 4.7 Benthic Community Metrics in Swede Creek

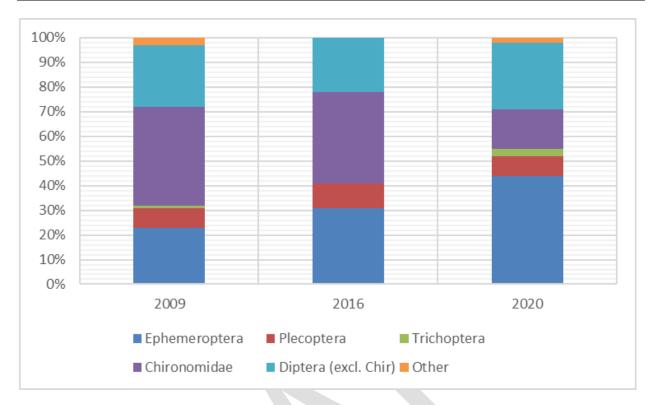
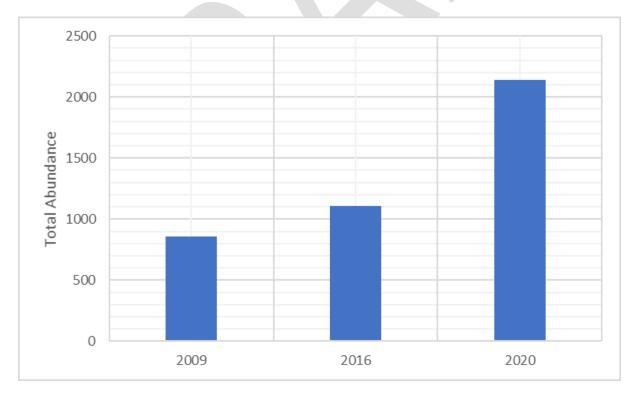



Figure 4.12 Relative Abundance of Major Taxonomic Groups at YPS-386 in Swede Creek, 2009, 2016 and 2020

Figure 4.13 Total Abundance of Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016 and 2020.

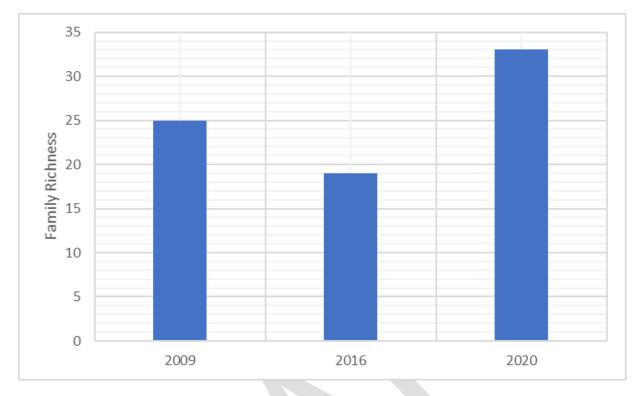
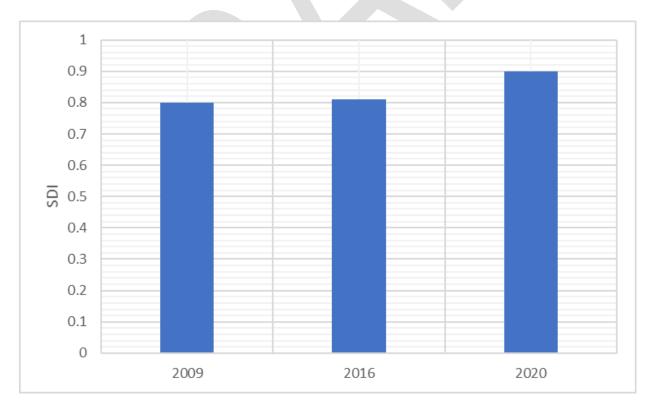



Figure 4.14 Family Richness of Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016 and 2020

An Ausenco Company

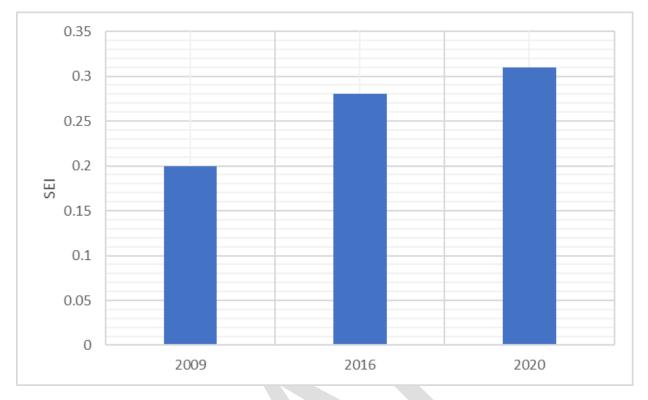


Figure 4.16 SEI for Benthic Invertebrates at YPS-386 in Swede Creek, 2009, 2016 and 2020

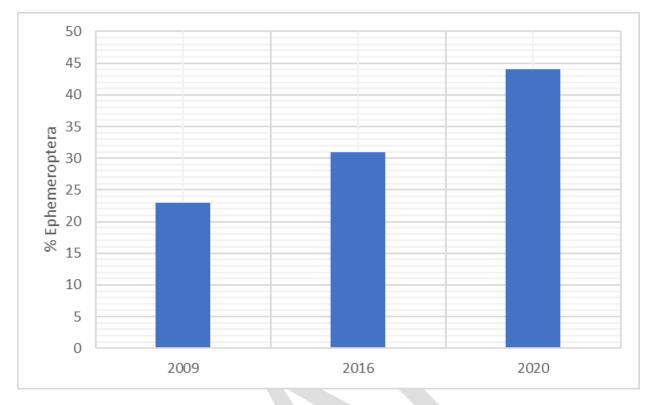


Figure 4.18 Percent Ephemeroptera at YPS-386 in Swede Creek, 2009, 2016 and 2020

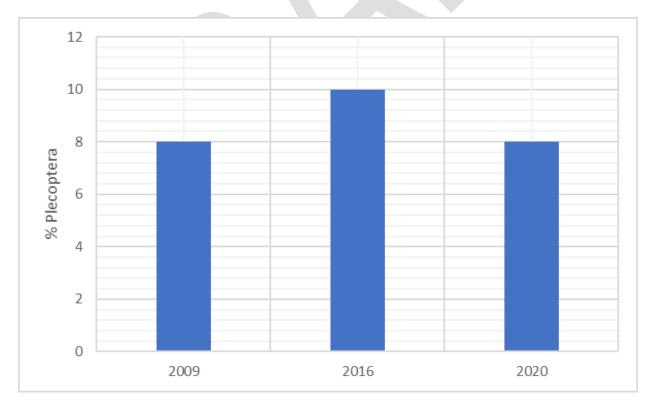


Figure 4.19 Percent Plecoptera at YPS-386 in Swede Creek, 2009, 2016 and 2020

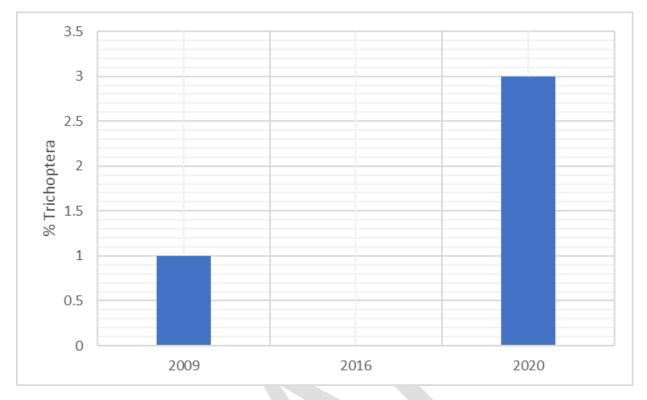
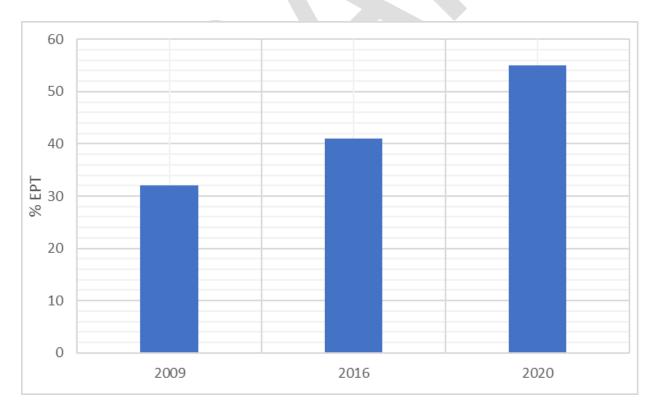



Figure 4.20 Percent Trichoptera at YPS-386 in Swede Creek, 2009, 2016 and 2020

Total abundance at the site shows an increasing trend from the years of monitoring at YPS-386. Family richness decreased from 2009 to 2016 and increased from 2016 to 2020. SDI values calculated for the site are generally high with a range from 0.80 to 0.90. The SEI values (0.20 to 0.31), however, suggest that there is a high degree of dominance by one or few types of organisms. Community composition has changed since the sampling commenced in 2009. Percent *Chironomidae* has decreased since 2009, whereas % EPT has increased since 2009. This shift is observed in percent ephemeroptera but not in plecoptera, which remained steady since 2009. Similar to Adams Creek, there is very little representation from trichoptera in any of the years sampled with only one percent in 2009, no representation in 2016, and three percent in 2020.

4.3.2.3 Adams Creek

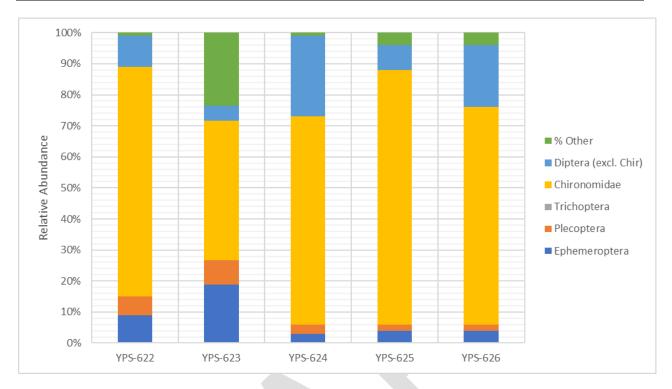
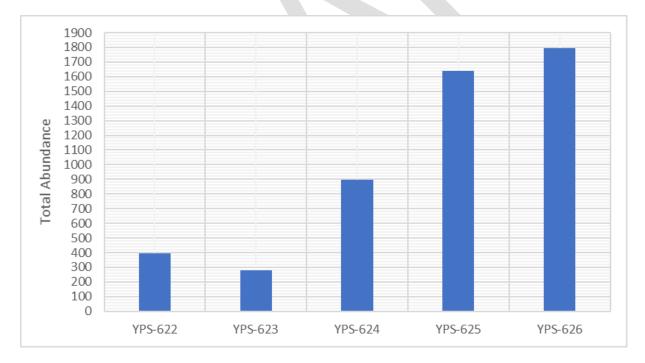

Invertebrate community metrics measured for Adams Creek stations are provided in **Table 4.8**. Community metrics are presented in **Figure 4.23** through **Figure 4.30** and relative abundance of major taxonomic groups is shown in **Figure 4.22**.

Table 4.8 Benthic Community Metrics in Adams Creek


	-	Total Abundance	Year	Site	Watercourse Name
12 0.62 0.22 74 9 6 0 16	12	395	2020 ^a	YPS-622	Adams Creek
14 0.79 0.34 57 21 10 0 31	14	282	2020	YPS-623	Adams Creek
23 0.76 0.21 67 3 3 0 6	23	896	2020	YPS-624	Adams Creek
0 10 0.66 0.30 82 4 2 0 6	10	1,640	2020	YPS-625	Adams Creek
2 26 0.77 0.52 70 4 2 1 7	26	1,792	2020 ^a	YPS-626	Adams Creek
17 0.72 0.32 70 8 5 0 13	17	1001	Mean	Arithmetic	
7 0.08 0.13 9 8 3 0 11	7	694	eviation	Standard D	Summary
10 0.62 0.21 57 3 2 0 6	10	282	um	Minim	Statistics
2 26 0.79 0.52 82 21 10 0 31	26	1792	um	Maxim	
	26	1792 Simpson's Evenn	um Index; SEI =	Maxim son's Diversity	

a. 2020 metric values for the sites are based on the average of three replicate samples.

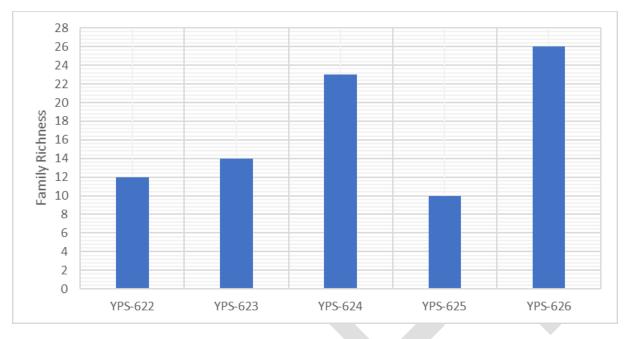


Figure 4.24 Family Richness of benthic invertebrates in Adams Creek, 2020

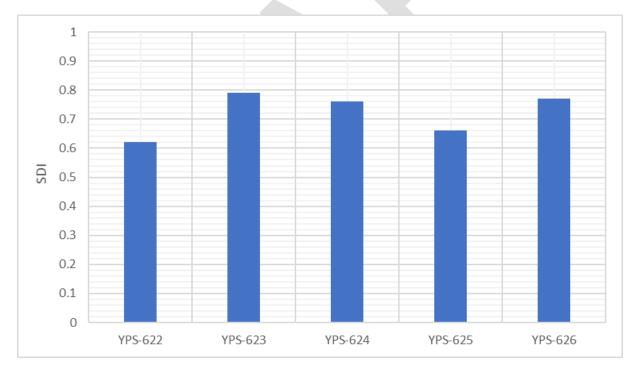


Figure 4.25 SDI of Benthic Invertebrates in Adams Creek, 2020

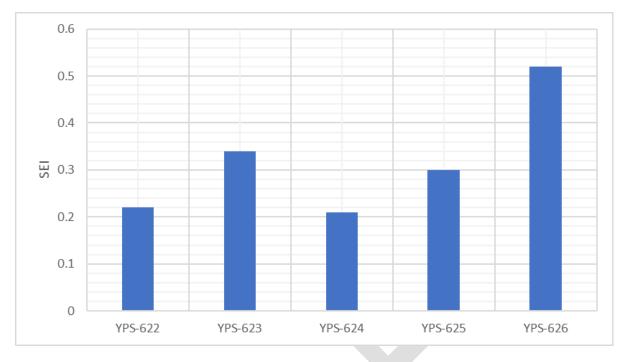


Figure 4.26 SEI of Benthic Invertebrates in Adams Creek, 2020

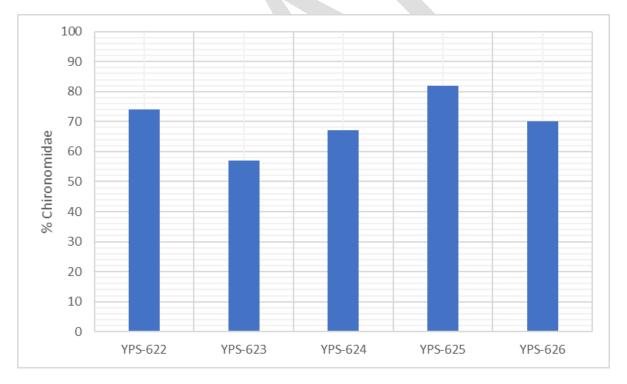
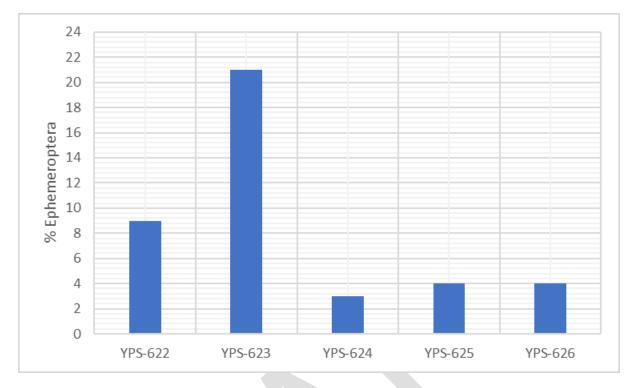



Figure 4.27 Percent Chironomidae in Adams Creek, 2020

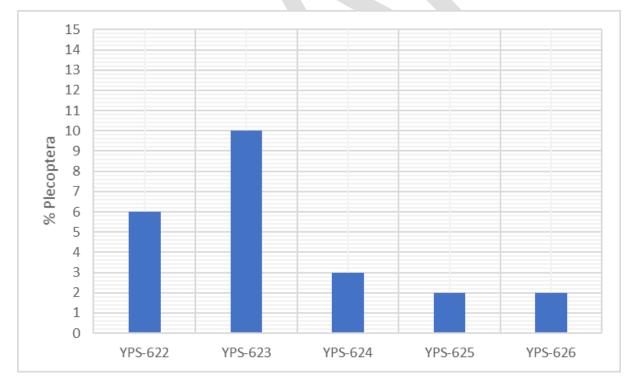
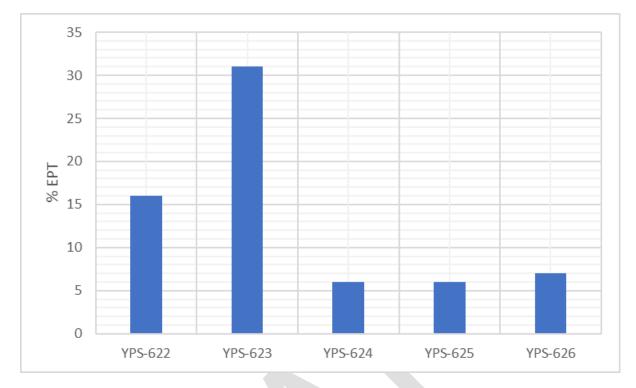



Figure 4.29 Percent Plecoptera in Adams Creek, 2020

Figure 4.30 Percent EPT in Adams Creek, 2020

Chironomids were the dominant order in all samples collected on Adams Creek and made up over 55% of the community at each site. The high presence of chironomids combined with the low SEI values suggest that there is a high degree of dominance by one or a few organisms within this family. A further review of the benthic invertebrate data identified that there are four genus that make up the majority of the chironomids at the sites on Adams Creek, *Diamesa, Eukiefferiella, Orthoclidius complex* and *Parorthocaldius*. Interestingly, their representation within each sample increased from the lower to upper reaches of the watershed (**Table 4.9**).

Table 4.9 Dominant Chironomid Genus representation in Adams Creek

Site	Percentage of chironomids identified in sample as <i>Diamesa</i> , <i>Eukieferiella</i> , <i>Orthocladius complex</i> and <i>Parorthocaldius</i> .
YPS-622	60%
YPS-623	66%
YPS-624	81%
YPS-625	83%
YPS-626	89%

There was a general trend of increasing total abundance from sites YPS-622 to YPS-626 (i.e. downstream to upstream). Family richness followed a similar pattern with the exception of YPS-625 (second most upstream site, above current placer mining activity), which had the lowest family richness of all sites sampled on Adams Creek. All sites sampled had a low percentage of EPT individuals and unexpectedly, YPS-623, (the secondmost downstream site, below current placer mining activity) had the highest percentage of EPT. Interestingly, there was very little presence of trichoptera (caddisflies) of the sites sampled with only 1% representation at YPS-626 and no representation in any of the other sites sampled. A follow up with Cordillera Consulting was conducted to verify that the results met QA/QC protocols for the enumeration and that no errors had occurred in the reporting and this was confirmed. SDI values for Adams Creek were considered relatively high with values from ranging from 0.62 to 0.79.

4.3.2.4 Replicates

In order to evaluate the need to incorporate site replication into the study design, three replicates were collected at YPS-612, YPS-622 and YPS-626 in 2020 to further the work in 2019 to better characterize within-site variability in benthic invertebrate community composition. A larger data set will be utilized to improve statistical confidence in evaluating the need to incorporate site replication into the study design. This will be published in an upcoming report.

4.3.3 Streambed Sediment Characteristics

In-situ sediment results including both analytical and field-based data (i.e. 100 pebble count) are presented below in **Table 4.10**. The CABIN field data indicated a dominance by either cobble or pebble substrate at all sites sampled in 2020. Two Adams Creek sites (YPS-624 and YPS-625) and four Hunker Creek sites (YPS-611, YPS-613, YPS-612 and YPS-544) had a small amount of gravel (1 – 7%).

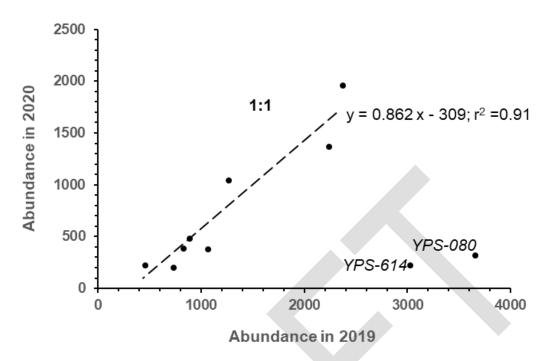
Table 4.10 In-situ and CABIN Field Data Sediment Results, 2020

						(CABIN Field	Data						l	_aborato	ry Data			
Watershed	Watercourse Name	Site	Bedrock (%)	Boulder (%)	Cobble (%)	Gravel (%)	Pebble (%)	Sand (%)	Silt+Clay (%)	Wolman D50 (cm)	Wolman Dg (cm)	Moisture (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Texture	Total Nitrogen (%)	Total Organic Carbon (%)
	Adams Creek	YPS-622	0	0	41	0	59	0	0	5.6	5.6	19.0	36.9	53.0	10.1	<1.0	Sand	<0.020	0.217
	Adams Creek	YPS-623	0	0	53	0	47	0	0	6.4	6.1	20.2	16.7	73.0	10.3	<1.0	Sand	<0.020	0.152
	Adams Creek	YPS-624	0	0	45	1	54	0	0	6.2	6.2	3.0	<1.0	78.9	20.0	1.3	Sand	0.052	0.733
	Adams Creek	YPS-625	0	0	58	1	41	0	0	6.9	6.8	26.0	23.7	47.7	26.6	2.0	Sand	0.091	4.460
	Adams Creek	YPS-626	0	0	54	0	46	0	0	6.6	6.6	19.5	21.1	63.9	13.9	1.1	Coarse sand/Fine gravel	0.046	0.802
	Hunker Creek upstream of Ontario Cr.	YPS-078	0	0	51	0	49	0	0	6.6	6.4	14.2	32.8	64.2	3.0	<1.0	Sand	<0.020	0.210
	Hunker Creek	YPS-611	0	0	57	1	42	0	0	6.9	6.4	27.1	4.0	88.5	8.0	<1.0	Sand	<0.020	0.225
Klondike	Hunker Creek upstream of Gold Bottom Cr.	YPS-079	0	0	16	0	84	0	0	4.4	4.4	21.6	20.5	63.7	15.8	<1.0	Fine Sand	<0.020	0.235
River	Hunker Creek downstream of Gold Bottom Cr.	YPS-080	0	0	65	0	35	0	0	8.4	7.7	26.2	<1.0	77.9	22.1	<1.0	Fine Sand	0.025	0.358
	Hunker Creek	YPS-614	0	0	40	0	60	0	0	5.6	5.5	39.2	<1.0	27.7	69.1	2.8	Sand	0.142	2.440
	Hunker Creek downstream of Hester Creek inflow	YPS-051	0	0	44	0	56	0	0	5.9	5.8	44.3	<1.0	70.7	27.2	1.4	Fine Sand	0.045	0.701
	Hunker Creek	YPS-621	0	0	49	0	51	0	0	6.3	5.7	44.3	16.7	25.2	54.9	3.2	Fine Sand	0.173	3.170
	Hunker Creek	YPS-613	0	0	4	6	90	0	0	2.6	2.8	36.2	<1.0	26.2	68.8	4.6	Fine Sand	0.143	2.170
	Hunker Creek	YPS-612	0	0	65	1	34	0	0	7.5	6.9	28.0	<1.0	72.7	25.1	2.0	Sand	0.068	1.020
	Hunker Creek	YPS-544	0	0	7	7	86	0	0	3.6	3.4	28.7	<1.0	83.0	15.9	1.1	Coarse Sand	0.020	0.385
Yukon River	Swede Creek	YPS-386	0	1	63	0	36	0	0	7.8	7.5	42.0	4.7	48.9	42.5	3.9	Fine Sand	0.162	3.040

Only Swede Creek (YPS-386) had any indication of boulders in the substrate. No sand or silt+clay was counted at any of the sites sampled. Wolman D50 (cm) was generally consistent throughout Adams Creek ranging from 5.6 cm to 6.6 cm. Greater variability was noted in Hunker Creek with values ranging from 2.6 cm to 8.4 cm. A similar pattern as observed for Wolman Dg (cm) with a range of 5.6 cm to 6.8 cm in Adams Creek and 2.8 cm to 7.5 cm in Hunker Creek. Swede Creek had a Wolman D50 and Wolman Dg of 7.8 cm and 7.5 cm, respectively.

Texture of in-situ sediment was consistently characterized as sand or fine sand at all sites on Adams Creek, Hunker Creek and Swede Creek. The percent gravel, sand, silt and clay reflect this, with sand being the dominant texture in all Adams Creek sites, Swede Creek and in seven of the ten sites sampled on Hunker Creek. Silt was the dominant texture at YPS-614, YPS-621, and YPS-613 on Hunker Creek and made up 42.5% of the sample at YPS-386 on Swede Creek. Percent gravel on Adams Creek ranged from a non-detection at YPS-624 to 36.9% at YPS-622. Percent gravel on Hunker Creek was slightly less, with a range of non-detection (YPS-080, YPS-614, YPS-051, YPS-613, YPS-612, YPS-544) to 32.8% at YPS-078. A small amount of gravel (4.7%) was found in Swede Creek at YPS-386. Percent clay was very little, with no more than 5% at all sites sampled in 2020.

Very little total nitrogen was observed in Adams Creek and ranged from non-detection at YPS-622 and YPS-623 to 0.091% at YPS-624. Similar results were observed in Hunker Creek with a range of non-detection (YPS-078, YPS-611, YPS-079) to 0.173% at YPS-621. Total organic carbon was also low at each of the sites sampled on Adams Creek with values ranging from 0.217% at YPS-622 to 4.46% YPS-624. Hunker Creek exhibited similar results with values ranging from 0.210% at YPS-078 to 3.17% at YPS-621. Swede Creek also exhibited very low levels of total nitrogen and total organic carbon with a value of 0.162% and 3.04%, respectively.


4.4 Discussion

4.4.1 Reproducibility of AHM Data and Interannual Comparison

Monitoring of the same ten sites on Hunker Creek in 2019 and 2020 provided some insights regarding data comparability between subsequent years of monitoring. Based on the benthic invertebrate community metrics obtained based on CABIN wadable stream protocols, we observed a reasonable agreement in overall abundance estimates per kick-net sample between 2020 and 2019 for 8 of 10 sampling locations. Two of the ten stations (YPS-080 and YPS-614) exhibited a substantially lower benthic invertebrate abundance in 2020 in comparison with the previous year. This could be a result of impacts to benthic community health in 2020 from placer mining or other environmental changes. Alternatively, this might reflect changes in the exact sampling locations or methods; however, this appears less likely based on the attention paid to methodological consistency.

For 8 of the 10 stations with similar abundance for the two years, there was a statistically significant linear regression of the 2020 abundance data on the 2019 data (n = 8, $r^2 = 0.91$, **Figure 4.31**). Note that sample data from YPS-080 and YPS-614 were excluded in the calculation of the regression relationship.

Approximately 91% of the variability in abundance between stations in 2020 could be explained by the co-variation with the 2019 abundance data, for those monitoring stations other than YPS-080 and YPS-614.

Figure 4.31 Total Invertebrate Abundance in 2019 and 2020 in Hunker Creek

Note that there was a lower abundance across all eight sites in 2020 in comparison with 2019, which might be related either to a general interannual variability in productivity in relation to interannual climate variability and/or the period of field sampling relative to benthic invertebrate egg deposition, larval development, and hatching / emergence.

There was little consistency from 2019 to 2020 in the other benthic invertebrate metrics for the ten Hunker Creek stations, including Family Richness, % EPT and % C. There was no statistically significant relationship ($\alpha = 0.05$) between the 2019 and 2020 data for these indicators.

Of note is that the proportion of total invertebrate abundance contributed by chironomids was much higher in 2020 compared with 2019 (9 of 10 monitoring sites) and the proportion contributed by all EPT was much lower in 2020. The one anomaly to this pattern was site YPS-078. Possible explanations for such a shift include a systemic variation between years (e.g. in association with changes in weather), altered timing of field work between the two years, or issues associated with laboratory sorting, enumeration and taxonomy of the kick net samples.

There were also no statistically significant relationships between the 2019 and 2020 results for measures of streambed substrate texture and chemistry, including total nitrogen, total organic carbon content, or percent fines (silts plus clays). This is probably a reflection of challenges in achieving consistent and adequately representative sampling of substrate given the spatial and other complexities of streambed conditions. The interannual, between-sampler variability in measures of substrate characteristics suggest that these measures might not be good indicators of change resulting from placer activities and might not allow the exploration of the underlying stream conditions as covariates of aquatic ecosystem health.

4.4.2 Benthic Invertebrate Community Characteristics and Relationship with In-situ sediment on Adams Creek and Hunker Creek

Placer mining involves the mining of alluvial (stream and river) gold deposits that are located within historical or active floodplains of running waters. One potential impact of placer mining is increased sediment loads and suspended sediment concentrations (total suspended solids: TSS) in fish-bearing waters. This can occur directly through the discharge to the local water course of site water that contains high TSS, and indirectly as a result of the alteration of land forms and flood plains, disturbance of riparian vegetation and soils, and destabilization of soil and shoreline deposits, making the local landscape far more prone to erosion and entrainment of soil particles in runoff from snowmelt and rainfall. In addition, alteration of landforms and flood plains (e.g. stream diversions) can lead to the loss of aquatic habitat and in some cases fish stranding.

There is an extensive body of science that clearly demonstrates the potential for adverse effects of increased TSS on various life stages of Pacific salmon, other fish, and other aquatic organisms such as benthic invertebrates and periphyton that are important food sources for higher consumers. Elevated TSS can reduce fish olfaction and impair migratory movements, clog respiratory and feeding structures, and reduce light penetration. Of particular importance for many Yukon streams is the potential for increased settlement of suspended sediments in streambed areas that would otherwise support the deposition and development of salmonid eggs and foraging of juveniles. Increased sedimentation rates can result in smothering and reduced oxygen availability.

Two types of observations are used within the AHM to capture substrate conditions in the stream reach, with a focus on detecting the influences of increased levels of TSS. Increased flux of TSS from active and recent placer works to the receiving environment could result in adverse effects on aquatic life based on (i) effects in the water column such as altered feeding / foraging abilities, or clogging of respiratory and feeding structures; and (ii) effects to substrate-associated biota including accumulation in substrate interstices in gravel and cobble (riffle section and other) stream beds, increased embeddedness of cobbles and reduced surface area for colonization, smothering, oxygen depression, and locally altered current regime. The first type of data collected is the substrate characterization metrics collected under the CABIN protocol, including percent of substrate comprised of bedrock, boulders, gravel, pebble and finer textured materials, and median effective diameter of individual substrate elements. The second type of data collected is the texture and chemistry (including total N and total organic carbon) of finer textured sediment (sands through clays). This material generally occurs in streambeds with a spatially variable distribution, based on settlement in microenvironments that are not prone to scour (for example, within the voids between cobble and gravel, or in eddies and pools below or adjacent to riffle sections). This second set of data is derived from collection of a sediment sample that is analyzed using standardized laboratory test methods for texture and chemical characteristics.

An important hypothesis that underlies the AHM is that increased TSS from human activities will result in accumulations of sediments smaller than gravels and occlude stream flow pathways within the streambed near its ecologically-active surface. In this context, it is important to note that the two types of stream substrate characterization data tend to provide very different information regarding the relative influence of recently settled fines on the stream substrate and biota that live there.

In 2020, AHM sites included Swede Creek (one site), Adams Creek (five sites) and Hunker Creek (ten sites, as discussed above). We began with an evaluation of the predictive value of local streambed conditions for explaining between-site variations in benthic invertebrate metrics, including total abundance per kick-net sample, taxon richness, % EPT and % Chironomidae.

For Hunker Creek in 2019, the abundance of benthic invertebrates significantly co-varied with the fines content of sediment samples (silt-clay fraction; <63 μ m) collected concurrently with kick-net sampling (generally in depositional areas adjacent to the riffle substrate in the mainstream channel). No similar relationship was observed for the five Adams Creek stations sampled in 2020. The reason for positive co-variation between total abundance and percent fines content is unclear.

For the Hunker Creek 2020 data, there was also a positive relationship between taxon richness and the ratio of pebbles to cobbles in the streambed substrate, based on CABIN protocol substrate characterization methods. There was no statistically significant relationship between taxon richness and pebble to cobble ratio for the Hunker Creek 2019 AHM data nor Adams Creek 2020 AHM data. There is a plausible explanation for increased biodiversity of the stream invertebrate community in streambeds with a higher proportion of gravel to cobble, since the total surface area of substrate per square meter of streambed will be higher for gravels than cobbles. This, in turn could support greater periphyton and bacterial biofilm per unit area, and greater food availability. While such a relationship was not observed in Hunker Creek in 2019, the stream invertebrate community composition was different between the two years, as discussed in **Section 4.1.1**, with greater % EPT in 2019.

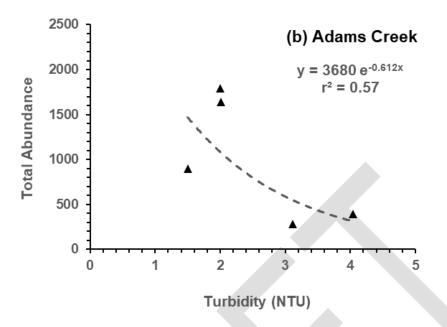
The remaining benthic community metrics for the Hunker Creek 2019 and 2020 monitoring and Adams Creek 2020 monitoring including taxon richness, abundance and percent composition of EPT, or abundance and percent composition of Chironomidae did not significantly co-vary with any quantitative measure of substrate quality, based either on the standard CABIN substrate characterization approaches or accessory sediment sampling and laboratory determinations of total organic carbon or grain size (**Table 4.11**).

Variables	Hunker Cr	eek - 2019	Hunker Cr	eek - 2020	Adams Creek - 2020		
Vallables	r ²	p value	r ²	p value	r ²	p value	
Abundance vs Percent Fines	0.51	0.02	0.05	0.53	0.44	0.22	
Abundance vs Pebble/Cobble	0.08	0.41	0.10	0.36	0.38	0.27	
Abundance vs %TOC	0.33	0.08	0.0004	0.95	0.40	0.25	
Richness vs Percent Fines	0.04	0.58	0.03	0.62	0.01	0.87	
Richness vs Pebble:Cobble ratio	0.04	0.58	0.42	0.04	0.00005	0.99	
Richness vs %TOC	0.003	0.87	0.0001	0.97	0.17	0.49	
%EPT vs Percent Fines	0.24	0.16	0.02	0.71	0.49	0.19	
%EPT vs Pebble/Cobble	0.09	0.39	0.11	0.35	0.003	0.92	
%EPT vs %TOC	0.35	0.06	0.0005	0.95	0.25	0.39	
%C vs Percent Fines	0.08	0.42	0.01	0.76	0.42	0.23	
%C vs Pebble/Cobble	0.08	0.43	0.07	0.45	0.01	0.90	
%C vs %TOC	0.21	0.19	0.003	0.88	0.57	0.14	

Table 4.11 Summary of Linear Regression Results for in-situ Sediment and Benthic Community Metric Variables.

The collection of an accessory sediment sample in areas adjacent to the riffle section where kick-net sampling is carried out is not expected to reflect the sediment depositional regime, including altered flow and dissolve oxygen levels or TSS scouring regime in the microhabitats where the stream invertebrates obtained via kick-net sampling reside. The absence of a relationship between substrate characteristics obtained from this accessory sampling and stream invertebrate community metrics, therefore, is not surprising. With regard to the CABIN protocols for evaluation of substrate characteristics, it is hypothesized that the greatest impact of elevated stream TSS on either stream invertebrate productivity, biodiversity, and function or spawning redds of migratory fish would be altered rates of sediment settling and entrapment in voids between stones, cobble and gravel, resulting in greater embeddedness of larger substrate at and below the open stream channel. Measures of substrate embeddedness are included in the CABIN protocols and these data are available for the 2019 and 2020 AHM data; however, the methods provide a very imprecise estimate of TSS sedimentation rates and the associated changes in water quality within the streambed.

4.4.3 Benthic Invertebrate Community Characteristics and Relationship with Turbidity and Discharge on Adams Creek and Hunker Creek


To further the understanding of benthic community metrics and their relationship with quantifiable environmental variables, an assessment of turbidity and discharge was conducted. The aim was to identify whether any relationship existed between benthic community metrics and turbidity and discharge. Similar to **Section 5.3**, we began with an evaluation of the predictive value of local turbidity and discharge conditions for explaining between site variations in benthic invertebrate metrics, including total abundance per kick-net sample, family richness, % EPT and % C.

The streambed invertebrate community metrics across all Hunker Creek sites sampled in 2020 (abundance, richness, SDI, SEI, %EPT, % C) did not vary in relation to either stream discharge or the observed local turbidity (**Table 4.12**). In contrast, total invertebrate abundance decreased significantly with increasing turbidity and increasing stream flow in Adams Creek (**Figure 4.31** and **Figure 4.32**, respectively). Percent EPT showed the opposite pattern: there was a statistically significant increase in % EPT with increasing turbidity and increasing stream flow in Adams Creek (**Figure 4.33** and **Figure 4.34**, respectively). It should be noted that the probability value for the linear regression of turbidity on total abundance (p=0.20), turbidity on % EPT (p=0.23) and discharge on % EPT (0.10) was higher than the Type 1 error cut-off of 0.05.

Variables	Hunke	er Creek	Adar	ns Creek	Variables	Hunk	er Creek	Adams (Creek
Variables	r²	p value	r ²	p value	variables	r²	p value	r ²	p value
Abundance vs Turbidity	0.16	0.25	0.57	0.20	Abundance vs Discharge	0.02	0.66	0.97	0.001
Richness vs Turbidity	0.11	0.34	0.33	0.31	Richness vs Discharge	0.03	0.62	0.15	0.52
%EPT vs Turbidity	0.04	0.57	0.61	0.23	%EPT vs Discharge	0.02	0.67	0.67	0.10
%C vs Turbidity	0.0005	0.95	0.51	0.17	%C vs Discharge	0.02	0.74	0.40	0.25

Table 4.12 Summary of Linear Regression Results for Turbidity and Discharge vs Benthic Community Metric Variables.

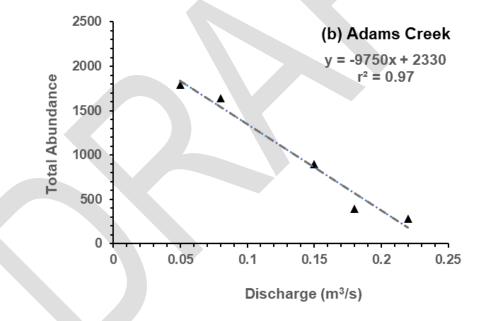
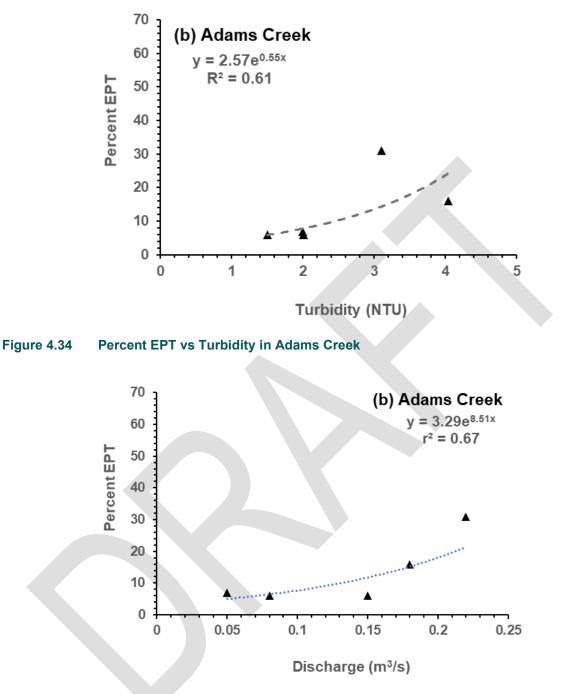



Figure 4.33 Total Abundance vs Discharge in Adams Creek

Figure 4.35 Percent EPT vs Discharge in Adams Creek

Most benthic invertebrate species have specific requirements for the substrate they live in and tend to avoid areas that fail to meet these requirements. EPT taxa, which provide the most productive and available food for fish, are particularly affected by fine sediment accumulation. For example, several species of crawling mayfly larvae will avoid finer, less stable substrates as they cannot grip them effectively, and enter the drift. In contrast, Chironomidae, Oligochaeta and Sphaeridae are typically associated with fine sediment, because they can burrow into the sediment (Jones et al. 2012).

It was hypothesized that the most downstream sites (YPS-622 and YPS-623), which are below active placer mining activity would have the lowest % EPT of the sites sampled in Adams Creek. This is based on the assumption that downstream areas accumulate sediment loads from upstream areas, commensurate with the sediment residence time while entrained in water and as transiently-deposited bed sediments. Stream flow (discharge) estimates for a given monitoring site are a useful measure of integrated influence of upstream and tributary inputs, both for surface water discharge, and other inputs to catchments, including sediment.

While stream discharge was a statistically significant co-variate of decreased stream invertebrate abundance on Adams Creek, % EPT positively co-varied with stream discharge on Adams Creek, contrary to expectations.

The exact cause of this relationship is unknown currently. A possible explanation is that substrate composition and reduced interstitial space at YPS-626 (the most upstream site, above all mining influence) was less conducive for colonization by EPT taxa. The substrate at YPS-626 (comprised of 46% pebble and 54% cobble) was heavily embedded (average of 50% during 100-pebble count) and was difficult to dislodge during the kick-net sampling. Conversely, the substrate at YPS-622 (most downstream site, below all mining influence) was not nearly as embedded (average of 25% during 100-pebble count) and was easily moved during the kick-net sampling.

The decrease in total abundance from increasing discharge and turbidity is possibly a result of benthic invertebrate drift in the watershed. Hynes (1960) noted that transport and suspension of sand and silt ecosystems increases turbidity, resulting in light-limited primary productivity. When settling, inorganic particles fill in the interstices between large substrate particles, resulting in direct smothering or loss of habitat. As a result, benthic invertebrates may leave a community via drift due to changes in food resources or physical habitat.

4.4.4 Swede Creek

Results of the biological metrics calculated at YPS-386 as well as the habitat characterization (Section 4.3.1 and 4.3.2) in Swede Creek may provide an indication of a site that is in a relatively undisturbed aquatic ecological condition. YPS-386 had a high % EPT (55%) and the highest family richness (33) of all sites sampled in 2020. There was no evidence of historical or current mining within one kilometre of the sampling site. It appears the creek is within its original channel and has not been diverted in its recent history. The riparian area for the reach assessed contained large, old white spruce trees that in northern climates take multiple decades to grow (See Appendix C – Photolog). This indicates that it is unlikely that any placer or other anthropogenic activity has occurred in this area. Even though the majority of Swede Creek and some of its tributaries have been staked for placer or are already under a placer lease, there was little evidence of any historical or current mining within the reach assessed that. This was further supported by the low turbidity recorded at the site (1.8 NTU), little evidence of sedimentation on the substrate, and a thin layer of periphyton.

5.0 CONCLUSION AND RECOMMENDATIONS

The AHM results provide information about the effectiveness of the FHMS for protecting fish and fish habitat. The key questions it addresses is (i) whether there are stream systems and watersheds exposed to placer mining where aquatic health is not being maintained in an ecologically undisturbed condition, (ii) if sites in higher sensitivity habitats are ecologically undisturbed, and (iii) whether the ecological status of sites historically impacted by placer mining are improving over time.

Consistent with the 2018 and 2019 AH monitoring findings, we cannot draw conclusions in 2020 as to whether sites are in ecologically impaired as a result of placer mining, or if sites that were historically influenced by placer mining activity have recovered over time. The current methodology does not yet assess in-stream conditions in a way that allows for evaluation of a direct causal relationship between placer mining activity and aquatic health. As identified in previous reviews, there are challenges with the accurate measurement of natural variables and human-related influences that need to be accounted for when assessing whether the impacts are a result of placer mining activity or natural fluctuations.

Cormier et al. (2006) discuss the use of sediment transport curves, which plot the relationship between TSS loads (mass of suspended sediment transported per unit time) and stream discharge, to establish an understanding of baseline sediment transport processes in a water course, and subsequently to detect an upward shift in sediment loading and downstream transport. The 2020 AH monitoring on Adams Creek, Hunker Creek, and Swede Creek do not support an appreciation of how sediment loads have changed relative to discharge rate from the headwaters to the mouth over the last several decades (although the larger WQOM data will support a retrospective analysis about how sediment transport curves have evolved over time for several watersheds of interest).

A snap shot of the comparative TSS load in 2020, expressed in **Figure 5.1** as turbidity, for a similar set of discharge rates nonetheless suggests profound differences between the two small watersheds (Hunker Creek, Adams Creek) that were the focus of monitoring.

In particular, it is clear that TSS concentrations are much higher on average in Hunker Creek than in Adams Creek for a given stream flow (discharge). The log-linear relationship between turbidity and stream flow illustrates that the turbidity in Hunker Creek was more than an order of magnitude higher than in Adams Creek, based on the 2020 monitoring results from the headwater areas (left hand site of the plot shown in Figure 5.1) to the confluence with the Klondike River or Bonanza Creek, respectively. Thus, the 2020 TSS data acquired during WQO and AH monitoring suggest substantial differences in the two water courses in terms of the introduction and conveyance of suspended sediments. As discussed in **Section 3.3.1**, monitoring data for Swede Creek should also reflect stream conditions in a subwatershed that is less influenced by TSS inputs from human activities.

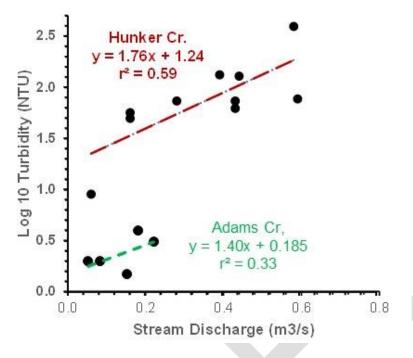


Figure 5.1 Turbidity-stream discharge relationships for Adams Creek, a relatively pristine catchment, and Hunker Creek, which is heavily influenced by placer mining

Given the differences in TSS concentrations in water samples from the Hunker Creek and Adams Creek monitoring sites in 2020, we expected to find clearly discernible differences between these watersheds in total stream invertebrate abundances, biodiversity measured as family or taxon richness or as Simpson's diversity and Simpson's evenness indices, and other stream ecological health metrics. This was not observed, as discussed in Section 4. In addition, there were few discernible upstream-downstream trends in the various aquatic health indicators.

In addition to the lack of discernible differences in stream invertebrate community health between Hunker Creek and Adams Creek based on the 2020 AHM data, it is important to note the relatively poor agreement in community metrics such as family richness, % EPT and % C for Hunker Creek AHM sites between 2020 and 2019 (**Section 4.3**) and very high degree of interannual variability for several Hunker Creek sites across multiple monitoring years (**Table 4.6**).

The 2020 AHM benthic invertebrate data for both Hunker Creek and Adams Creek show that the numerically dominant families include dipteran insects, with very low abundance of ephemeroptera in Adams Creek and very low abundances of plectoptera and trichoptera in both streams (**Table 5.1**). In addition, the numerically dominant dipteran families differed in 2020 between Adams Creek and Hunker Creek.

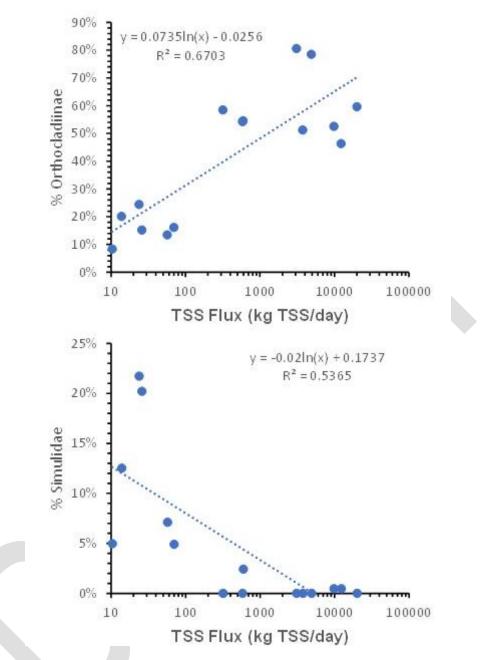
The stream invertebrate community composition for the 2020 AHM program was consistent with a summary by Oswood (1989) of stream invertebrate community composition in interior Alaska streams. Oswood notes that dipteran species dominate Alaskan streams, with trichopterans being generally scarce. Dominant dipteran families include, in order of dominance, Chironomidae, Simulidae, Tipulidae, and Empididae. According to Oswooe (1989), Simulidae exihibit significantly greater proportional representation in small rivers whereas Empididae favour larger river habits.

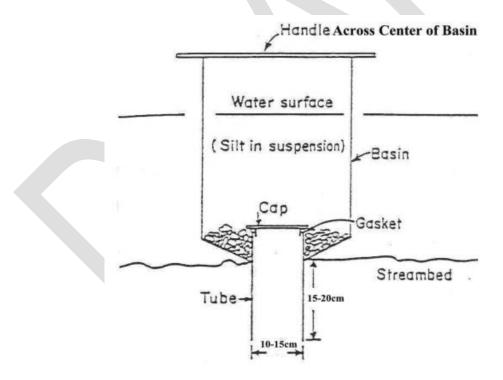
Table 5.1Numerically dominant stream invertebrate taxa in 2020 for Adams Creek and
Hunker Creek

	Percent	Abundance
	Hunker Creek	Adams Creek
Order Diptera		
Chironomidae other than Subfamily Orthocladiinae	5%	42%
Subfamily Orthcladiinae	55%	18%
Family Simulidae	0.0%	12%
Family Empididae	0.3%	1.2%
Order Ephemeroptera	14%	1%
Order Lumbriculidae	1.9%	5.5%
Order Plecoptera	0.3%	0.5%
Order Trichoptera	0.3%	0.0%

The habitat preferences of the two dominant dipteran families/subfamilies (Simulidae, Orthocladiinae) in Hunker and Adams Creek clearly differ, based on upstream – downstream patterns of abundance (**Figure 5.2**). The upstream – downstream gradient is this figure is represented by TSS flux, which scales in relation to stream discharge and increases from the upper to lower watershed.

The dominance of stream invertebrate communities by taxa other than ephemeroptera, plecopteran or trichopteran (EPT), and distributions of specific dipteran taxa in relation to stream habitat preferences may vary across other Yukon streams in addition to those monitored under the AHM monitoring program in 2020. A better understanding of community compositional differences across watersheds, and along natural gradients from headwater areas to valley bottom confluences with mainstem flows will be useful for re-evaluation of AHM metrics and approaches that reflect ecological responses to anthropogenically-increased suspended sediment loads and inventories.




Figure 5.2 Overall stream invertebrate abundance as Orthocladiinae or Simulidae as a function of daily TSS transport in for all Adams Creek and Hunker Creek monitoring sites

To improve the AHM and to move towards achieving the overall goal described above, Hemmera suggests five modifications to the AHM and WQOM protocols..

1. Change In-situ Sediment Sampling Methodology

As mentioned in **Section 4.4.2**, the collection of an accessory sediment sample in areas adjacent to the riffle section where kick-net sampling is carried out is not expected to reflect the sediment depositional regime, including altered flow and dissolve oxygen levels or TSS scouring regime in the microhabitats where the stream invertebrates obtained via kick-net sampling reside. It will be important, therefore, to move the AHM approach that can more consistently show not just water column TSS but increased sediment deposition in riffle substrates. The two suggested ways of achieving this goal is utilizing either a McNeil corer or sediment traps. Both methodologies are summarized below, for a detailed methodology, as well as the advantages and disadvantages of both the McNeil sampler and sediment traps please refer to the *Guidelines for Monitoring Fine Sediment Deposition in Streams* (RISC, 2002).

The McNeil corer is a device that is commonly used for assessing the composition of spawning gravel and collecting information on fine sediment addition from industrial activity. It was introduced as an alternative to the visual estimation of streambed surface composition and the collection of substrates samples with a shovel. It is seen as a significant improvement over the previous methods because it was designed to collect fine particles. The McNeil corer has been used as a fisheries habitat tool and an impact assessment technique for monitoring natural or man-made changes in streambed composition. A schematic and photo of the McNeil Corer is provided in **Figure 5.3** and **Figure 5.4**, respectively.

Figure 5.4 McNeil core design, 1 liter bottle for scale

Another alternative to the current in-situ sediment sampling is sediment traps. Sediment traps are devices that collect particles as they either pass over, deposit on, or infiltrate through the sample media. There are two basic designs including gravel buckets and infiltration bags that capture a specific type of depositing sediment. Gravel buckets collect sediment that deposits and moves vertically into the streambed. This includes bedload that moves across the substrate in saltating or sliding mode as well as suspended matter that deposits from the water column. Infiltration bags collect sediment that deposits on and moves vertically into the streambed as well as that which moves horizontally through the streambed. Both gravel buckets and infiltration bags can use natural or artificial (reference) gravel as their sample media. The choice of media depends upon the program's objective. If the objective is to determine changes in streambed composition, then natural gravels may be the most appropriate choice. If the objective is to assess the addition of depositing sediment from a selected activity, artificial gravels that are selected to maximize trapping efficiency may be most appropriate.

2. Further refinement to descriptors used to capture the intensity of assessed placer mining activities

It is recommended that the Placer Mining Development assessment be modified to attempt to quantify TSS input from placer mining directly from water discharging from settling ponds. TSS levels within a watercourse can be influenced by several environmental factors such as stream discharge, substrate composition and surface runoff. Apart from surface runoff, the program currently involves quantifying stream discharge and substrate composition. By quantifying the amount of TSS being deposited from a settling pond, we can gain an understanding of how much of that input is contributing relative to the overall natural TSS flux from natural variability. A possible methodology may include measuring TSS and discharge at multiple locations within a particular watercourse to determine the influence of the settling pond to the creek overall.

It should be noted that the current methodology of assessing placer mining development is of high value and should be utilized to continue to track if there is any placer activity occurring above a site and if so the general degree of placer mining activity.

3. Investigate the proliferation of certain Chironomidae taxa

There appears to be a proliferation of certain taxa (e.g. *Orthocladius* complex) that are present in the results for Hunker Creek and Adams Creek. It is suggested that time be spent in further reporting or analyses identifying if these taxa are present during the duration of the monitoring that has been conducted (i.e. are they present over time?) as well as the life history of these taxa to try and identify if their presence/behaviour has any indication of aquatic health.

4. Add the collection of periphyton to AHM Program

Periphyton colonization was very limited at the sites sampled in 2020. The nutritional quality of periphyton can decline as the proportion of inorganic material in the layer increases. Further declines in periphyton quality may also occur because of turbidity on algal growth as suspended sediment reduces light penetration to the riverbed resulting in less algal growth. By looking at periphyton composition (i.e. taxonomy) and density (i.e. amount of periphyton present in a specified area), we can look at primary productivity and an important food source for benthic invertebrates and subsequently fish. This could supplement the work already being done with relative ease given the limited labour required for periphyton sampling.

5. Implementation of ISCO Samplers for Focal Studies

The current WQOM protocol currently provides an outline of the use and benefits of different sampling techniques, noting that the study objectives and fluctuations in the system should be considered when selecting a sampling method: grab, composite, or continuous (i.e., ISCO) (YG 2016).

We do not propose any major changes to the current WQOM program at this time, but that deployment of ISCO samplers should be prioritized to focal studies, especially those with the objective to evaluate TSS conditions downstream of current placer activities. The objectives of the focal studies should be carefully considered when implementing the ISCO samplers. For instance, If the objective of a focal study is to determine If TSS exceedances are due to placer activity or natural variability, an ISCO sampler could be installed upstream and downstream of the placer operations, with automated sample collection to be timed every few hours to investigate range of TSS levels through the day. If placer operations were suspected to be out of compliance and/or contributing a significant sediment load to the stream, the TSS levels may be predicted to be higher in the downstream station during normal working hours (i.e., 10:00 to 16:00) relative to the upstream station. Alternatively, if upstream and downstream stations routinely exceed following rain events or during the night when sluicing and other placer activity is not likely to occur, then the TSS exceedance could be attributed to natural causes.

While ISCO samplers are a valuable tool for investigative purposes, grab samples are still a reasonable sample collection method in many cases, especially for sites without road access and/or in higher stream reaches. Analysis of the 14-year dataset (2008-2020) evaluated the statistical distribution of grab versus ISCO samples and concluded that data collected from either method is considered comparable and useful for data interpretation and analysis (Hemmera 2021 in draft).

6.0 CLOSURE

We sincerely appreciate the opportunity to have assisted you with this project and if there are any questions, please do not hesitate to contact the undersigned by phone at 604.669.0424.

Report prepared by: Hemmera Envirochem Inc.

DRAFT

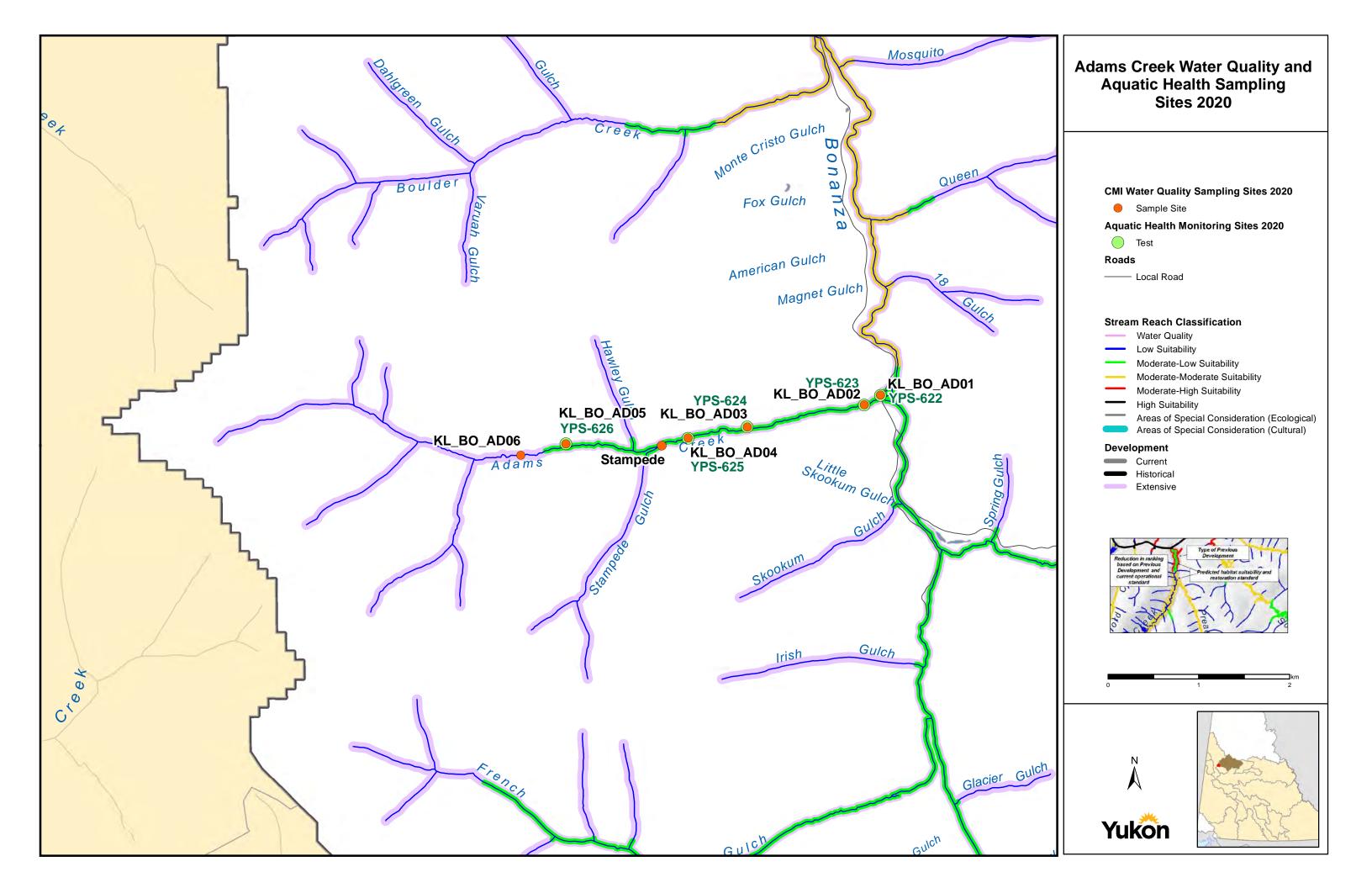
Andrew MacPhail, P.Biol., R.P.Bio. Biologist 867.456.4865 andrew.macphail@hemmera.com Report prepared by: Hemmera Envirochem Inc.

DRAFT

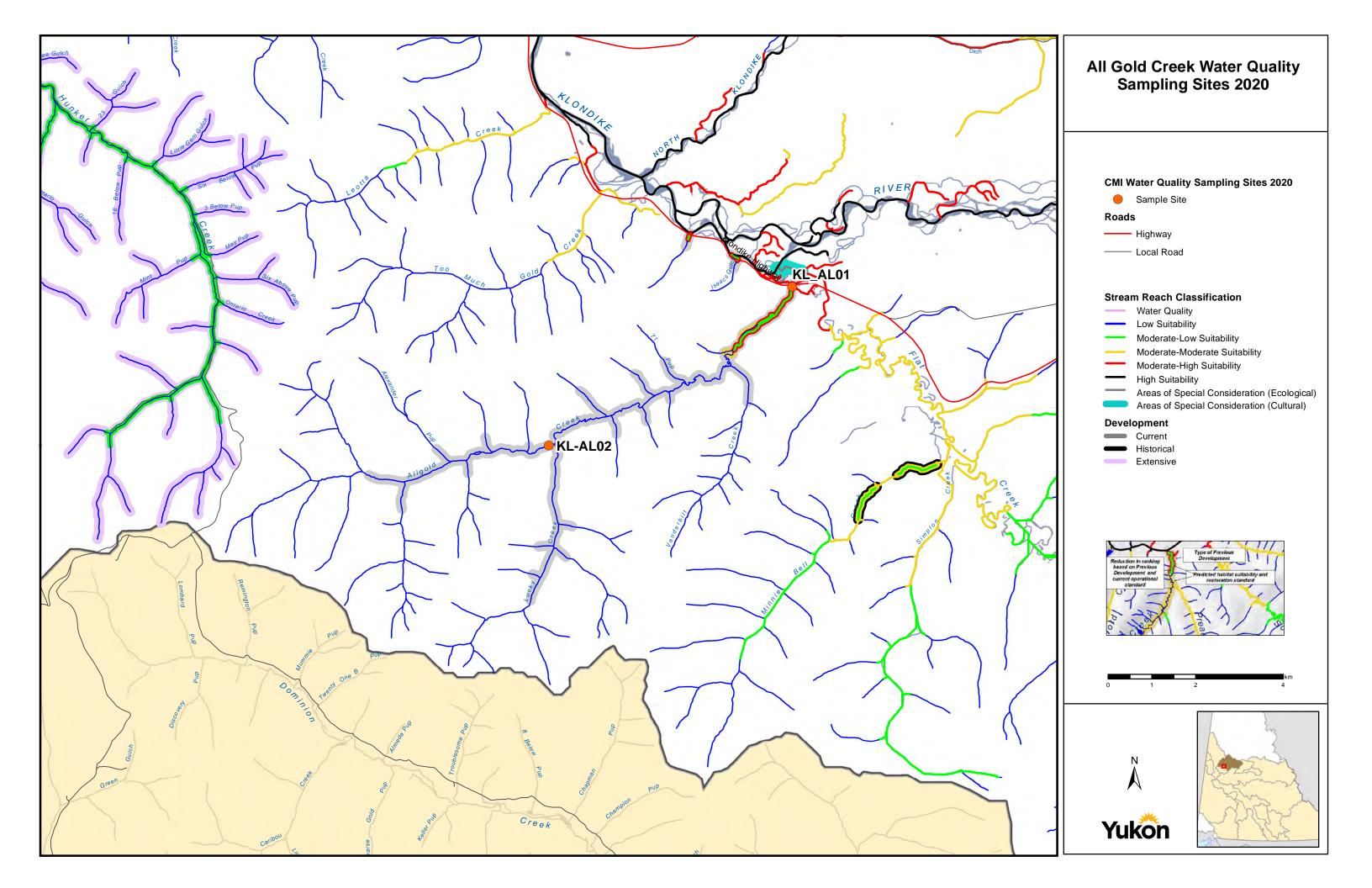
Nicole Marsh, M.Sc., GIT Environmental Scientist 604.669.0424 ext. 247 nicole.marsh@hemmera.com

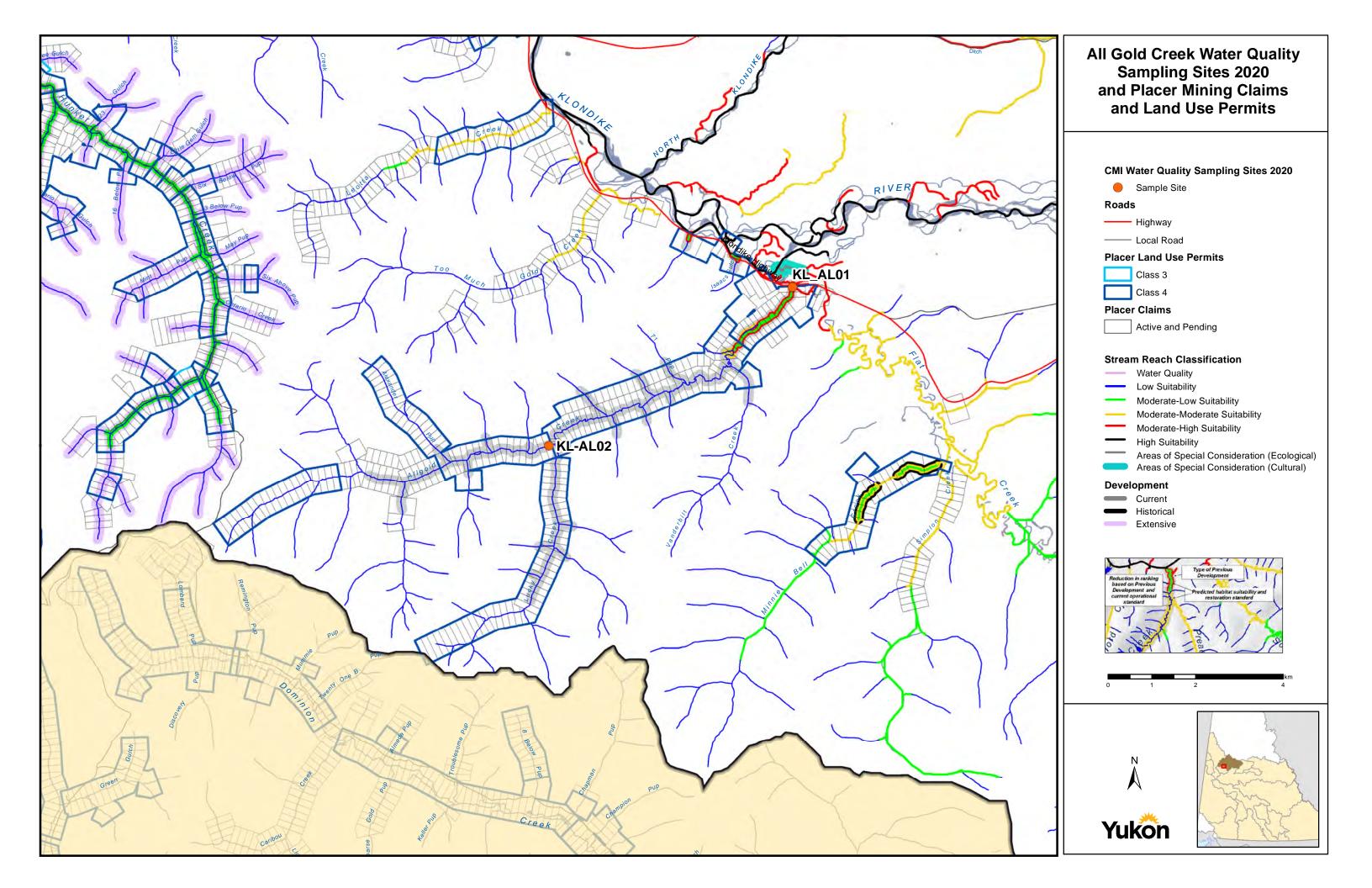
Report reviewed by: Hemmera Envirochem Inc.

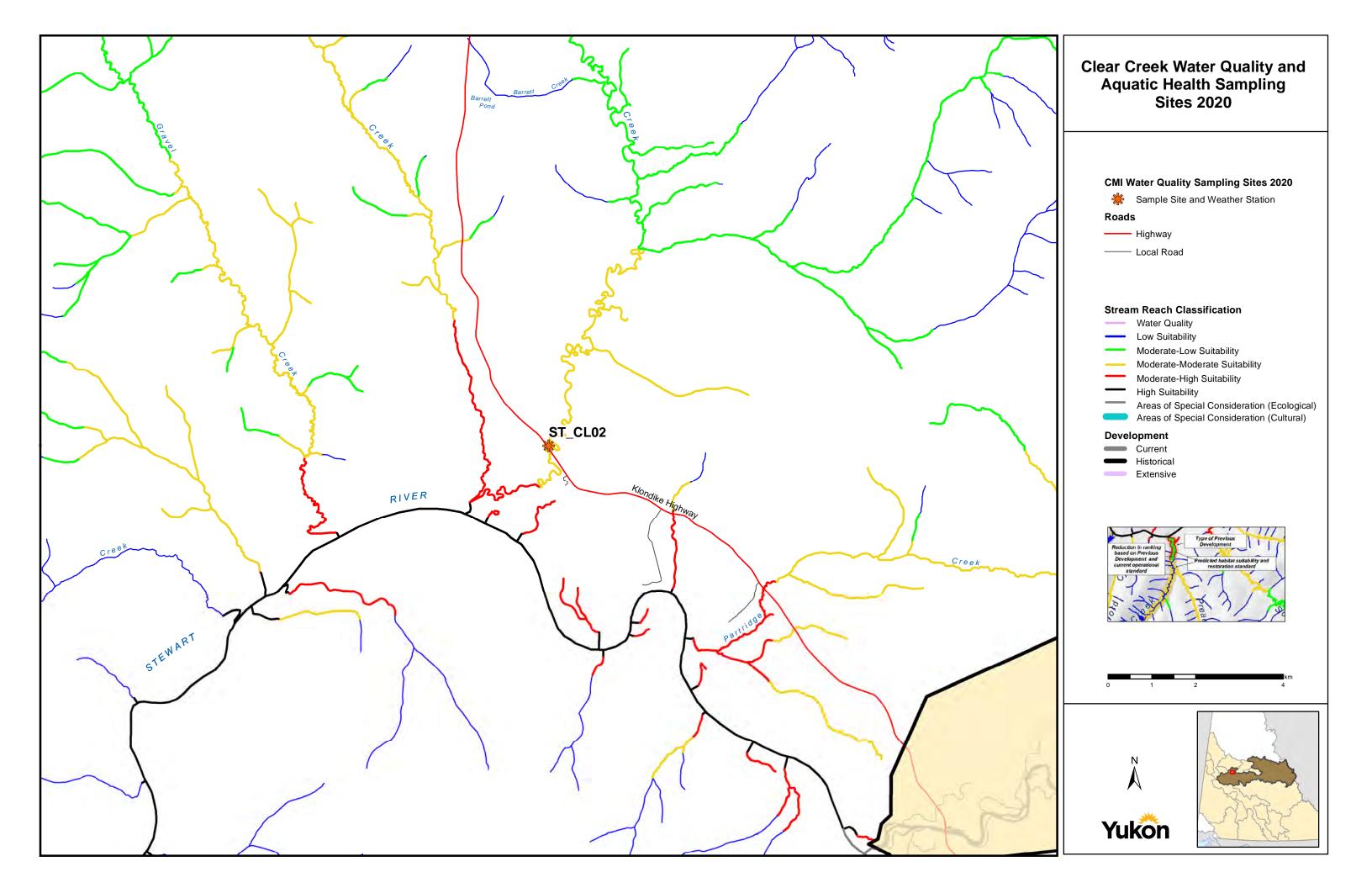
DRAFT

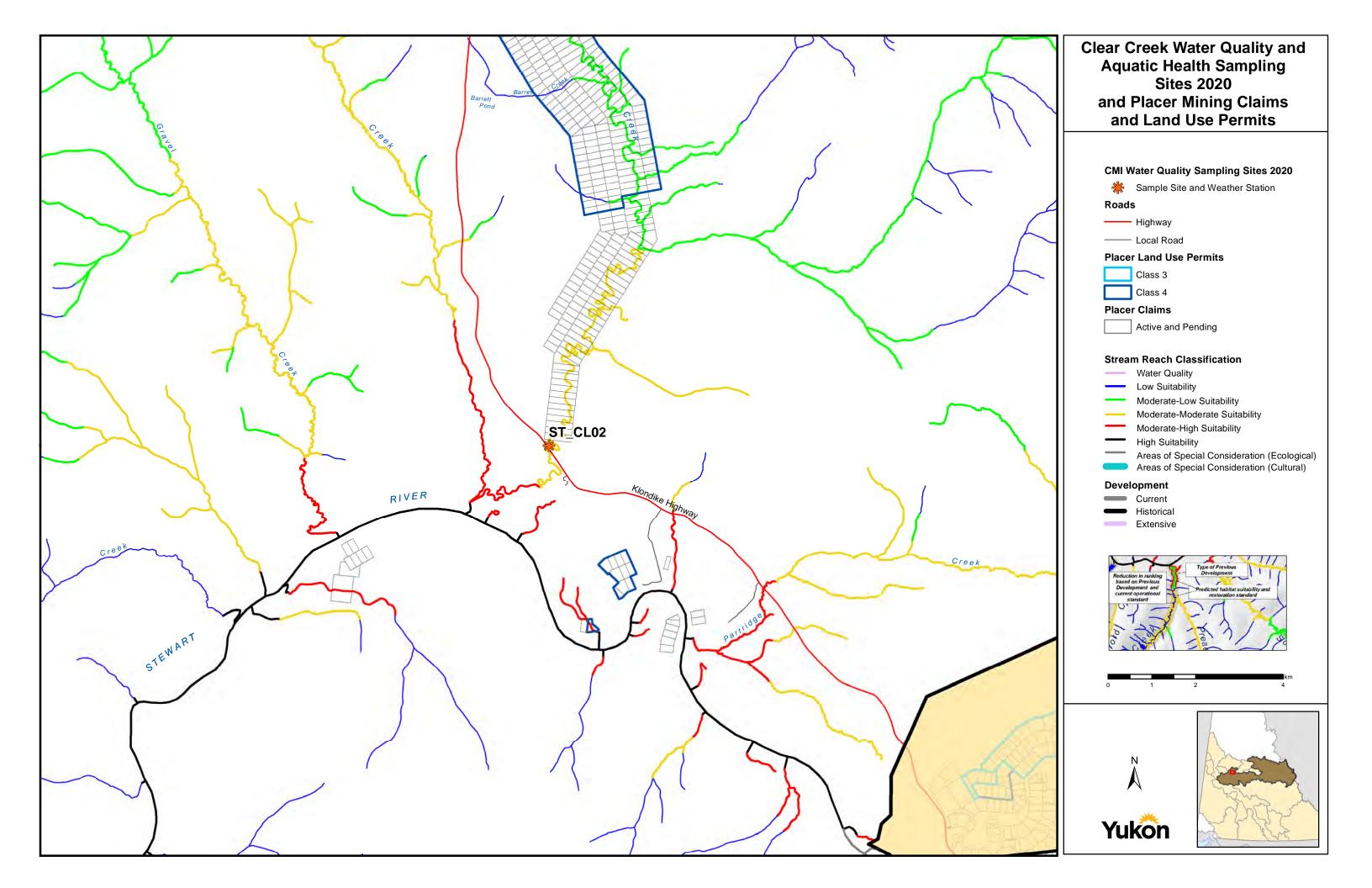

Doug Bright, Practice Leader, Environmental Risk Assessment 250-920-9489 dbright@hemmera.com

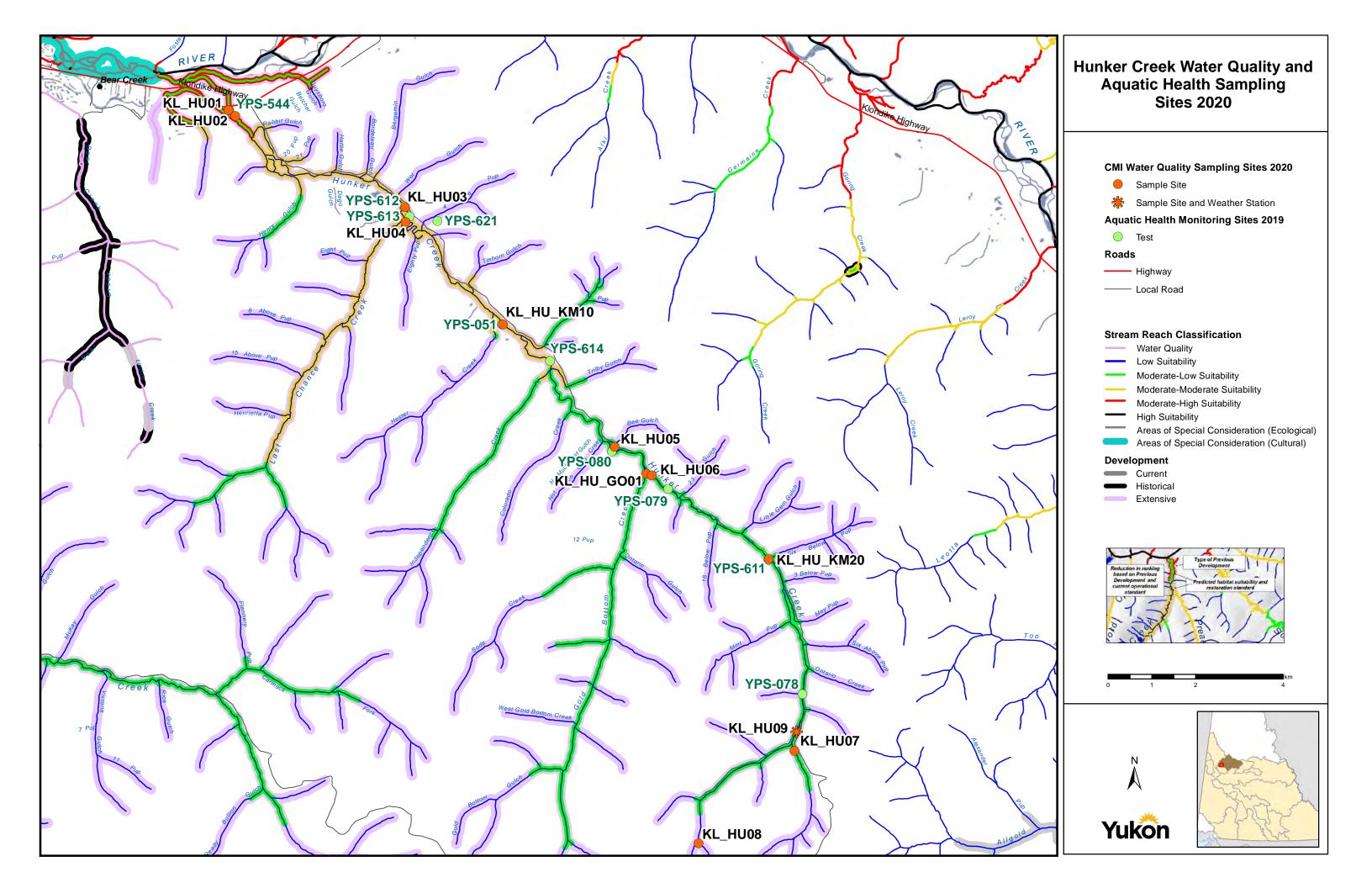
7.0 REFERENCES

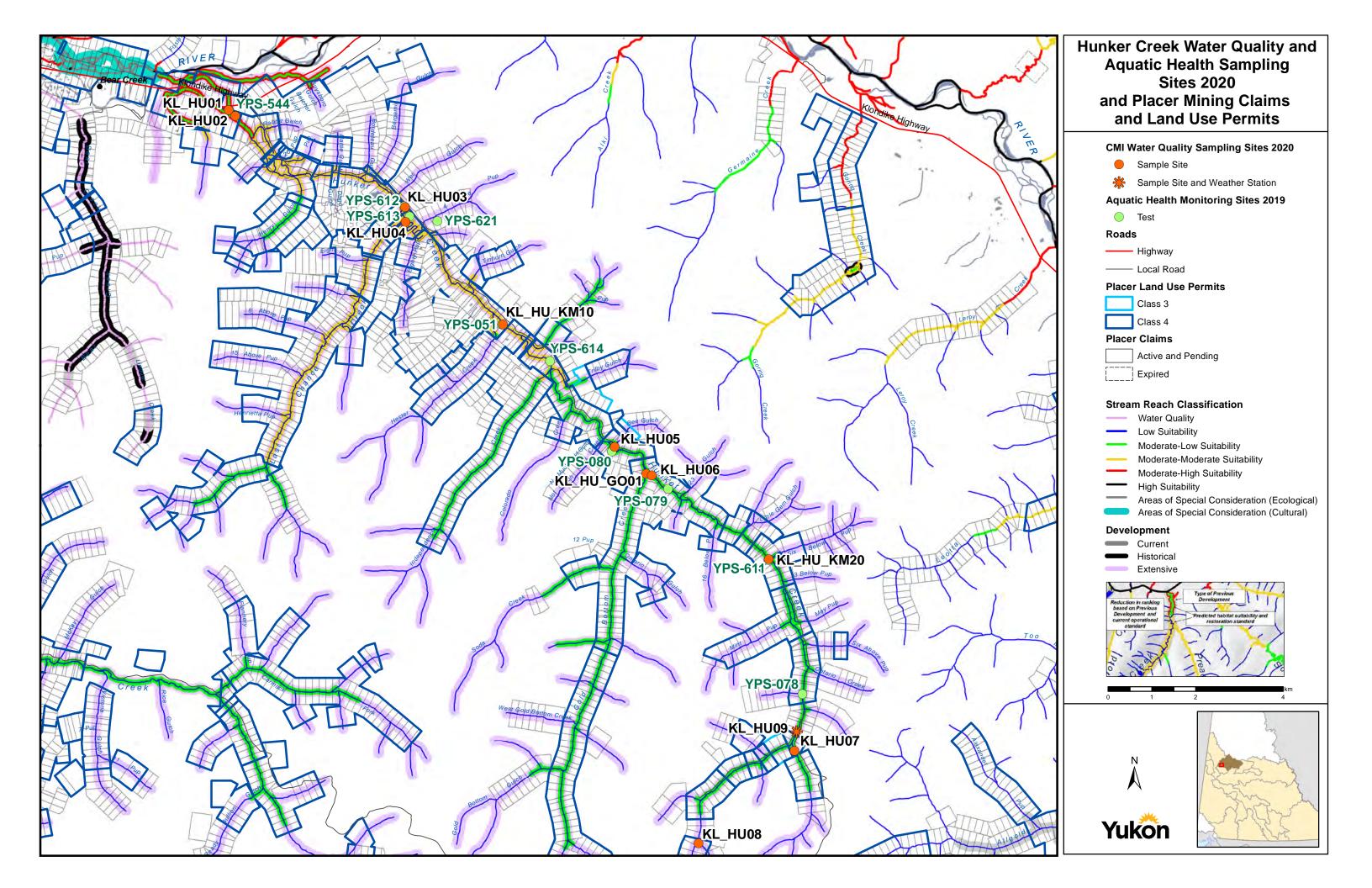

- American Public Health Association (APHA). 2012. 2540 Solids. Standard Methods for the Examination of Water and Wastewater. 22nd ed. Washington.
- Canadian Science Advisory Secretariat, 2019. Evaluation of the Reference Condition Approach for Yukon Placer Mining Monitoring. CSAS report 2018/053. 23 pp. (available online).
- Cormier, S. et al (USEPA), 2006. Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria. EPA report EPA-822-R-06-001. 169 pp.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2012b. Metal Mining Technical Guidance for Environmental Effects Monitoring. ISBN 978-1-100-20496-3.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.
- Hynes, H.B.N. 1960. The biology of polluted waters. Liverpool University Press, Liverpool.
- Hemmera. 2021 (draft). Fish Habitat Management System (FHMS) 14-Year Water Quality Monitoring Review. Prepared by Hemmera for the Yukon Government.
- Jones, J.I., Murphy, J.F., Collins, A.L., Sear, D.A., Naden, P.S, P.D. Armitage. 2012. The impact of fine sediment on macro-invertebrates.
- Oswood, M.W., 1989. Community structure of benthic invertebrates in interior Alaskan (USA) streams and rivers. Hydrobiologia **172**: 97-110.
- Resource Information and Standards Committee (RISC). 2002. Guidelines for Monitoring Fine Sediment Deposition in Streams. Prepared by BC Ministry of Water, Land and Air Protection.
- Yukon Placer Implementation Steering Committee (YPISC) and Yukon Placer Working Committee (YPWC). 2005. An Integrated Regulatory Regime for Yukon Placer Mining: Final Report to the Minister of Fisheries and Oceans.
- Yukon Placer Secretariat (YPS). 2008a. Fish Habitat Management System for Yukon Placer Mining: Adaptive Management Framework. Prepared by The Yukon Placer Adaptive Management Working Group.
- Yukon Placer Secretariat (YPS). 2008b. Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol. Prepared by The Yukon Placer Water Quality Working Group.
- Yukon Placer Secretariat (YPS). 2008c. Fish Habitat Management System for Yukon Placer Mining: Aquatic Health Monitoring Protocol. Prepared by The Yukon Placer Aquatic Health Working Group.

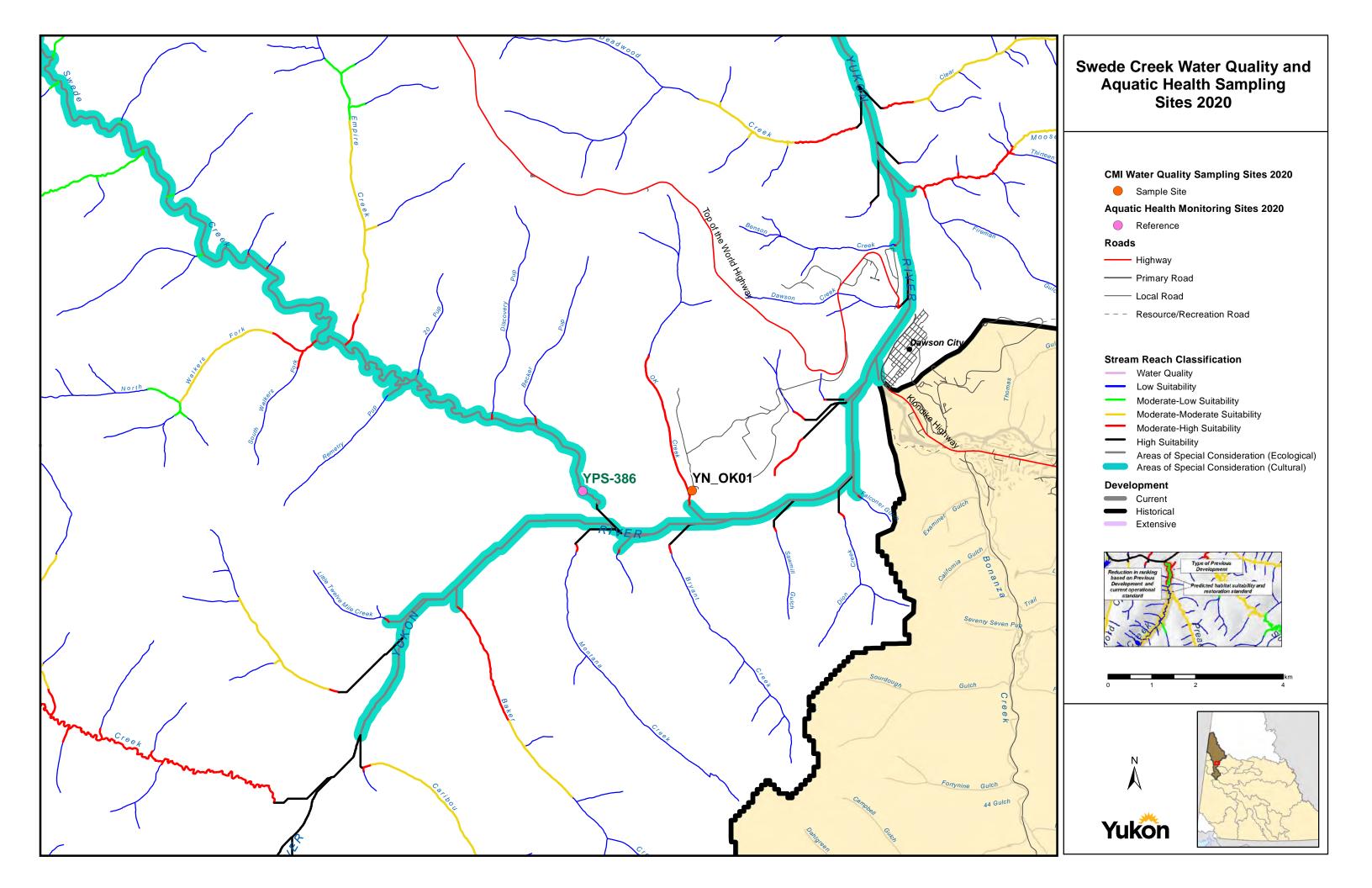

- Yukon Placer Aquatic Health Working Group (YPAHWG). 2010. Fish habitat management system for Yukon placer mining: Adaptive management framework. (https://yukon.ca/en/fish-habitatmanagement-system-yukon-placer-mining-adaptive-management-framework; Accessed February 24, 2020).
- Yukon Placer Aquatic Health Working Group (YPAHWG). 2016. Yukon Placer Mining Industry Water Quality Objectives Monitoring Protocol.

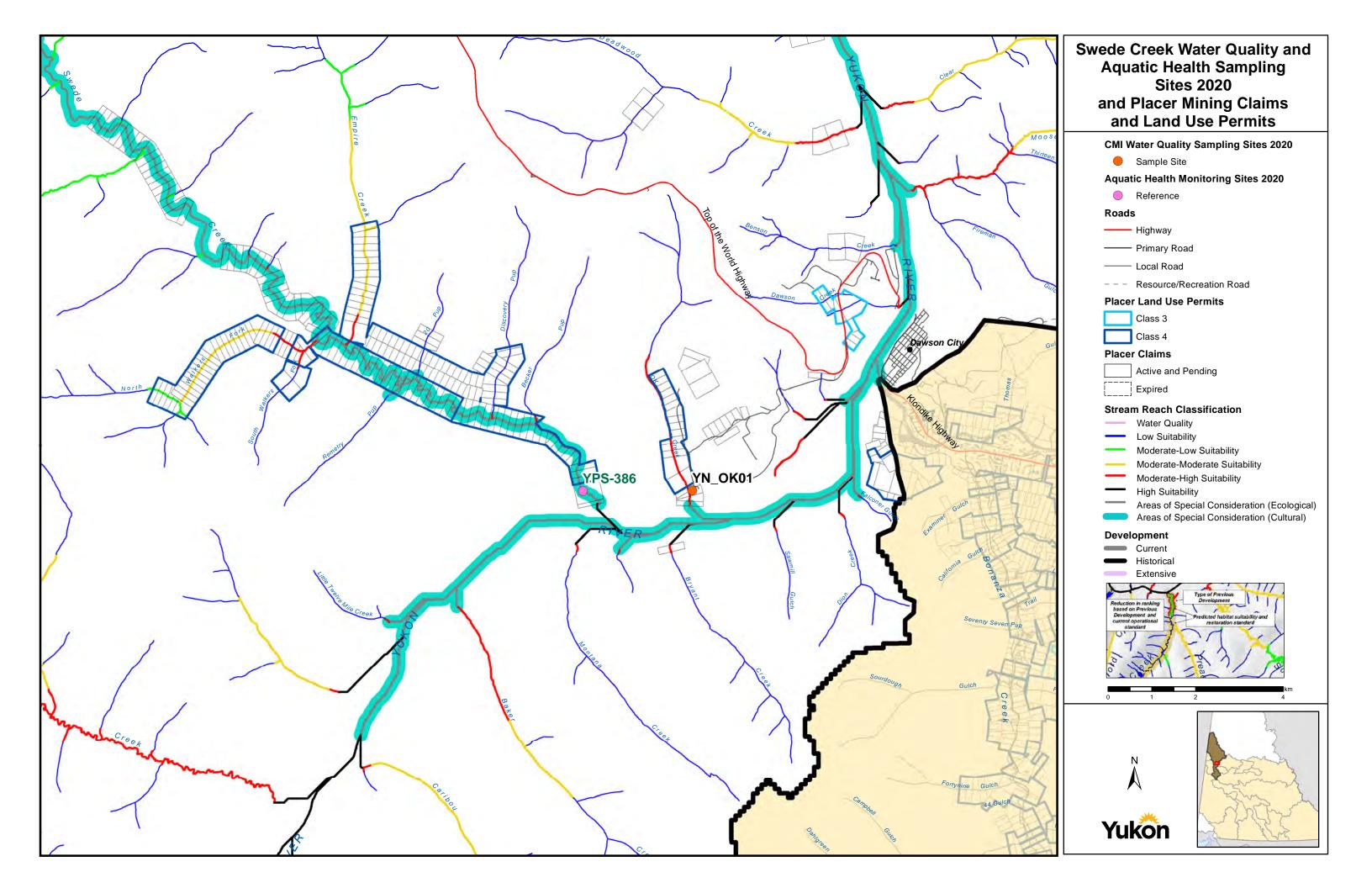

APPENDIX A Figures











APPENDIX B Field Forms

		e 1 of 3
Sampling Date (D/M/Y) 30501-20	Site Code:	493-386
PRIMARY SITE DATA		
CABIN Study name: Lucon -AHA	Basin	Yokon River
River/Stream name: Swede Creek		☑ Test □ Reference
Site Location Description: Drive through John Mitchell's place and billow creed V/S fill of si		down ha creek
GPS Datum: WGS84 or	GPS Altitude (masl o	r fasl) 383
*Latitude: 64°01'31.0`'	Stream Order (1:	
*Longitude: 139? 37 26.5 '' (*use decimal degrees)		egion: Taiga (ordill
Photos taken:	· ,	Aquatic - Aerial substrate substrate
REACH DATA (Represent 6 x bankfull width)		
 □ hydraulic jump Ø riffle □ 2. Canopy Coverage (check one): 	rapids 🛛 🖾 straigt	nt run 🛛 pool/back edd
□ 0% 🖾 1-25% □	26-50% 🛛 51-7	75% 🛛 76-100%
3. Macrophyte Coverage (check one):		
□ 0% 🖾 1-25% □		
	26-50% 🛛 51-7	5% 🛛 76-100%
4. Riparian Zone (check those present):	26-50% 🛛 51-7	5% 🛛 76-100%
,	26-50% □ 51-7 · ⊠ 3 - deciduous trees	
4. Riparian Zone (check those present):	· 🛛 3 - deciduous trees	
4. Riparian Zone (check those present): ☑ 1 - ferns/grasses	∑ 3 - deciduous trees gae, not moss) (check one): (0.5-1mm) to brown (1.0-5mm) en to dark brown (5.0-20mr	s 🗹 4 - coniferous trees
 4. Riparian Zone (check those present): I - ferns/grasses 2 - shrubs 5. Periphyton Coverage on Substrate (benthic alg 1 - Not slippery, no colour (<0.5mm) 2 - Slightly slippery, yellow-brown to light green 3 - Noticeably slippery, patches of thicker green 4 - Very slippery, numerous large clumps of green 	∑ 3 - deciduous trees gae, not moss) (check one): (0.5-1mm) to brown (1.0-5mm) en to dark brown (5.0-20mr	s 🗹 4 - coniferous trees
 4. Riparian Zone (check those present): □ 1 - ferns/grasses □ 2 - shrubs 5. Periphyton Coverage on Substrate (benthic alg □ 1 - Not slippery, no colour (<0.5mm) □ 2 - Slightly slippery, yellow-brown to light green 0 □ 3 - Noticeably slippery, patches of thicker green □ 4 - Very slippery, numerous large clumps of gree □ 5 - Rocks mostly obscured, extensive green, brow 	∑ 3 - deciduous trees gae, not moss) (check one): (0.5-1mm) to brown (1.0-5mm) en to dark brown (5.0-20mr	s 🗹 4 - coniferous trees
 4. Riparian Zone (check those present): □ 1 - ferns/grasses □ 2 - shrubs 5. Periphyton Coverage on Substrate (benthic alg □ 1 - Not slippery, no colour (<0.5mm) □ 2 - Slightly slippery, yellow-brown to light green □ 3 - Noticeably slippery, patches of thicker green □ 4 - Very slippery, numerous large clumps of gree □ 5 - Rocks mostly obscured, extensive green, brow WATER CHEMISTRY Air Temp (C) □ 23 □ 7.40 Water T (C) ○ 9 ○ 1.90 sp Water Samples □ TSS □ General □ Total	3 - deciduous trees gae, not moss) (check one): (0.5-1mm) to brown (1.0-5mm) en to dark brown (5.0-20mr wn to black mass may have Cond.	s 🗹 4 - coniferous trees

Revised June 2019

Yukon CABIN Field Sheet (DFO/YTG 2019)

Page 2 of 3

Sampling Date (D/M/Y)

30-004-20

Site Code:

485-386

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

. Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
 Embeddedness categories (F): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E
1	5.4		26	12.0		51	7,0		76	7.1	
2	25.5		27	13.5		52	8.9		77	7.8	
3	4.4		28	4.3		53	15.5		78	7.6	0
4	10.7		29	3.5		54	6.2		79	5.4]
5	12.3		30	8.4	0	55	3.4		80	5.7	0
6	8.6		31	4.2		56	6.9		81	12.6	1
7	5.5		32	2.8		57	8.1		82	8.3	
8	9.4		33	10.6		58	10.7		83	6.3	
9	12.9		34	13.9		59	4.6		84	5.Z	
10	7.2	Y4	35	6.8		60	5.2		85	4.8	
11	3.8		36	8.9		61	9.M	1/4	86	9.4	
12	2.9		37	3.2		62	6.2		87	8.9	
13	3.6		38	5.7		63	7.9		88	12:4	
14	4.6		39	7.9		64	6.1		89	6.4	
15	11.4		40	3.6	14	65	6.5		90	5.1	1/2
16	10.8		41	12.2	,	66	18.9		91	4.3	
17	7.6		42	6.2		67	10.2		92	6.5	
18	233		43	2.9		68	7.5		93	13.8	
19	3.1		44	8.4		69	15.8		94	106	
20	8.6	12	45	6.5		70	9.9	0	95	6.00	
21	10.00		46	4.6		71	4.9		96	7.4	
22	7.3		47	4.1		72	9.3		97	4.6	
23	9.1		48	5.5		73	10.4		98	5.8	
24	11.2		49	7.7		74	9.6		99	0.40	
25	9.1		50	5.7	0	75	8.Z		100	9.1	1/4

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 1 - (silt) <0.1 cm

☑ 2 - (sand) 0.1 – 0.2 cm

□ 3 - (gravel) 0.2 – 1.6 cm □ 4 - (pebble) 1.6 - 3.2 cm

□ 5 - (pebble) 3.2 - 6.4 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

Depth of easily penetrable sediments Sediment texture and Check those present: Comments: Comments: Comments:		af litter	fine Sand S macrophytes	11	0-5
Check those present:	debris Lete	af litter		Tity	
□ odour Comments: [(oll t	Sourd	1000	macrophytes L1	to filmon	
Comments:	ed from ru	y sheen L	invertebrates	piofilms	periphytor
	ed trow p	+11 1.1	1 1	1 tool	111
BIOLOGICAL: BENTHIC INVE		ight brule	about where	acpini	hatow h
	RTEBRATE	SAMPLES		\$	vate dept
		_	_		
Kicknet Sample (location):	⊠ riffle	□ rapid	□ straight run		ol/back eddy
500 µm mesh Kicknet**		fle 1	Riffle 2	_	Riffle 3
Operator:	A. Mocl	hail		1)
Time of Day:	17:65				/
Sampling time (i.e. 3 min)	3min				/
No. of sample jars Typical depth (in kick area)					
, , , , , , , , , , , , , , , , , , ,				/	
CHANNEL DATA	~40cr	M			
. Channel Slope/Gradient (%) 3		Flow Sta	age: 🖸 Low/ 🗆 M	1	
L. Channel Slope/Gradient (%) <u>3</u> Bankfull Width (m) २२५.	3	Flow Sta	Stream Width (m)	1	High/ ロ Flo ೭.ಕ
L. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (distance t	3 Detween water	Flow Sta Wetted r level and to	Stream Width (m) p of bank) (cm)	22	2.5
L Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (distance to Location in site (note where in site)	3 between water ample site take	Flow Sta Wetted r level and to	Stream Width (m) p of bank) (cm)	22	
L Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (distance to Location in site (note where in site)	3 Detween water	Flow Sta Wetted r level and to en i.e. d/s of	Stream Width (m) p of bank) (cm)	22	2.5
Image: Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (distance to be the second secon	3 Detween water ample site take	Flow Sta Wetted r level and to en i.e. d/s of	Stream Width (m) p of bank) (cm)	22	2.5
Image: Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (distance to be the second secon	3 between water ample site take	Flow Sta Wetted r level and to en i.e. d/s of right back 2	Stream Width (m) p of bank) (cm) kick area)	22 70 Vls of k	2.5 {
Image: Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (distance to be the second secon	3 Detween water ample site take	Flow Sta Wetted r level and to en i.e. d/s of right brack 2	Stream Width (m) p of bank) (cm) <i>kick area)</i> 3 4	Uls of k	2.5 {

	(2/10/)			
Sampling Date	(D/M/Y) 30-JU1-20	Sit	e Code: Yips	-AS
PRIMARY SITE	DATA			
CABIN Study	name: Yulon - AHM		Basin: Klond	like River
River/Stream	name: Acams Creek		🗆 Те	st 🛛 Referer
Site Location De Parked of e	escription:). Walled up on c	12 winter trai	K .
so from to	uck.			
GPS Datum:	WGS84 or NAD \$ 3	GPS Altitude	(masl or fasl)	= 1.0
*Latitude:			Order (1:50,000):	569
*Longitude:	63°55' 32.2"		Ecoregion:	3 T ((1)
Longitude.	139° 24' 00.5 (*use decimal degrees)			Taisa Cordil
Photos taken:	Upstream Downstream	Across D1 channel subst		
REACH DATA (Represent 6 x bankfull widt	h)		_
1. Habitat Ty	pes Present/Flow State R	each (check those present):		
🗆 hydrau	ulic jump 🖾 riffle	凶 rapids	straight run	D pool/back e
2. Canopy C	Coverage (check one):			
)% 🛛 1-25%	🖾 26-50%	🛛 51-75%	□ 76-100%
		Eq 20-3070		
	yte Coverage (check one):			
o لکر	yte Coverage (check one): 0% □ 1-25%	□ 26-50%	□ 51-75%	
⊠ 0 4. Riparian Z	yte Coverage (check one):)%	□ 26-50%	_	□ 76-100%
⊠ 0 4. Riparian Z ⊠ 1 - fe	yte Coverage (check one):)%	□ 26-50% hrubs ⊠ 3 - decid	uous trees	□ 76-100%
 ☑ 0 4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not s ☑ 2 - Sligh □ 3 - Notio □ 4 - Very 	yte Coverage (check one):)%	☐ 26-50% hrubs ☑ 3 - decid (benthic algae, not moss) (che ght green (0.5-1mm) cker green to brown (1.0-5m nps of green to dark brown	uous trees ck one): mm) (5.0-20mm)	 76-100% 4 - coniferous tre
 ☑ 0 4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not s ☑ 2 - Sligh □ 3 - Notio □ 4 - Very 	yte Coverage (check one):)% □ 1-25% Cone (check those present): erns/grasses ☑ 2 - si in Coverage on Substrate of slippery, no colour (<0.5mm) htly slippery, yellow-brown to lig ceably slippery, patches of thic slippery, numerous large clum is mostly obscured, extensive g	☐ 26-50% hrubs ☑ 3 - decid (benthic algae, not moss) (che ght green (0.5-1mm) cker green to brown (1.0-5m nps of green to dark brown	uous trees ck one): mm) (5.0-20mm)	 76-100% 4 - coniferous tre
 ☑ 0 4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not s ☑ 2 - Sligh □ 3 - Notio □ 4 - Very □ 5 - Rock 	yte Coverage (check one):)% □ 1-25% Cone (check those present): erns/grasses ☑ 2 - si in Coverage on Substrate of slippery, no colour (<0.5mm) htly slippery, yellow-brown to lig ceably slippery, patches of thic slippery, numerous large clum is mostly obscured, extensive g	☐ 26-50% hrubs ⊠ 3 - decid (benthic algae, not moss) (che ght green (0.5-1mm) cker green to brown (1.0-5m nps of green to dark brown green, brown to black mass	uous trees ck one): mm) (5.0-20mm) s may have long str	 76-100% 4 - coniferous tre

Yukon CABIN Field Sheet (DFO/YTG 2019)

Sampling Date (D/M/Y)

30-Tuly-20

Page 2 of 3

Site Code:

: YPS-AS

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

• Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

	Diameter (cm)	E		Diameter (cm)	E		odded, 1/2 embe Diameter (cm)	E		Diameter (cm)	E
1	5.9	7.3	26	7.5		51	5.1		76	4.6	
2	4.3		27	59		52	3.4		77	5.9	
3	8.7		28	5.3		53	6.9		78	5.4	
4	4.2		29	4.9		54	4.6		79	7.8	1.2
5	6.6		30	5.5	0	55	14.4		80	17.2	14
6	14.2		31	4.3		56	7.9		81	7.6	
7	14.6		32	8.1		57	11.5		82	9.3	
8	10.1		33	0.9		58	4.6		83	8.3	
9	4.2		34	6.5		59	13.3		84	4.1	
10	5.0	0	35	5.2	1	60	11.7	14	85	5.9	
11	8.9		36	3.8		61	10.9	11	86	3.7	1
12	8.4		37	18.0		62	5.7	i di li	87	9.9	
13	9.9		38	8.9		63	2.6		88	5.6	
14	3.5		39	5.5		64	8.4		89	2.8	
15	4.4		40	3.5	Y4	65	10.2		90	6.9	1Yn
16	10.8		41	5.0		66	15.7		91	5.9	
17	0.11		42	7.5		67	6.6		92	4.1	
18	84		43	4.1		68	8.5		93	6.0	
19	1.9		44	8.9		69	2,9		94	8.9	
20	2.4	0	45	5.4		70	5.4	0	95	9.6	
21	1.5		46	6.4		71	2.4		96	6.6	
22	7.4		47	14.8	1	72	3.9		97	2.6	
23	7.0		48	15.4		73	13.3		98	3.6	
24	9.9		49	7.8		74	10.0		99	12.6	1
25	6.7	1	50	7.6	1/4	75	13.2		100	4.5	14

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

□ 0 - organic cover (>50% cover)

□ 3 - (gravel) 0.2 - 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

□ 7 - (cobble) 12.8 – 25.6 cm

□ 8 - (boulder) > 25.6 cm

- □ 1 (silt) <0.1 cm
- **2** (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm □ 5 - (pebble) 3.2 - 6.4 cm
- 9 Bedrock

 Sediment Samples Depth of easily penetrab 				epth of sedi	ment sample	ed (cm):	2-7
Sedimen	t texture and c	olour: Dark	brain,	trace sit	t over c	onre sitel	Afine grave
Check those present:	□ woody d			a macrophy		īlms □p	eriphyton
Comments BIOLOGICAL: BEN1		depositional	circas iv	1	1 1	of fittle	spearle le 3 left b.
1. Kicknet Sample (k	ocation):	⊠ riffle	🖾 rapid	□ strai	ght run	□ pool/ba	ck eddy
500 µm mesh Kickne	t**	Riff	le 1	R	iffle 2	Riff	le 3
Operator:		A. Mac	Phail -			->	
Time of Day:		141:20		14.	27	19:59	>
Sampling time (i.e. 3 min No. of sample jars	i)	3min			1		
Typical depth (in kick are	a)	1 20	30cm -	-)	->	
1	,	1 . 20-	SUGM			ľ	
CHANNEL DATA					_	_	
1. Channel	1.4	13			1		
Slope/Gradient (%)	2			Stage: □ Lo d Stream V	1	erate/ 🗆 High 2.3	n/ ∐ Flood
Bankfull Width (m)	2-76 (distance be	etween water				46	
Location in site (note						S of Kick	anen
2. Channel Transect	· Fron	left bank					
Velocity/Depth	/		2	3	4	5	AVG
Distance from shore (m)	1.4	10 .	80	1.2	1.6	2.0	. i .
	- 3	0 2	4.5	11	-9	7	6.37
Depth (cm)	0	-4 (3.1	0.1	0.0	0.0	0.084
Depth (cm) Velocity (m/s)			U		and then	No cuid	ence
Depth (cm)	man with	hin nead	h.	4			
Depth (cm) Velocity (m/s) Notes. Creek o of disturbo Winter trail	tons with tons	allang ca shutus i	h. tek but	- cloesn?t	the circ f	to have	an)

Revised June 2019

River/Stream name: Adversion (Content of Action) Site Location Description: Test Reference This up advars (creck card until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of cherring, fallow date to the creat and until upp reach of the creat of cherring, fallow date to the creat of cherring date of cherring to the creat of cherring date of the creat of che	CABIN Study			Basin: Klond.	10 . 10 . 10 .
Site Location Description: Trive up abare foreit read until you reach a cherring, fellow has the creak and unally upstream through aper area of creak Image: Site Location Description: Image: Site Location: Image: Site		(Gront P(t)			
Trive up adarts (creat card wrth upper card a cherring, fellow destroy for the creat and creat To He creat and under the upstream through open area of creat GPS Datum: WGS84 or NA0 83 *Latitude: GPS Altitude (masl or fasl) *Latitude: Generation of the component of the c					
He creek and malk upstreen through open area of creek GPS Datum: WGS84 or NA0 83 *Latitude: GPS Altitude (masl or fasl) *Latitude: Great or fasl *Latitude: GPS Altitude (masl or fasl) *Latitude: Great or fasl *Latitude: Generation *Generation Generation *Constatent Generation *Constatent Generation *Constatent Generation *Constatent Generation *Constatent Generation Generation *Constatent Generation Generation *Constatent Generation Generation *Constatent Generation Generation			until you reach	a clearing, f	allow do
GPS Datum: WGS84 or NA0 83 (2° 55' 40.3" GPS Altitude (masl or fasl) Stream Order (1:50,000): (1:50,02,2,2' 2.2'.3') *Longitude: 13 9 0 2,2,2' 2.2'.3' Ecoregion: 51 2 3 *Uongitude: 13 9 0 2,2,2' 2.2'.3' Ecoregion: 76 (20 - 0) *Uongitude: Is 9 0 2,2,2' 2.2'.3' Ecoregion: 76 (20 - 0) *Photos taken: Is Across, ID py St Aquatic Is Across, ID py St Aquatic Is Across, ID py St Aquatic Stream Downstream channel substrate substrate substrate substrate REACH DATA (Represent 6 x bankfull width) 1 Habitat Types Present/Flow State Reach (check those present): Is raight run Im pool/back Canopy Coverage (check one): 0% 1 - 25% Is 26-50% 51-75% 76-100 Macrophyte Coverage (check one): Im 1 - ferns/grasses Im 2 - shrubs Im 3 - deciduous trees Im 4 - coniferous the substrate (benthic algae, not moss) (check one): Im 1 - ferns/grasses Im 2 - shrubs Im 3 - deciduous trees Im 4 - coniferous the substrate (benthic algae, not moss) (check one): Im 1 - ferns/grasses Im 2 - shrubs Im 3 - deciduous trees Im 4 - coniferous the substrate (benthic algae, not moss) (check one): Im 1			2	C.	
*Latitude: *Longi					
*Longitude: 139 27 2.3" ('use decimal degrees) Photos taken: Ecoregion: Taiga (or a Photos t					
(*use decimal degrees) Photos taken: X X X X Dry X Aquatic Arease Field sheet Upstream Downstream channel substrate			Sueamo	-	
Photos taken: Image: Signal Strate Stra	"Longitude:				isiga Cordi
Field sheet Upstream Downstream channel substrate substrate substrate REACH DATA (Represent 6 x bankfull width) 1. Habitat Types Present/Flow State Reach (check those present): hydraulic jump Sfifte rapids straight run pool/back hydraulic jump Sfifte rapids straight run pool/back canopy Coverage (check one): 0% 1-25% Sfifte 51-75% 76-100 Macrophyte Coverage (check one): Q 0% 1-25% Sfifte 51-75% 76-100 Macrophyte Coverage (check one): Q 0% 1-25% 26-50% 51-75% 76-100 A if the forms/grasses 2 - shrubs Sfifte 51-75% 76-100 Sightly slippery, no colour (<0.5mm) Sifter thic algae, not moss) (check one): 1 - Not slippery, no colour (<0.5mm) J 2 - Slightly slippery, patches of thicker green to brown (1.0-5mm) Sifter thicker green to brown (1.0-5mm) Sifter thic	Photos taken:				
REACH DATA (Represent 6 x bankfull width) 1. Habitat Types Present/Flow State Reach (check those present): hydraulic jump Image: fiftle napids straight run pool/back 2. Canopy Coverage (check one): 0% 1-25% Image: 26-50% 51-75% 76-100 3. Macrophyte Coverage (check one): Image: 20% Image: 26-50% 51-75% 76-100 3. Macrophyte Coverage (check one): Image: 20% Image: 26-50% 51-75% 76-100 4. Riparian Zone (check those present): Image: 20% Ima	X .			•	
1. Habitat Types Present/Flow State Reach (check those present): □ hydraulic jump ☑ riffle □ rapids □ straight run ☑ pool/back 2. Canopy Coverage (check one): □ 0% □ 1-25% ☑ 26-50% □ 51-75% □ 76-100 3. Macrophyte Coverage (check one): □ 0% □ 1-25% ☑ 26-50% □ 51-75% □ 76-100 3. Macrophyte Coverage (check one): □ □ □ 1-25% □ 26-50% □ 51-75% □ 76-100 4. Riparian Zone (check those present): □ □ □ 1-25% □ 26-50% □ 51-75% □ 76-100 4. Riparian Zone (check those present): □ □ □ 1-25% □ 26-50% □ 51-75% □ 76-100 4. Riparian Zone (check those present): □ □ □ 1-1-25% □ 26-50% □ 51-75% □ 76-100 4. Riparian Zone (check those present): □ □ □ 1-25% □ 26-50% □ 51-75% □ 76-100 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): □ □ 1 - Not slippery, no colour (<0.5mm) □ 2 Slightly slippery, yellow-brown to light green	ried sheet	Opsileani Downsileani	channel Substrat	Substrate	30030
 hydraulic jump ⊠ riffle □ rapids □ straight run ⊠ pool/back Canopy Coverage (check one): 0% □ 1-25% ⊠ 26-50% □ 51-75% □ 76-100 Macrophyte Coverage (check one): ∅ 0% □ 1-25% □ 26-50% □ 51-75% □ 76-100 Riparian Zone (check those present): ☑ 1 - ferns/grasses □ 2 - shrubs ☑ 3 - deciduous trees □ 4 - coniferous tr Feriphyton Coverage on Substrate (benthic algae, not moss) (check one): □ 1 - Not slippery, no colour (<0.5mm) ☑ 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) □ 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) □ 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) □ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 10.5 Cond. 250.2 DO (mg/L) 10.5 Cond. 250.2 Cond					
 □ 0% □ 1-25% ☑ 26-50% □ 51-75% □ 76-100 3. Macrophyte Coverage (check one): ☑ 0% □ 1-25% □ 26-50% □ 51-75% □ 76-100 4. Riparian Zone (check those present): ☑ 1 - ferns/grasses □ 2 - shrubs ☑ 3 - deciduous trees □ 4 - coniferous tr 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): □ 1 - Not slippery, no colour (<0.5mm) ☑ 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) □ 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) □ 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) □ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 2.0.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 10.5 Cond. 250.2 Cond. 250	🗆 hydrau	ulic jump 🛛 riffle		straight run	i pool/back e
 3. Macrophyte Coverage (check one): Ø 0% □ 1-25% □ 26-50% □ 51-75% □ 76-100% 4. Riparian Zone (check those present): ☑ 1 - ferns/grasses □ 2 - shrubs ☑ 3 - deciduous trees □ 4 - coniferous to 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): □ 1 - Not slippery, no colour (<0.5mm) ☑ 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) □ 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) □ 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) □ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 2.0.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 1.0.5 mc Cond. 250.2 DO (mg/L) 1.0.5 mc Cond. 1	2. Canopy C	Coverage (check one):			
 Ø% □ 1-25% □ 26-50% □ 51-75% □ 76-100 4. Riparian Zone (check those present): ☑ 1 - ferns/grasses □ 2 - shrubs ☑ 3 - deciduous trees □ 4 - coniferous tr 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): □ 1 - Not slippery, no colour (<0.5mm) ☑ 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) □ 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) □ 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) □ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 100 % Scored (us)cm)			⊠ 26-50%	□ 51-75%	□ 76-100
 4. Riparian Zone (check those present): □ 1 - ferns/grasses □ 2 - shrubs ☑ 3 - deciduous trees □ 4 - coniferous tr 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): □ 1 - Not slippery, no colour (<0.5mm) ☑ 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) □ 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) □ 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) □ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 2.0.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 4.0.0 Cond. 250.2 DO (mg/L) 0.4 Cond. 250.2 DO (mg/L) 0.5 Cond. 250.2 DO (mg/L) 0.6 5.2 5.2 5.2 5.2 5.2 5.3 5.3 5.4 5.4 5.4 5.4 5.5 5.5 5.5 5.6 5.6 5.6 5.7	3. Macrophy				
 ☑ 1 - ferns/grasses ☑ 2 - shrubs ☑ 3 - deciduous trees ☑ 4 - coniferous trees 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): ☐ 1 - Not slippery, no colour (<0.5mm) ☑ 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) ☐ 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) ☐ 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) ☐ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) △0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) [0.9%			□ 26-50% □	3 51-75%	
 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one): 1 – Not slippery, no colour (<0.5mm) 2 – Slightly slippery, yellow-brown to light green (0.5-1mm) 3 – Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 – Very slippery, numerous large clumps of green to dark brown (5.0-20mm) 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 20.0 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) Lo. DO (mg/L) Lo. DO (mg/L) Lo. 	j⊠ c				□ 76-100%
 1 - Not slippery, no colour (<0.5mm) 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 10.0 mg/L	,				□ 76-100%
 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) Lo.	4. Riparian Z	Cone (check those present):		us trees 🛛 4 -	
 □ 3 – Noticeably slippery, patches of thicker green to brown (1.0-5mm) □ 4 – Very slippery, numerous large clumps of green to dark brown (5.0-20mm) □ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 200 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 100 mg/L 	4. Riparian 2 ⊠ 1 - fe	Zone (check those present): erns/grasses	shrubs 🛛 3 - deciduo		
 4 - Very slippery, numerous large clumps of green to dark brown (5.0-20mm) 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 200 Water T (C) 5-2 Cond. 250.2 DO (mg/L) 100 (mg/L) 100 % 	4. Riparian Z ⊠ 1 - fe 5. Periphyto	Cone (check those present): erns/grasses □ 2 - s n Coverage on Substrate	shrubs 🛛 3 - deciduo		
□ 5 - Rocks mostly obscured, extensive green, brown to black mass may have long strands (> 20mm) WATER CHEMISTRY Air Temp (C) 200 Water T (C) 5.2 Cond. 250.2 DO (mg/L) 100 (4. Riparian Z ☑ 1 - fe 5. Periphyton ☑ 1 - Not 3 ☑ 2 - Slight 	Cone (check those present): erns/grasses □ 2 - s n Coverage on Substrate slippery, no colour (<0.5mm) ntly slippery, yellow-brown to l	shrubs 🛛 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm)	one):	
WATER CHEMISTRY Air Temp (C) 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) Lo. DD Turbidity 2.01 sp Cond. (uslom) 750.2 DO (mg/L) Lo.	 4. Riparian Z ☑ 1 - fe 5. Periphyton ☑ 1 - Not a ☑ 2 - Sligh ☑ 3 - Notion 	Cone (check those present): erns/grasses □ 2 - s n Coverage on Substrate slippery, no colour (<0.5mm) ntly slippery, yellow-brown to I ceably slippery, patches of thi	shrubs X 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm)	one):	
Air Temp (C) 20.0 Water T (C) 5.2 Cond. 250.2 DO (mg/L) DD Turbidity 2.01 sp Cond. (uslem) 750.2 DO (mg/L)	 4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not : ☑ 2 - Sligh □ 3 - Notio □ 4 - Very 	Cone (check those present): erns/grasses 2 - s n Coverage on Substrate slippery, no colour (<0.5mm)	shrubs 2 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5.	one):) 0-20mm)	coniferous tr
nH Turbidity 2 ou sp Cond (us\cm) 750. DO % 50	 4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not : ☑ 2 - Sligh □ 3 - Notio □ 4 - Very □ 5 - Rock 	Cone (check those present): erns/grasses 2 - s n Coverage on Substrate slippery, no colour (<0.5mm)	shrubs 2 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5.	one):) 0-20mm)	coniferous tr
pH Turbidity 2 as sp Cond (us\cm) 7 as DO % sc	 4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not : ☑ 2 - Sligh □ 3 - Notio □ 4 - Very □ 5 - Rock 	Cone (check those present): erns/grasses 2 - s n Coverage on Substrate slippery, no colour (<0.5mm)	shrubs 2 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5.	one):) 0-20mm)	coniferous tr
	 4. Riparian Z □ 1 - fe 5. Periphyton □ 1 - Not : □ 2 - Sligh □ 3 - Notio □ 4 - Very □ 5 - Rock 	Cone (check those present): erns/grasses 2 - s n Coverage on Substrate slippery, no colour (<0.5mm) ntly slippery, yellow-brown to I ceably slippery, patches of this slippery, numerous large clust s mostly obscured, extensive STRY	shrubs 23 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5. green, brown to black mass m	one): 0-20mm) ay have long strand	coniferous tr
	4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not = ☑ 2 - Sligh □ 3 - Notio □ 4 - Very □ 5 - Rock WATER CHEMI Air Temp (C) pH	Zone (check those present): erns/grasses 2 - s n Coverage on Substrate slippery, no colour (<0.5mm)	shrubs 2 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5. green, brown to black mass m 2 Cond. 2 5 Sp Cond. (us\cm) 3	one): 0-20mm) ay have long strand	coniferous tr ds (> 20mm) mg/L) لرم
Collected: (500ml) (500 ml) (250 ml) (250 ml)	4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not = ☑ 2 - Sligh □ 3 - Notion □ 4 - Very □ 5 - Rock <i>MATER CHEMI</i> Air Temp (C) pH	Zone (check those present): erns/grasses □ 2 - s n Coverage on Substrate slippery, no colour (<0.5mm)	shrubs 🖾 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5. green, brown to black mass m 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	one): 0-20mm) ay have long strand 50.2 DO (n 59.1	coniferous tr ds (> 20mm) mg/L) [ເດ.] DO % ຮີເ
	4. Riparian Z ☑ 1 - fe 5. Periphyton □ 1 - Not = ☑ 2 - Sligh □ 3 - Notion □ 4 - Very □ 5 - Rock <i>MATER CHEMI</i> Air Temp (C) pH	Zone (check those present): erns/grasses □ 2 - s n Coverage on Substrate slippery, no colour (<0.5mm)	shrubs 🖾 3 - deciduo (benthic algae, not moss) (check ight green (0.5-1mm) cker green to brown (1.0-5mm) mps of green to dark brown (5. green, brown to black mass m 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	one): 0-20mm) ay have long strand 50.2 DO (n 59.1	coniferous tr ds (> 20mm) mg/L) [ເດ.] DO % ຮີເ

 $\overline{\bigcirc}$

)

Yukon CABIN Field Sheet (DFO/YTG 2019)

Page 2 of 3

Sampling Date (D/M/Y)

30-51-20

Site Code:

YPS-A-

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

• Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0 Diameter Diameter Diameter Diameter Ε Ē Ε Е (cm) (cm) (cm) (cm) 1 7.6 26 9.5 51 76 7:2 7.2 2 4.6 27 6.0 52 77 1.9 5.9 3 2.0 10.9 28 53 3.4 78 9.2 4 15.9 29 54 79 e 15.1 56 .5 0 5 30 0 6.9 9.4 55 27 80 2 5. 6 31 56 11.2 81 87 6.9 14. 7 5.2 32 57 82 6.6 5.9 6. 8 6.1 33 58 83 4.1 16:7 10 9 6.7 34 59 2.9 84 4.5 6.3 14 10 35 8.7 60 85 5 5.8 O . 1 11 36 6.0 61 3.0 86 5.7 0 12 5.3 37 62 87 7.4 5.7 2 7 13 9.8 38 15.4 63 88 14.0 4.1 14 17.6 7.3 13.6 39 64 89 3 6 \overline{V}_2 15 86 40 8.9 0 65 0.00 90 4.6 16 8.4 41 3.5 66 5.6 91 2 8 17 42 6.6 12.6 67 92 10.9 9 1 18 43 5.6 7.6 68 6.9 93 7.3 8.3 19 44 4.7 69 4.4 94 5.4 20 7.7 2.6 45 70 6.4 95 0 2 6 21 14.6 46 3.8 71 96 12.3 15. 22 6.9 47 72 11.2 5.9 97 12 6 23 4.5 48 73 63 98 4 1.6 24 49 74 5.4 2.1 99 13 6 8 25 3.7 50 7.5 75 100 6.9 V. 10.2 0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

- \Box 0 organic cover (>50% cover)
- ☑ 3 (gravel) 0.2 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 1 (silt) <0.1 cm
- □ 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm
- □ 5 (pebble) 3.2 6.4 cm
- □ 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

Depth of easily penetrable	e sediments (cm): [rSim	Depth	n of sedimen	t sample	ed (cm):	0-5
Sediment	texture and o	olour:	Brov	vn, sands	fines			
Check those present:	Ø woody o	debris	🖾 Leaf li		acrophytes	□ biof	ilms 🛛	periphyton
0	□ odour	1 6	il oily sh		vertebrates			
Comments:					TON VI DU	14.14 J		
BIOLOGICAL: BENTI	HIC INVER	RTEBR	ATE SA	MPLES			-	
Kicknet Sample (loo	cation):	🛛 riffi] rapid	□ straight		D pool/ba	
500 µm mesh Kicknet	**		Riffle		Riffle	2	Rif	fle 3
Operator:			Macpho	vi)		/		/
Time of Day:	1.	-	2:10		/	/		/
Sampling time (i.e. 3 min)		3	3 min		_/		/	-
No. of sample jars Typical depth (in kick area	a)		2				1	
	a)	-	~30cm		,			
CHANNEL DATA								
CHANNEL DATA . Channel Slope/Gradient (%)	2.)		Flow Stag	je: □ Low/	🗷 Mode	erate/ □ Hig	jh/ □ Flood
. Channel	2	3		-	je: □ Low/ trèam Widtl		erate/ □ Hig 3.2	jh/ □ Flood
. Channel Slope/Gradient (%)		-	water lev	Wetted St	trèam Widtl	n (m)		gh/ □ Flood
. Channel Slope/Gradient (%) Bankfull Width (m)	(distance be	etween		Wetted Si vel and top	trèam Widtl of bank) (c	n (m)	3.2 7 5	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth	(distance be	etween mple sit	te taken i	Wetted Si vel and top i.e. d/s of k	tream Widtl of bank) (c <i>ick area)</i> [n (m) m)	3.2 7 5	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note the second	(distance be where in sai	etween mple si	te taken i	Wetted Si vel and top i.e. d/s of k	tream Widtl of bank) (c <i>ick area)</i> [n (m) m)	3.2 7 5	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note the constraint of the co	(distance be where in sat Start	etween mple sin ing fra 1	te taken i pm	Wetted Si vel and top i.e. d/s of k ht bank	tream Widtl of bank) (c <i>ick area)</i> [n (m) m) V(5 o	3.2 75 F Kiche ca 5	1cm
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note to Channel Transect Velocity/Depth	(distance be where in sa Start	etween mple sin ing fra 1 -5	te taken i pm	Wetted Si vel and top i.e. d/s of k ht bank	tream Widtl of bank) (c <i>ick area)</i> [5	n (m) m) U(s . 4 2	3.2 75 F Kiche ca	1cm
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note the second seco	(distance be where in sa Start	etween mple sin ing fra 1	te taken i pm	Wetted Si vel and top i.e. d/s of k ht bank	tréam Widtl of bank) (c <i>ick area)</i> [5 5 2	n (m) m) V(5 o	3.2 75 F Kiche ca 5	AVG
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note the Channel Transect Velocity/Depth Distance from shore (m) Velocity (m/s)	(distance be where in sal	etween mple sin i_{m} fra 1 $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$	te taken 1 2 1 1 2 6	Wetted Si vel and top i.e. d/s of k ht bank 3 1.2 7 0.	tream Widtl of bank) (c <i>ick area)</i> [5 5 2 2 3 <i>C</i>	1 (m) m) U(5 4 2 8 	3.2 75 F Kiche or 5 2.5 8 0.1	AVG 10.2 0.28
. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note for Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes : Site 13	(distance be where in sal start casily	etween mple sin im fra 1 .5 10 .2 acce	te taken 1 2 1 12 0.7	Wetted Si vel and top i.e. d/s of k ht bank 3 1. 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	tream Widtl of bank) (c <i>ick area)</i> [5 5 2 3 3 0. Rem	1 (m) m) U(5 . 4 2 8 1	3.2 75 F Kiche or 5 2.5 8 0.1 of 0	AVG 10.2 0.28
. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note for Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Site is circum & site bu	(distance be where in sam start casily to does	nple sin ing fra 1 .5 10 .2 acce not	te taken i 2 1 12 0.7 557 S (appea	Wetted Si vel and top i.e. d/s of k ht bank 3 1. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	tream Widtl of bank) (c <i>ick area)</i> [<i>ick area</i>) <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i> <i>Z</i>	1 (m) m) U(s. 4 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.2 75 F Kick or 5 2.5 8 0.1 of 0	AVG LO.2 0.28 (d work
. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note for Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes : Site 13	(distance be where in sal start start c easily t does t does	etween mple sin im fra 1 .5 10 .2 acce not	te taken i 2 1 12 0.7 ssrs (appea art of	Wetted Si vel and top i.e. d/s of k ht bank 3 1. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	tream Widtl of bank) (c <i>ick area)</i> [5 5 5 2 3 0. Remo Nave Con Nave Con	1 (m) m) VIS. 4 2 8 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 	3.2 75 F Kick or 5 2.5 8 0.1 of 0 cent ac	AVG LO.2 0.28 (d work
. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (Location in site (note for Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Site is creek is confir	(distance be where in sam start start c casily it does to does ea through	nple sin mple sin im fra 1 .5 10 .2 acce not ch p	te taken i 2 1 12 0 55+5 (appea art of Drconfi	Wetted Si vel and top i.e. d/s of k ht bank i.e. for i.e. for i.e. for i.e. for the si he si	tream Widtl of bank) (c <i>ick area)</i> [<i>ick area</i>) [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\frac{n (m)}{m}$ $\frac{V(s)}{4}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{3}$	3.2 75 F Kick or 5 2.5 8 0.1 of 0 cent or open u cen influ	ICA LO.2 O.28 Lo.2 O.28 Lo work ettisty. B Gy creed
. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note in Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Site is around site bu Creek is confir You mare dr	(distance be where in sam start start c casily it does to does ea through	etween mple sin im fro 1 -5 10 -5 10 -5 10 -5 10 -5 10 -5 10 -5 -7 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	te taken i 2 1 12 0 55+5 (appea art of Drconfi	Wetted Si vel and top i.e. d/s of k ht bank i.e. for i.e. for i.e. for i.e. for the si he si	tream Widtl of bank) (c ick area) [ick area) [3 3 3 0. Remo Nave an reach reach reach reach	and s be	3.2 75 F Kick or 5 2.5 8 0.1 of 0 cent or open u cen influ	ICA LO.2 O.28 Lo.2 O.28 Lo work ettisty. B Gy creed
. Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note in Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Site is circum & site bu Creek is confir You move do	(distance be where in sam start start c casily it does to does ea through	etween mple sin in fra 1 .5 10 .2 acce not acce not acce	te taken 2 1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Wetted Si vel and top i.e. d/s of k ht bank 3 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	reach reach Jebris	$\frac{n (m)}{m}$ $\frac{v(s)}{v(s)}$ $\frac{4}{2}$ $\frac{2}{8}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	3.2 75 F Kick or 5 2.5 8 0.1 of 0 cent or open u cen influ bownes	ICA LO.2 O.28 Ld work attivity. B GS creed

Revised June 2019

x.

Yuko	on CABIN Fie	ld Sheet (E	DFO/YTG 2019)		Page 1 of	f 3
Sa	mpling Date	(D/M/Y)	30-JUI-20		Site Code: 🦂	PS - A3
PRI	MARY SITE	DATA				
	CABIN Study	name:	Yukon-AHM		Basin:	londike River
	River/Stream	-	Adams Creek		X	Test
Site	Location D	escription	that opes up 1	toans Creek. C	an park ~20	20m below and
	valk up c		0	om Road	,	**
(GPS Datum:	WGS84 o	r NAD83	GPS Altitu	de (masl or fasl	1) 493
	*Latitude:	630551	46.5"	Strea	am Order (1:50,000	
	*Longitude:	139021			Ecoregion	E Taiga Cordil
	t os taken:	⊡∕ Upstream	Downstream			quatic □ Aer strate eubstra
REA		Represent	6 x bankfull width)			1
	l Habitat Ty	nes Prese	ent/Flow State Read	b (check those prese	nt):	
	□ hydra	-	I riffle	□ rapids	straight run	と pool/back e
	2. Canopy (— F
		-	□ 1-25%	⊠ 26-50%	□ 51-75%	□ 76-100
(age (check one):			
		-	□ 1-25%	□ 26-50%	□ 51-75%	□ 76-100%
	4. Riparian Z					
		erns/grasses		bs 🖾 3-de	eciduous trees	4 - coniferous tre
į		-	je on Substrate (ber	ithic algae, not moss) (check one):	
	⊠ 2 – Sligl □ 3 – Noti □ 4 – Very	htly slippery ceably slipp y slippery, n	colour (<0.5mm) , yellow-brown to light ery, patches of thicker umerous large clumps scured, extensive gree	green to brown (1.0 of green to dark bro	wn (5.0-20mm)	g strands (> 20mm)
WA	TER CHEM	STRY	÷			~
	Air Temp (C)		Water T (C) 4.1	Cone		DO (mg/L)
	pH	7.53	Turbidity 1.50	sp Cond. (us\cn	n) <u>387.5</u>	DO % 80.
Wa	ter Samples Collected:	忆 TSS (500ml)	⊠ General (500 ml)	Total metals I (250 ml)	23 Nutrients (250 ml)	Other
					120-	Ltoc

Revised June 2019	

.

Sampling Date (D/M/Y)

Page 2 of 3

Site Code:

YPS-47

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

30-MUL

1. 100 Pebble Count & Substrate Embeddedness

• Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

20

• Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	Ε		Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E
1	8.3		26	4.3	L	51	8.8		76	5.5	
2	5.6		27	6.2		52	10.6		77	4.4	
3	8.7		28	6.8		53	4.2		78	7.2	
4	4.0		29	6.7		54	8.3		79	9.1	
5	6.4		30	5.7	1/2	55	6.2		80	10.3	0
6	4.4		31	4.7	-	56	9.5		81	9.4	
7	3.6		32	3.5		57	18.3		82	6.7	
8	5.9		33	15.0		58	2.9		83	10.8	
9	3.2		34	5.7	-	59	5.8		84	7.7	
10	4.8	0	35	6.6		60	5.3	Y4	85	5.7	
11	12.2		36	4.0		61	4.2		86	2.6	
12	10.9		37	5.		62	5.9		87	3.8	
13	2.8		38	8.0		63	8.3		88	4.7	
14	4.6		39	14.1		64	6.3		89	5.9	1.
15	43		40	4.1	3/4	65	11.0		90	10.6	1/4
16	6.8		41	13.2		66	7.9		91	4.8	1
17	11.4		42	8.4		67	5.2		92	6.0	
18	6.6		43	6.3		68	9.1		93	2.1	1
19	1.8		44	5.3		69	4.1		94	4.4	
20	5.6	0	45	4.9		70	6.4	0	95	13.1	
21	41	-	46	9.3		71	7.3		96	5.9	
22	9.4		47	6.0		72	6.3	-	97	3.8	
23	17.1		48	10.4		73	7.6		98	3.9	
24	8.9		49	8.6		74	5.7		99	10.1	
25	4:3		50	4.0	Yy	75	6.8		100	5.8	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

□ 7 - (cobble) 12.8 – 25.6 cm

□ 1 - (silt) <0.1 cm

- Ø × 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm □ 5 - (pebble) 3.2 - 6.4 cm
- □ 8 (boulder) > 25.6 cm □ 9 - Bedrock

3. Sediment Samples C	Collected ·	[⊅ (300-500a)					
Depth of easily penetrable s			Den	th of codim	ient sample	d (om):	15
Sediment te		plour: 1	10	_	1-1	1	-12
Check those present:	to woody de	Drown	A COLORED	nacrophyte		ilms 🗆	periphyto
	□ odour	oily s		nvertebrat			3
Comments:	Collected f	ron left ba	it at 3	locertion	,		
BIOLOGICAL: BENTH	IC INVER	TEBRATE S	AMPLES				
			9				
1. Kicknet Sample (loca		⊠ riffle I	⊐ rapid	□ straig	ht run	D pool/b	ack edd
500 µm mesh Kicknet**		Riffle	1	Rif	fle 2	Ri	ffle 3
Operator:		A. Mach	- 1 h		/		1
Time of Day:		11:00			/		/
Sampling time (i.e. 3 min)		3 min			/	/	•
No. of sample jars		1		1		/	
Typical depth (in kick area)		~ 200	~		19.5	1	
CHANNEL DATA							
Bankfull Wetted Depth (d			vel and top		(cm)	3-8 42	
Location in site (note wh	r		i.e. d/s of i	kick area)	just.	pstream	of Ici
	from ru	sht bank					
2. Channel Transect	1			0		-	
Velocity/Depth	1	2		3	4	5	A
Velocity/Depth Distance from shore (m)	0.	6 12	1.	G	2.4	5	
Velocity/Depth	1	6 1.2	l.	6	2. 4 15	3-0	AV 11.9 0.3
Velocity/Depth Distance from shore (m) Depth (cm)	ortside K, went	6 1.2 2 11.5 .1 0.5 active + p the st gbove in	roposed (E 18 0.6	2. 4 15 0.5 area.	3-0 7 0-1 Were	11.9 0.3 Stake »
Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Appear to be leading up the cree they may mine in Creek is confine.	outside when the ful d on	6 1.2 11.5 active + p the st gloove in ruve both sides	roposed i aves the y	8 18 0.6 18 18 0.6	2. 4 15 0.5 area. verc o	3-0 7 0-1 Were the side was	11.9 0.3 Staker here
Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Appear to be leading up the creek they may mine in Creek is confined permatrost on bank	outside w, went the ful d on to noted	6 1.2 115 active + p the st above in rure both sides along rac	roposed i akes the b by ach	8 18 0.6 18 18 0.6	2. 4 15 0.5 area. verc o	3-0 7 0-1 Were the side was	11.9 0.3 Staker here
Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes: Appear to be leading up the cree they may mine in Creek is confine.	outside w, went the ful d on to noted	6 1.2 115 active + p the st above in rure both sides along rac	roposed i akes the b by ach	8 18 0.6 18 18 0.6	2. 4 15 0.5 area. verc o	3-0 7 0-1 Were the side was	11.9 0.3 Staker here

r.

Se.

YUKON CABIN FIEI	d Sheet (DFO/YTG 2019)	Page 1 of 3
Sampling Date (D/M/Y) 30-Tyl-20	Site Code: 495-42
PRIMARY SITE	DATA	
		·
CABIN Study		Basin: Wordike River
River/Stream	name: Adams Creek	☐ Test □ Reference
Site Location De	escription:	
	-	- works. Still in undeveloped area of creek
that appears	like it likely wont	be altered later. But the access by walking from YRS-AL. Can also drive up along
GPS Datum:	WGS84 or NAD.83	GPS Altitude (masl or fasl) 476
*Latitude:	(3°55`58.8''	Stream Order (1:50,000):
*Longitude:	139° 20' 03.9"	Ecoregion: Taiza Cordille
	(*use decimal degrees)	
Photos taken:		CAcross Dry DAquatic CArrial
Field sheet	Upstream Downstream	
TEACH DATA (Represent 6 x bankfull wid	
1. Habitat Ty	pes Present/Flow State I	Reach (check those present):
🛛 hydrau	ılic jump 🛛 riffle	🗆 rapids 🛛 straight run 🛛 pool/back eddy
2. Canopy C	overage (check one): Au-cr	rase of multiple values.
	% 🛛 1-25%	□ 26-50% □ 51-75% □ 76-100%
3. Macrophy	/te Coverage (check one):	
□ 0	% 🛛 1-25%	□ 26-50% □ 51-75% □ 76-100%
4. Riparian Z	One (check those present):	
🖾 1 - fe	rns/grasses 🛛 2 -	shrubs 🛛 3 - deciduous trees 🖓 4 - coniferous trees
5. Periphyto	n Coverage on Substrate	e (benthic algae, not moss) (check one):
□ 1 – Not s	slippery, no colour (<0.5mm)	
	tly slippery, yellow-brown to	
		icker green to brown (1.0-5mm)
🛛 4 – Very	slippery, numerous large clu	umps of green to dark brown (5.0-20mm)
□ 4 – Very □ 5 - Rock	slippery, numerous large clu s mostly obscured, extensive	-
🛛 4 – Very	slippery, numerous large clu s mostly obscured, extensive	umps of green to dark brown (5.0-20mm)
□ 4 – Very □ 5 - Rock WATER CHEMI	slippery, numerous large clu s mostly obscured, extensive STRY	umps of green to dark brown (5.0-20mm) e green, brown to black mass may have long strands (> 20mm)
□ 4 – Very □ 5 - Rock	slippery, numerous large clu s mostly obscured, extensive STRY II°C Water T (C)	Imps of green to dark brown (5.0-20mm) e green, brown to black mass may have long strands (> 20mm) Cond. 298.6 DO (mg/L) 10.57
□ 4 – Very □ 5 - Rock WATER CHEMI Air Temp (C) pH Water Samples	slippery, numerous large clu s mostly obscured, extensive STRY Urec Water T (C) 7.75 Water T (C) Turbidity X TSS General	Imps of green to dark brown (5.0-20mm) e green, brown to black mass may have long strands (> 20mm) Imps of green to dark brown (5.0-20mm) Cond. Imps of green to dark brown (5.0-20mm) Imps of green to dark brown to black mass may have long strands (> 20mm) Imps of green to dark brown to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm) Imps of green to black mass may have long strands (> 20mm)
□ 4 – Very □ 5 - Rock WATER CHEMI Air Temp (C) pH	slippery, numerous large clu s mostly obscured, extensive STRY II°C Water T (C) U. 7.75 Turbidity 3.1	Imps of green to dark brown (5.0-20mm) e green, brown to black mass may have long strands (> 20mm) Cond. 298 G DO (mg/L) 10.57 sp Cond. (us\cm) 441.2 DO % \$0.7

Revised June 2019

()

Sampling Date (D/M/Y)

30-5-3-20

Site Code:

YPS.A2

Page 2 of 3

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

· Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

 Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0 Diameter Diameter Diameter Diameter Е Ε Е Е (cm) (cm) (cm) (cm) 1 47 3.1 26 51 8.7 76 17 2 9.4 2 27 52 6.0 77 9.8 6.4 3 90 11.3 28 14-1 53 78 7.6 4 3.2 8.8 29 12.2 54 79 6.0 5 2.9 30 12 55 6 10.1 4.9 80 5-9 6 8.7 31 56 81 3.6 5.3 1.7 7 9-1 32 3.8 4.2 57 82 8.0 8 33 5.9 58 83 2.4 6.0 9.6 9 34 4.6 59 3.3 84 0 9.7 10 12.0 35 YY 60 10.2 85 7 41 11 71 36 9.1 61 86 11.2 12 8.4 2.5 4.9 37 62 87 11.1 13 3.9 38 6.4 6.6 63 88 5.9 8.7 14 6.2 39 8.6 64 89 5.2 8.4 Yy 15 40 7.5 0 65 90 3.8 10.5 16 41 66 14.1 3.6 4.9 91 5.2 5.9 17 42 6.9 67 92 7.7 3.2 2.9 18 43 6.1 68 6.4 93 12.6 19 3.4 44 4.0 69 94 7.3 31 20 3.1 9 45 70 6 0 95 Z. 8.1 21 13.8 2.9 46 5.4 71 96 7.3 22 4.4 47 6.7 72 97 12.5 8.1 23 48 73 5.9 5.9 98 3 7.2 24 9.9 8.5 4.1 49 74 99 2 3 2 3. 4.8 6 25 50 9.1 9.6 0 75 100

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

□ 7 - (cobble) 12.8 – 25.6 cm

□ 8 - (boulder) > 25.6 cm

- □ 1 (silt) <0.1 cm
- 🕅 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm □ 5 - (pebble) 3.2 – 6.4 cm
- 9 Bedrock

Revised June 2019

Sampling Date (D/M/Y	30-504-20	>	Site Code: V PS-4	12
3. Sediment Samples	Collected: 🗹 (30	0-500g)		
Depth of easily penetrable	()	6	Depth of sediment sampled (cm):	0-5
Sediment	texture and colour:	Brown Servit	trace fine silt + trace rouse	aravel
Check those present:	woody debris	Leaf litter	macrophytes biofilms	D periphyton
	🗆 odour	oily sheen	□ invertebrates	
Comments:	Collected From	micro deposit	ion arras about riffle	

Page 3 of 3

BIOLOGICAL: BENTHIC INVERTEBRATE SAMPLES

Yukon CABIN Field Sheet (DFO/YTG 2019)

1. Kicknet Sample (location):	⊠ riffle □ rapid	straight run	□ pool/back eddy
500 µm mesh Kicknet**	Riffle 1	Riffle 2	Riffle 3
Operator:	A. MacPhail	/	1
Time of Day:	9:30		
Sampling time (i.e. 3 min)	3 min		
No. of sample jars	1		
Typical depth (in kick area)	N25cm	1	1

CHANNEL DATA

i. Channel			
Slope/Gradient (%)	3	Flow Stage: 🛛 Low/ 🖾 Mod	erate/ High/ Flood
Bankfull Width (m)	3	Wetted Stream Width (m)	2.3
Bankfull Wetted Depth	(distance between	water level and top of bank) (cm)	43

Location in site (note where in sample site taken i.e. d/s of kick area) Uls of Kick area

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	0.90	0.80	1.20	1.60	2.00	
Depth (cm)	10	19	22	26.5	15	0.186
Velocity (m/s)	0.4	0.6	0.7	0.5	0.2	0.54

Notes. Appear to be out of where mining will occur in the future. Creek is confined by steep bounds on both sides, unlikely to change course.

Lots of viparian we has been pushed overtop of creek, increasing canopy cover, Plagged site for future events.

Potential Pour bank erosion is high giver steepness of banks.

Doesn't appear to be any slutcing upstream. Might change as day

progresses.

Progression. Discharge 0.016 0.046 0.062 0.086 0.012 Total-0.2216 0.2216m3/6

	_	FO/YTG 2019)		Page 1 of 3	
Sampling Da	ate (D/M/Y)	30-July-20		Site Code: 4PS	-41
PRIMARY SI	TE DATA				
CABIN Stu	udy name:	Yuuch - AHM		Basin: Klon	like River
River/Stre	am name:	Adams Creek			st 🛛 Refer
Site Locatior	Description:		-1-		
		ams Creek fr	rom Bunanza Cr	reik Road. Old f	and location
_ at site.	Fasily ale	ssed by walk	ling.		
GPS Datu	m: WGS84 or	VADE3	GPS Altit	ude (masl or fasl)	203
*Latitud	le: (.3° 5(02.0"	Str	eam Order (1:50,000):	3
*Longitud	le: 139°10	1'54.9''	2-	Ecoregion:	Taiza
	(*use decim	al degrees)			
Photos taken:	F	R.		C Dry C Aqua	tic 🖂 🗛
Field sheet	Upstream	Downstream		ubstrate substra	
REACH DAT	A (Represent)	6 x bankfull width	1)		
1 Habitat	Types Prese	nt/Flow State Re	ach (check those pres	ent):	
	draulic jump		rapids	straight run	🛛 pool/back
-	oy Coverage (c				
	□ 0%	☑ 1-25%	- □ 26-50%	□ 51-75%	□ 76-10
0					
	phyte Covera	ge (check one):			
3. Macro	phyte Covera ଆ ୦%	ge (check one): □ 1-25%	□ 26-50%	□ 51-75%	□ 76-100
3. Macro		□ 1-25%	□ 26-50%	□ 51-75%	□ 76-100
3. Macro Macro 4. Riparia	₫ 0%	□ 1-25%			
3. Macro ⊠ 4. Riparia ⊠ 1	☑ 0% I n Zone (check t - ferns/grasses	□ 1-25% hose present): ☑ 2 - sh		leciduous trees	
3. Macro ☑ 4. Riparia ☑ 1 5. Periphy ☑ 1 – N	 0% n Zone (check t ferns/grasses fton Coverage Not slippery, no c 	☐ 1-25% hose present): ☑ 2 - sh e on Substrate (k olour (<0.5mm)	nrubs 🔲 3 - d benthic algae, not moss)	leciduous trees	
3. Macro ☑ 4. Riparia ☑ 1 5. Periphy ☑ 1 – N ☑ 2 – S	 a 0% n Zone (check t ferns/grasses /ton Coverage Not slippery, no c Slightly slippery, t 	□ 1-25% hose present): ☑ 2 - sh e on Substrate (f olour (<0.5mm) yellow-brown to lig	nrubs 🛛 3 - d benthic algae, not moss) ht green (0.5-1mm)	leciduous trees D	
3. Macro ⊈ 4. Riparia ⊠ 1 5. Periphy ⊠ 1 – № ⊠ 2 – 9 □ 3 – №	 a 0% an Zone (check the second s	□ 1-25% hose present): ☑ 2 - sh e on Substrate (i olour (<0.5mm) yellow-brown to lig ry, patches of thick	nrubs 🔲 3 - d benthic algae, not moss)	leciduous trees D (check one): 0-5mm) [,]	
3. Macro ≦ 4. Riparia ⊠ 1 5. Periphy ⊠ 1 – N ⊠ 2 – S □ 3 – N □ 4 – V	 a 0% an Zone (check the second s	□ 1-25% hose present): ☑ 2 - sh e on Substrate (f olour (<0.5mm) yellow-brown to lig ry, patches of thick merous large clum	nrubs	leciduous trees D (check one): 0-5mm) [,]	4 - coniferous t
3. Macro ≦ 4. Riparia ⊠ 1 5. Periphy ⊠ 1 - N ⊠ 2 - S □ 3 - N □ 4 - V	 a 0% an Zone (check the second s	□ 1-25% hose present): ☑ 2 - sh e on Substrate (f olour (<0.5mm) yellow-brown to lig ry, patches of thick merous large clum	nrubs	leciduous trees (check one): 0-5mm) [;] own (5.0-20mm)	4 - coniferous t
3. Macro 4. Riparia ☑ 1 5. Periphy ☑ 1 - N ☑ 2 - S □ 3 - N □ 4 - V □ 5 - R WATER CHE	O% O	□ 1-25% hose present): ☑ 2 - sh e on Substrate (f olour (<0.5mm) yellow-brown to lig ry, patches of thick merous large clum cured, extensive g	nrubs	leciduous trees (check one): 0-5mm) ^r own (5.0-20mm) nass may have long str	4 - coniferous t ands (> 20mm)
3. Macro ≦ 4. Riparia ⊠ 1 5. Periphy ⊠ 1 – N ⊠ 2 – S □ 3 – N □ 4 – V □ 5 - R	A 0% In Zone (check t - ferns/grasses yton Coverage Not slippery, no c Slightly slippery, no c Slightly slippery, no very slippery, nu ocks mostly obs EMISTRY W	□ 1-25% hose present): ☑ 2 - sh e on Substrate (f olour (<0.5mm) yellow-brown to lig ry, patches of thick merous large clum	hrubs 3 - d benthic algae, not moss) ht green (0.5-1mm) ker green to brown (1.4 ps of green to brown (1.4 reen, brown to black r	leciduous trees (check one): 0-5mm)' own (5.0-20mm) mass may have long str	4 - coniferous t ands (> 20mm) D (mg/L) \a,
3. Macro 4. Riparia ☑ 1 5. Periphy ☑ 1 - N ☑ 2 - S □ 3 - N □ 4 - V □ 5 - R WATER CHE Air Temp (C	A 0% In Zone (check t - ferns/grasses yton Coverage Not slippery, no c Slightly slippery, no c Slightly slippery, no cocks mostly obs EMISTRY C) C.5 W H 7.78	□ 1-25% hose present): □ 2 - sh e on Substrate (f olour (<0.5mm) yellow-brown to lig ry, patches of thick merous large clum cured, extensive g	hrubs 3 - d benthic algae, not moss) ht green (0.5-1mm) ker green to brown (1.0 ps of green to brown (1.0 reen, brown to black r	leciduous trees (check one): 0-5mm)' own (5.0-20mm) mass may have long str	D (mg/L) \a. DO % \bar{8}

Revised	June	2019

Page 2 of 3

Sampling Date (D/M/Y)

30-704-20

Site Code:

VPS-A

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

 Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0 Diameter Diameter Diameter Diameter Ε Е Ε Ε (cm) (cm) (cm) (cm) 1 26 8.4 5.6 51 16.5 76 5.0 4.0 2 27 9.5 52 77 7.4 2.1 3 9.1 28 53 78 7.4 3.3 6. 4 29 5.8 54 59 5.0 79 6.4 0 5 30 55 80 0 49 5.1 2.6 5.1 6 3.0 31 3.8 56 81 2.7 7.3 7 4.8 5.7 8.5 32 57 82 4.9 8 8. ٦ 33 6.1 58 83 3.8 4.8 9 9.3 34 3.0 59 84 9.2 6.1 10 8.1 35 10.9 60 0 85 12 7.1 7.1 11 7.7 36 2.5 61 5.5 86 8.2 12 4.9 37 62 87 7,2 6.1 6.9 13 38 3.4 4.2 4.8 63 88 6.6 14 7.1 39 64 89 5.9 5.3 6.6 15 4.7 40 3.0 65 90 14 4 5.6 4.0 16 41 4.1 46 66 91 5.6 6.6 17 3.9 5.7 42 8.4 67 92 7.9 3.9 7.2 18 4.9 43 68 93 4.8 19 8 3 4.7 44 7.4 69 94 4.1 20 4.3 14 45 6.9 7.4 70 Y2 95 4.5 4.5 21 46 71 96 4.6 4 .9 5.2 22 8.0 47 72 97 3.2 3.5 7.9 23 48 7.0 3.0 73 98 6.9 24 7.6 5.2 49 74 4.9 99 4.7 7.7 9.5 4.2 2.4 25 44 50 75 100 0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

□ 7 - (cobble) 12.8 – 25.6 cm

- □ 1 (silt) <0.1 cm
- 🙀 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm
- □ 5 (pebble) 3.2 6.4 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

Sampling Date (D/M/Y) 30-	5-4-20	Site Code:	YPS-AI	
3. Sediment Samples Collect	ed: 🛛 (300-500g) 🗅 duy	licate also collecte	1 1ps-1	2-902
Depth of easily penetrable sedime	nts (cm):	Depth of sediment sa	mpled (cm):	0-4
Sediment texture a	ind colour: Brown sny	d (f-c), times 5	ilt, frace	fine a moul
Check those present:	ody debris D Leaf litter	macrophytes	l biofilms	D periphyton
🗆 odo	ur 🛛 oily sheen	□ invertebrates		
Comments:	d from micro deposition	nareas @ liffle i	2 + lower	riffle 2
PIOLOGICAL · DENTHIC IN		50		

Page 3 of 3

14

BIOLOGICAL: BENTHIC INVERTEBRATE SAMPLES

Yukon CABIN Field Sheet (DFO/YTG 2019)

1. Kicknet Sample (location):	⊠ riffle □ rapid	□ straight run	□ pool/back eddy
500 μm mesh Kicknet**	Riffle 1	Riffle 2	Riffle 3
Operator:	A.MacPhail	A. MacPhail	A.Maephail
Time of Day:	\$:00	8:10	8.20
Sampling time (i.e. 3 min)	3 min	3 min	3 min
No. of sample jars		1	1
Typical depth (in kick area)	MISCM- 20cm	m IScm- 20im	~ 15-20cm

CHANNEL DATA

1. Channel

Slope/Gradient (%)	3	Flow Stage: Low/ Moderate/ High/ Flood					
Bankfull Width (m)	3.9	Wetted Stream Width (m)	2.7				
Bankfull Wetted Depth (distance between	water level and top of bank) (cm)					

Location in site (note where in sample site taken i.e. d/s of kick area)

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	0.40	0.96	1.20	1.60	2.00	
Depth (cm)	12	19	23	20	12	0.172
Velocity (m/s)	0.4	O.C	0.G	0.5	0.4	0.5

Notes: moved US of originally proposed location. Work on stream just before it crosses the Road.

Reach is relatively undisturbed until near Bonanza Creen Acad. Wide Rood plain looks like channel could move depending on Freshet.

No active sluicing happening UB - or appears this way based on torbidity

1 2 3 4 5

Less fine sediment deposition compared to Hunker Creek.

Discharge

0019 0046 0.055 G.040 0.019 Tetal

0.1792 mils

Revised June 2019

Yukon CABIN Fie	eld Sheet (DFO/	YTG 2019)		Paç	ge 1 of 3	
Sampling Date (D/M/Y) 29-7-1-20			Site Code:	YP5-07	8	
PRIMARY SITE	DATA					
CABIN Stud	v name:	Von-AHM		Basir	1: Klandille	Q
River/Stream		Ver Creck			I Test	
Site Location D		- adjace	nt to Ho	Ker Creek S	Road at co	ordinat =>
provided	by YB.					
GPS Datum:	WGS84 or N	AD 83)	GPS	Altitude (masl o	or fasl)	588
*Latitude:	63.055'20	0.6"		Stream Order (1:50,000):	3
*Longitude:	135° 53°0 (*use decimal de			Eco		iya Cordilli
Photos taken:	đ			DBry		
Field sheet	Upstream [Downstream	channel	substrate	substrate	substrate
REACH DATA	(Represent 6 x l	bankfull width))			
	Coverage (check 0% yte Coverage (1-25%	□ 26-50%	6 🗆 51-	-75%	□ 76-100%
		□ 1-25%	□ 26-50%	5 \ □ 51-	75%	□ 76-100%
	Zone (check those				0,0	
•	erns/grasses	🗵 2 - shr	ubs 🖾	3 - deciduous tree	es □ 4-o	coniferous tree
	on Coverage on					
⊠ 2 – Slig □ 3 – Noti □ 4 – Ven		ow-brown to ligh patches of thicker ous large clump	er green to brow s of green to da	-		s (> 20mm)
WATER CHEM	ISTRY					
Air Temp (C)	17 Water	r T (C)		Cond. 316. 2	DO (n	ng/L) 9.73
pH	7.69 Tur	bidity 8.95	sp Cond.	us/cm) 446.1		0% 78.3
Water Samples Collected:						
	[] TSS (500ml)	General (500 ml)	⊡ Total metal (250 ml)	s 🖸 Nutrients (250 ml)	D'Other	4
					DOther 16 Nalgen 120m LRCN	
Revised June 201	(500ml)				D'Other 16 Nalyen 120m L RAN	4

0

 $\langle \rangle$

0

i

Sampling Date (D/M/Y)

Page 2 of 3

Site Code: YPS.078

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

29-Jul-20

1. 100 Pebble Count & Substrate Embeddedness

· Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	mbeddedness c Diameter (cm)	E		Diameter (cm)	Е		Diameter (cm)	E		Diameter (cm)	E
1	6.4		26	2.2		51	12.0		76	8.5	
2	7.6		27	8-0		52	6.%		77	7.7	
3	6.1		28	12.4		53	6.9	2	78	4.6	0
4	9.0		29	8.4		54	4.4		79	7.4	
5	4.5		30	3.9	0	55	3.2		80	7.3	Yu
6	4.1		31	5.7	1	56	6.9		81	6.2	
7	le.3		32	6.6		57	5.5		82	9.5	
8	6.5		33	4.3		58	5.3		83	10.8	
9	5.2		34	5.3		59	4.7		84	6.7	
10	5.4	1/4	35	13.5		60	4.9	1/4	85	3.6	
11	5.6		36	6.3	1	61	6.6		86	3.2	
12	6.6		37	9.4	1000	62	5.5		87	6.1	1
13	9.0		38	7.9		63	4.6		88	9.3	
14	9.1		39	9.1		64	4.5		89	4.4	
15	7.6		40	5.2	14	65	5.0		90	4.0	0
16	4.5		41	5.1		66	85		91	7.3	
17	9.2		42	4.9		67	7.5		92	5,42	
18	5.7		43	12/		68	14.0		93	4.2	
19	7.0		44	1.1		69	8.2		94	3.9	
20	4.0	0	45	5.4		70	10.0	0	95	3.5	
21	7.0		46	3.2		71	12.Z		96	8.1	
22	6.2		47	7.1		72	4.1		97	5.5	
23	0.1		48	9.1		73	8.1		98	6.2	
24	17.0		49	4.4		74	3.0		99	6.6	
25	4.8		50	2.1	3/4	75	4.7		100	4.8	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

🔲 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 1 (silt) <0.1 cm
- ☑ 2 (sand) 0.1 0.2 cm
- □ 4 (bebble) 1.6 3.2 cm □ 5 - (pebble) 3.2 - 6.4 cm
- □ 7 (cobble) 12.8 25.6 cm □ 8 - (boulder) > 25.6 cm
- 9 Bedrock

5

Sampling Date (D/M/Y) 29-July-2	0	Site Code:	485-078
3. Sediment Samples	Collected: 🕅 (30	00-500g)		
Depth of easily penetrable	sediments (cm):	6	Depth of sediment sampl	ed (cm): 0-5
Sediment	texture and colour:	brown (f.	nint light brown red	
Check those present:	□ woody debris	Leaf litter	macrophytes bic	
	🗆 odour	oily sheen	invertebrates	
Comments:	Collicks from 1	micro depos	found mons with	in riffles
BIOLOGICAL: BENTH	IC INVERTEB	RATE SAMPL	.ES	
1. Kicknet Sample (loc	cation): 🛛 🖾 rif	fle 🗆 rapi	d 🛛 🗆 straight run	□ pool/back eddy

Page 3 of 3

nicknet Gample (location).	дише штари		L poorback eduy
500 µm mesh Kicknet**	Riffle 1	Riffle 2	Riffle 3
Operator:	A. MacPhail		
Time of Day:	14:20		
Sampling time (i.e. 3 min)	3 min		
No. of sample jars	1		
Typical depth (in kick area)	~ 10cm		

CHANNEL DATA

Yukon CABIN Field Sheet (DFO/YTG 2019)

1. Channel

Slope/Gradient (%) ろ Flow Stage: □ Low/ ☑ Moderate/ □ High/ □ F Bankfull Width (m) └ . ⌒ Wetted Stream Width (m) 𝔅. Bankfull Wetted Depth (distance between water level and top of bank) (cm) 𝔅. 𝔅.		lerate/ High/ Flood	
Bankfull Width (m)	4.9	Wetted Stream Width (m)	2.9
Bankfull Wetted Dept	h (distance between water lev	vel and top of bank) (cm)	51

Location in site (note where in sample site taken i.e. d/s of kick area) U/5 of Kick area

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	0.5	1.0	1.5	2.0	2.5	
Depth (cm)	6	18	9	7	5	0.09
Velocity (m/s)	O	0.4	0.3	0.3	0.1	0.22

Notes: Water has cleared up significantly. Visual assessment of kick motional l'indicuitose more bugs present

Canopy cover very limited on right bank (same side as road). Assessed Pusing camepeo cipp.

Rocks are heavily embedded within Kick area bots of depositional sediment along reach. Other trib or channel noticed U/S

2 3 4 5 Discharge 0 6036 0.014 6.011 0.003 Total- 0.0625m3/s

Sampling Date		Page 1 of 3				
Sampling Date (D/M/Y) 28.71(-20		Site Code: YP5-	Site Code: YP5-613			
PRIMARY SITE	DATA					
CABIN Study	name: Vice the	Basin:	Di Di			
River/Stream	40,1001 31404	Basin: Klond	ike River			
RivenStream	name: Hunder Creek					
Site Location De	-					
Hay	accent to placer settling	pand,				
GPS Datum:	WGS84 or NAD 83	GPS Altitude (masl or fasl)	394			
*Latitude:	64°00'41.5"	Stream Order (1:50,000):	4			
*Longitude:	13905,20.90	Ecoregion: 50	Auga Cardill			
	(*use decimal degrees)	- 67W 0593415 7099702				
Photos_taken:						
瑫. Field sheet		Across D Dry DA Aquatic channel substrate substrate				
🗇 hydrau	ılic jump 🛛 riffle					
2. Canopy C	overage (check one):	☐ rapids ⊠ straight run 反	4 pool/back ed			
2. Canopy C □ 0		□ rapids ⊡ straight run ⊉				
□ 0	% 🛛 1-25%	□ 26-50% □ 51-75%				
□ 0	% ⊠ 1-25% /te Coverage (check one): D;?f;c					
□ 0 3. Macrophy ⊠ 0	% ⊠ 1-25% /te Coverage (check one): D;rf;c	□ 26-50% □ 51-75% ult to determine with turbidity	□ 76-100%			
□ 0 3. Macrophy ☑ 0 4. Riparian Z	% ⊠ 1-25% /te Coverage (check one): % □ 1-25%	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75%	□ 76-100% □ 76-100%			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer	% ⊠ 1-25% yte Coverage (check one): D iff;c % □ 1-25% ione (check those present):	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 -	□ 76-100% □ 76-100%			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphytor	% ⊠ 1-25% yte Coverage (check one): picfic % □ 1-25% % □ 1-25% % □ 2 - shrubs	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 -	□ 76-100% □ 76-100%			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphytor ☑ 1 - Not s □ 2 - Sligh	% ⊠ 1-25% /te Coverage (check one): picfic % □ 1-25% one (check those present): rns/grasses □ 2 - shrubs n Coverage on Substrate (benth slippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm)	 pool/back ed 76-100% 76-100% coniferous tree 			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphytor ☑ 1 - Not s □ 2 - Sligh □ 3 - Notic	% ⊠ 1-25% yte Coverage (check one): D iff.c % □ 1-25% % □ 1-25% one (check those present): rms/grasses □ 2 - shrubs n Coverage on Substrate (benthestippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm) reen to brown (1.0-5mm)	□ 76-100% □ 76-100%			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphytor ☑ 1 - Not s □ 2 - Sligh □ 3 - Notic □ 4 - Very □	% ⊠ 1-25% yte Coverage (check one): D iff;c % □ 1-25% % □ 1-25% % □ 2 - shrubs n Coverage on Substrate (benthestippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm) reen to brown (1.0-5mm)	 76-100% 76-100% coniferous tree 			
□ 0 3. Macrophy □ 0 4. Riparian Z □ 1 - fer 5. Periphytor □ 1 - Not s □ 2 - Sligh □ 3 - Notic □ 4 - Very □ 5 - Rocks	% ⊠ 1-25% yte Coverage (check one): D iff;c % □ 1-25% % □ 1-25% ione (check those present): ione (check those present): rms/grasses □ 2 - shrubs n Coverage on Substrate (benthestippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm) reen to brown (1.0-5mm) f green to dark brown (5.0-20mm)	 76-100% 76-100% coniferous tree 			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphytor ☑ 1 - Not s □ 2 - Sligh □ 3 - Notic □ 4 - Very □	% ⊠ 1-25% yte Coverage (check one): D iff;c % □ 1-25% % □ 1-25% ione (check those present): ione (check those present): rms/grasses □ 2 - shrubs n Coverage on Substrate (benthestippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm) reen to brown (1.0-5mm) f green to dark brown (5.0-20mm)	 76-100% 76-100% coniferous tree 			
□ 0 3. Macrophy □ 0 4. Riparian Z □ 1 - fer 5. Periphytor □ 1 - Not s □ 2 - Sligh □ 3 - Notic □ 4 - Very □ 5 - Rocks	% ⊠ 1-25% yte Coverage (check one): Diffic % □ 1-25% % □ 1-25% one (check those present): 2 - shrubs rns/grasses □ 2 - shrubs n Coverage on Substrate (benther slippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm) reen to brown (1.0-5mm) f green to dark brown (5.0-20mm) , brown to black mass may have long strand	 76-100% 76-100% coniferous tree 			
□ 0 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphytor ☑ 1 - Not s □ 2 - Sligh □ 3 - Notic □ 4 - Very □ 5 - Rocks WATER CHEMIS	% ⊠ 1-25% yte Coverage (check one): D iff;c % □ 1-25% % □ 1-25% ©one (check those present): 2 - shrubs rns/grasses □ 2 - shrubs n Coverage on Substrate (benthestippery, no colour (<0.5mm)	□ 26-50% □ 51-75% ult to determine with turbidity □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 - ic algae, not moss) (check one): een (0.5-1mm) reen to brown (1.0-5mm) f green to dark brown (5.0-20mm) , brown to black mass may have long strand	☐ 76-100% ☐ 76-100% coniferous tree			

ŝ.

1

•

Revised June 2019

Page 2 of 3

Sampling	Date	(D/M/Y)	
----------	------	---------	--

Site Code:

YPS-GIZ

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

28-July-20

1. 100 Pebble Count & Substrate Embeddedness

· Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
 Embeddedness categories (F): Completely embedded = 1.3/4 embedded 1/2 embedded

	nbeddedness ca Diameter (cm)	E		Diameter (cm)	E	-	Diameter (cm)	E		Diameter (cm)	E
1	1.9		26	11.3		51	3.2	_	76	16	
2	1-7		27	1.7		52	2.8		77	2-4	
3	67		28	62		53	58		78	3.8	
4	1.9		29	2.2		54	3.1		79	2.9	
5	1.4		30	2.6	3/4	55	1.4		80	2.8	0
6	3.3		31	2.4		56	2.7		81	2 4	
7	2.4		32	2.9		57	22		82	2.1	
8	8.1		33	1.9		58	26		83	32	
9	2.1		34	30		59	25		84	4.1	1
10	3.7	Yu	35	5.1		60	22	1/4	85	3.1	
11	1.6		36	51		61	2.6		86	5-4	
12	2.4		37	4.6		62	3.0		87	3-9	
13	21		38	4.7		63	4.4		88	2.6	
14	28		39	4.4		64	1.8		89	24	
15	2 2,		40	3.6	14	65	1.7		90	2.7	1/4
16	1.0		41	2.7		66	2.1		91	2.0	
17	1.4		42	4.9		67	2.4		92	2.3	
18	2.6		43	6.7		68	1.5		93	2.6	
19	4.4		44	5.9		69	2-1		94	1.7	
20	2.6	0	45	4.8		70	1.8	1/2	95	1.4	-
21	2.4		46	3.4		71	2.1	2	96	56	
22	2-1		47	3.6		72	6.6		97	3.8	
23	5.2		48	2.0		73	28		98	2.1	
24	3-1		49	1.9		74	2.1		99	2.6	
25	1.3		50	1.6	0	75	21		100	3.7	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

- \Box 0 organic cover (>50% cover)
- 🖾 1 (silt) <0.1 cm
- ☑ 2 (sand) 0.1 0.2 cm
- □ 3 (gravel) 0.2 1.6 cm □ 4 - (pebble) 1.6 – 3.2 cm

□ 5 - (pebble) 3.2 – 6.4 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 7 (cobble) 12.8 25.6 cm
 - □ 8 (boulder) > 25.6 cm
 - 9 Bedrock

	O/YTG 2019)		Page 3	B of 3
Sampling Date (D/M/Y)	8-July-20		Site Code:	YP5-613
3. Sediment Samples Collec	cted: 🖂 (300-500g))	2	
Depth of easily penetrable sedim	ients (cm):	De	oth of sediment sample	ed (cm):
Sediment texture	and colour:		fine sand/silt to	
Check those present: 🛛 🖓 we			macrophytes D biof	
	dour 🗆 oily		invertebrates	ppj.o.
Comments:	IT of fine and	a allalla	oit site, composit	A 4200 A 4
	1	□ rapid	Straight run	pool/back eddy
500 µm mesh Kicknet**	Riffl	le 1	□ straight run Riffle 2	pool/back eddy Riffle 3
	Riffl A.MacPha	le 1		1
500 µm mesh Kicknet** Operator: Time of Day:	Riffl A. MacPha 13:20	le 1		1
500 µm mesh Kicknet** Operator:	Riffl A.MacPha	le 1		1
500 µm mesh Kicknet** Operator: Time of Day: Sampling time (i.e. 3 min)	A.MacPha 13:20 3 min 1	ie 1		1
500 µm mesh Kicknet** Operator: Time of Day: Sampling time (i.e. 3 min) No. of sample jars	Riffl A. MacPha 13:20	ie 1		1
500 µm mesh Kicknet** Operator: Time of Day: Sampling time (i.e. 3 min) No. of sample jars Typical depth (in kick area) CHANNEL DATA	Riffl A. MacPha 13:20 3 min 1 ~ 200	ie 1	Riffle 2	Riffle 3
500 µm mesh Kicknet** Operator: Time of Day: Sampling time (i.e. 3 min) No. of sample jars Typical depth (in kick area) CHANNEL DATA Slope/Gradient (%)	A.MacPha 13:20 3 min 1	Flow Sta	Riffle 2	1

	riodiod odjodini vildar (m)	
Bankfull Wetted Depth (distance between water lev	vel and top of bank) (cm)	RB-28 LBIU
Location in site (note where in sample site taken i	in the states	hin Kick Green

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	1,3	2.6	3,9	< 2	6.5	
Depth (cm)	Bis	11	125	21	16	0.15
Velocity (m/s)	0.3	0.4	0.4	0.6	6.4	0.42
Discharge (m ³ /s)	0.055	0:05-7	0.068	0.164	0.083	Total

0,9264 ~3/5

Yukon CABIN Field Sheet (DFO/YTG 2019) Sampling Date (D/M/Y) 28-531-20			Page 1 of 3			
				Site Code: YPS-612		
PRIMARY SITE	DATA			20		
CABIN Study	name: Vps	612		Basin:	Klondike	River
River/Stream		her Creek				
Site Location De						
1	ov yon Dis	of ald bri	dge, ingli	road + 6	rd location	lead
10 <	cite.		_			
GPS Datum:	WGS84 or NAC) 83	GPS Alti	tude (masl or	fasi)	375
*Latitude:	64° 00' 49.3'	')	Str	eam Order (1:5		4
*Longitude:	139° 05' 32.9 (*use decimal degr	(200		Ecore	gion: Truse	n Condillienz
Photos taken:	(use decimal degr	ces) C	709993244 709993			
Ø	Upstream Do		Across	Dry Substrate	Aquatic substrate	Aerial substrate
ricid sheet	opstream De	wiisucain (Substrate	Subsidie	NIA on 9
 Habitat Ty □ hydrau Canopy C 	overage (check o	w State Reach	(check those pres □ rapids	ent): 🕅 straight	trun 🗆 p	ool/back eddy
 Habitat Type hydrau Canopy C 0⁴ Macrophy 0⁴ 	pes Present/Flo ulic jump 2 Coverage (check o % 2 vte Coverage (ch % 2	ow State Reach I riffle one): 1-25% neck one): Difficu 1-25%		⊠ straight □ 51-7	5% [vrb;d:h-j	ool/back eddy □ 76-100%
 Habitat Type hydrau Canopy C 0^o Macrophy 0^o 4. Riparian Zo 	pes Present/Flo ulic jump coverage (check o % M vte Coverage (ch % Cone (check those p	ow State Reach I riffle 1-25% neck one): Difficu 1-25% 1-25% resent):	□ rapids □ 26-50% .\\	⊠ straight □ 51-7: s due to → □ 51-75	5% [vrb;ð:↓ ;% □	☐ 76-100%
 Habitat Type hydrau Canopy C 0° Macrophy 0° 4. Riparian Z 1 - fer 	pes Present/Flo ulic jump 2 Coverage (check o % 2 vte Coverage (ch % 2	ow State Reach I riffle 1-25% neck one): Difficu 1-25% resent): □ 2 - shrubs	□ rapids □ 26-50% C(1 + 70) C(SSSCS) □ 26-50% ⊠ 3 - 0	⊠ straight □ 51-7: 5 Jue to → □ 51-75 leciduous trees	5% [vrb;ð:↓ ;% □	☐ 76-100%
 Habitat Type hydrau Canopy C Canopy C 0¹⁰ Macrophy 0¹⁰ Macrophy 0¹⁰ Riparian Zo 1 - fer Periphyton 1 - Not s 2 - Slight 3 - Notice 4 - Very 5 - Rocks 	pes Present/Flo llic jump Coverage (check o % ⊠ rte Coverage (ch % □ one (check those p rns/grasses a Coverage on S slippery, no colour tly slippery, yellow seably slippery, pat slippery, numerou s mostly obscured,	w State Reach I riffle 1-25% heck one): Difficult 1-25% resent): I - 25% resent): I - 25% state Reach 1-25% resent): I - 25% state Reach 1-25% resent): I - 2.5 shrubs Substrate (benthi (<0.5mm)	□ rapids □ 26-50% □ 26-50% □ 26-50% □ 3 - c c algae, not moss) $\leq r \sim 1^{10}$ een (0.5-1mm) een to brown (1. green to dark br	 ☑ straight □ 51-7: 5 Jue to 10 1 51-75 leciduous trees (check one): a ∧ • vot of 0-5mm) own (5.0-20mm) 	5% [urbidity ;% 4-cor sediment cacks	☐ 76-100% 76-100% hiferous trees
 Habitat Type hydrau Canopy C Canopy C 0¹ Macrophy 0² Macrophy 0⁴ Riparian Z 1 - fer Periphyton 1 - Not s 2 - Slight 3 - Notice 4 - Very 5 - Rocks 	pes Present/Flo llic jump Coverage (check o % ⊠ rte Coverage (ch % □ one (check those p rns/grasses a Coverage on S slippery, no colour tly slippery, yellow seably slippery, pat slippery, numerou s mostly obscured,	w State Reach I riffle 1-25% heck one): Difficult 1-25% resent): I - 25% resent): I - 25% state Reach 1-25% resent): I - 25% state Reach 1-25% resent): I - 2.5 shrubs Substrate (benthi (<0.5mm)	□ rapids □ 26-50% □ 26-50% □ 26-50% □ 3 - c c algae, not moss) $\leq r \sim 1^{10}$ een (0.5-1mm) een to brown (1. green to dark br	 ☑ straight □ 51-7: 5 Jue to 10 1 51-75 leciduous trees (check one): a ∧ • vot of 0-5mm) own (5.0-20mm) 	5% [urbidity ;% 4-cor sediment cacks	☐ 76-100% 76-100% hiferous trees
 Habitat Type hydrau Canopy C Canopy C 0¹ Macrophy 0² Macrophy 0⁴ Riparian Z 1 - fer Periphyton 1 - Not s 2 - Slight 3 - Notice 4 - Very 5 - Rocks 	pes Present/Flo ulic jump coverage (check o % Ø vte Coverage (check o % Ø vte Coverage (check o % Ø one (check those p rns/grasses n Coverage on S slippery, no colour thy slippery, yellow reably slippery, pat slippery, numerou s mostly obscured, STRY 13_0 Water T	w State Reach I riffle 1-25% neck one): Diffic 1-25% resent): I 2 - shrubs Substrate (benthing (<0.5mm)	□ rapids □ 26-50% C_1 + c_1 Constructions □ 26-50% □ 3 - c_2 c algae, not moss) C_1 cen (0.5-1mm) een to brown (1. green to dark br brown to black r	S straight □ 51-7: 5 Jue to for □ 51-75 leciduous trees (check one): arrougt of 0-5mm) own (5.0-20mm mass may have nd. 558	5% [$vrb; \partial i \int_{3\%}$] $4 - cor cock \leq 1)long strands (DO (mg)$	 76-100% 76-100% niferous trees 20mm) 8.67
1. Habitat Ty	pes Present/Flo ulic jump coverage (check o % Image: Check o % Imag	w State Reach I riffle 1-25% neck one): Difficult 1-25% nesent): 2 - shrubs Substrate (benthing) -brown to light greaters tches of thicker grass s large clumps of extensive green, (C) 9.6 Jc.6	□ rapids □ 26-50% (1 + 7 + 0) = 0.557 s □ 26-50% ⊠ 3 - 0 c algae, not moss) $\int mathing reen (0.5-1mm)$ een to brown (1. green to dark br brown to black r	☑ straight □ 51-7: \$ Jue □ 51-75 Ieciduous trees (check one): a ^ovot af 0-5mm) own (5.0-20mm) mass may have	5% [urb:d: ;% 4 - cor sed: (acks) long strands (76-100% 76-100% niferous trees 20mm) 8.67

()

Sampling Date (D/M/Y)

Site Code:

de: Yps-6v2

Page 2 of 3

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

28-Jula-20

1. 100 Pebble Count & Substrate Embeddedness

• Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, un

	mbeddedness c Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E
1	2.5		26	54		51	11.2		76	9.6	
2	7.4		27	9.5	1	52	9.1		77	8.1	
3	60		28	9.6		53	72		78	87	
4	2.5		29	66		54	7.5		79	6.3	1
5	19		30	5.1	0	55	6.5		80	13.6	1/2
6	11		31	6.3		56	7.9		81	7.2	
7	3.2		32	6.8		57	11.3		82	121	
8	31		33	12.6	1	58	6.4		83	8.4	
9	68		34	8.6		59	6.6		84	11-2	+
10	51	1/2	35	5.8	Γ P	60	16.4	1/2	85	6.3	
17	10 0		36	10.5		61	9.8		86	10.5	
12	11-2		37	14.6	0	62	11.7	1	87	50	h
13	10.7		38	6.7		63	11.2	1.1	88	40	
14	5%		39	6.6		64	5.6	1	89	60	
15	3.4		40	3.5	14	65	9.0		90	12.3	14
16	1.9		41	11.6		66	7.6		91	11.4	1
17	2.3		42	6.2		67	7.6		92	52	
18	3.2		43	71		68	7.9		93	48	
19	91		44	5.3	1	69	4.9		94	8.2	
20	76	1/4	45	12.4		70	5.9	14	95	4.7	
21	6.9	1	46	9.6		71	7.8		96	8.9	
22	88		47	10.1	1.	72	10.3		97	5.9	
23	10.5		48	7.6		73	9.6	1	98	67	
24	59		49	10.4	1-2-2-	74	5.3		99	9.6	
25	8.2	1	50	7.3	0	75	8.9	1	100	10.9	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

□ 0 – organic cover (>50% cover)

🕅 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 - 12.8 cm □ 7 - (cobble) 12.8 - 25.6 cm

- ☑ 1 (silt) <0.1 cm
- □ 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm
- □ 5 (pebble) 3.2 6.4 cm
- 9 Bedrock

□ 8 - (boulder) > 25.6 cm

0-33. Riffle 1 34-66 Riffle2 107-160 REALE 3

Revised June 2019

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

Yukon CABIN Field Sheet	(DFO/YTG 2019	9)	Page	3 of 3		
Sampling Date (D/M/Y)	28-124-20		Site Code:	YPS-612		
			0			
3. Sediment Samples Co	ollected: 🛛 (30	0-500g)				
Depth of easily penetrable se	ediments (cm):		epth of sediment samp	led (cm):	5	
Sediment tex	ture and colour:	mix of brow	in sand (m.c) and	fine sound.	Isilt dark !	mush
Check those present:	woody debris		I macrophytes I bio			(ie comp
[🗆 odour		☐ invertebrates			Ser
Comments:	Taken Ulst	Ols of Kick O	uras			1
BIOLOGICAL: BENTHI	C INVERTEBR	RATE SAMPLE	S			
1 Kieknet Comple (least	Rep 1, 2,					
1. Kicknet Sample (locat	ion): 🛛 rifi		□ straight run		ack eddy	
500 µm mesh Kicknet** Operator:		Riffle 1	Riffle 2		fle 3	
Time of Day:		Maghail -		>	-	
Sampling time (i.e. 3 min)		2 00	11:10 3 min	11:2 3 m		
No. of sample jars		5 min	- 2			
Typical depth (in kick area)		~ 30cm	~25cm	1:30	сц	
CHANNEL DATA			1.1		-	
Location in site (note whe		and the second second		4		310
Velocity/Depth	between riff		and 2 (middle)	5	AVG	
Distance from shore (m)	(2.9)	(4/2)	$(5^{3}3)$ $(.4)$ 3.6 4.8	(75) (6.0		-
Depth (cm)	23.5	27.5	3.6 <u>4.8</u> 24 12	11	0.20	
Velocity (m/s)	0.4	0:6	0.6 0.4	0.3	0.46	
1.70	28.8 m : 14	Hed width " T	+1 intersted = 1	2		
I ie from left bank	the hidth					
ie tran left bank	helped him in		9		Total	
Discharge	0.15	0.202	0.058	6 040	0 5861	8m7/
J						
	· · ·					

 ${\bf e}_{\rm c}$

Photos taken: 전 도 도 Field sheet Upstream Downstream	1 1, 1
CABIN Study name: Yes-syn River/Stream name: Yes-syn Site Location Description: Hunker Creck AF YPS-Syn approx 80m U/S of Small bridge approx 80m U/S of GPS Datum: WGS84 or NHD83 *Latitude: G4 ar 44.8 ¹¹ *Longitude: I39° 10° 40.7 ¹¹ (*use decimal degrees) UFM a Photos taken: IS Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width) Identified to the state of the state o	Image: Sampled near flagging tape. Sof Site GPS Altitude (masl or fasl)
River/Stream name: Hunker Creck Site Location Description: AT YPS-SHI, approx 80m U/S of USMALL bridge approx 80m U/S of USMALL	Image: Sampled near flagging tape. Sof Site GPS Altitude (masl or fasl)
River/Stream name: Hunker Creck Site Location Description: AT YPS-SHI, approx 80m U/S of USmall bridge approx 5m U/S GPS Datum: WGS84 or NAD83 *Latitude: USS84 or NAD83 GLP 012 44.8'' 1390 10 46.7'' (*use decimal degrees) UTM o Photos taken: EI EI EI Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	Image: Solution Image: Solution GPS Altitude (masl or fasl) 364
AT YPS-SILL approx for U/S of ISmall bridge approx for U/S of GPS Datum: *Latitude: *Latitude: *Longitude: *Longitude: Belief sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	GPS Altitude (masl or fasl) 364
GPS Datum: WGS84 or NM083 *Latitude: 64° 01° 44.8° *Longitude: 139° 10° 40.7° (*use decimal degrees) 0TM 0 Photos taken: Image: Compare the second degrees Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	GPS Altitude (masl or fasl) 364
GPS Datum: WGS84 or NM083 *Latitude: & G4° 01° 44.8° *Longitude: 139° 10° 46.7° *Longitude: (*use decimal degrees) *Thotos taken: © Field sheet Upstream Construction Downstream REACH DATA (Represent 6 x bankfull width)	GPS Altitude (masl or fasl) 369
*Latitude: *Longitude: *Longitude: *Longitude: *Longitude: *Longitude: *Use decimal degrees) (*use decimal degrees) *Um o Photos taken: E Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	
*Longitude: 139° 16' 46.7') (*use decimal degrees) TM 6 Photos taken: E Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	Stream Order (1:50 000)
(*use decimal degrees) Photos taken: 区 区 図 Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	
Photos taken:	Ecoregion: Jaiga Cordillary
E E Field sheet Upstream Downstream REACH DATA (Represent 6 x bankfull width)	7101533 , unable to collect due to
REACH DATA (Represent 6 x bankfull width)	Across Dry Aguatic Agrial
	channel substrate substrate substrate
 2. Canopy Coverage (check one): □ 0%	green (0.5-1mm) green to brown (1.0-5mm)
5 - Rocks mostly obscured, extensive gree	en, brown to black mass may have long strands (> 20mm)
NATER CHEMISTRY	
Air Temp (C) Io.s Water T (C) Io.6 pH 7.58 Turbidity 391	Cond. 612 DO (mg/L) 8.49 sp Cond. (us\cm) 766 DO % 76.6
	Total metals \square Nutrients \square Other
"IL Nalgene lo	121 Other
Revised June 2019	(250 ml) (250 ml) (250 ml)

 \bigcirc

Page 2 of 3

Sampling Date (D/M/Y)	25-
-----------------------	-----

Site Code:

XR. 504

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

20

	Diameter (cm)	E		Diameter (cm)	E		edded, 1/2 emb Diameter (cm)	E		Diameter (cm)	E
1	3.7	1	26	4.5		51	2.4		76	4.1	
2	5.3	-	27	2.2		52	2.4		77	4.8	
3	5.4		28	3.6		53	1.3		78	5.3	
4	3.0		29	3.9		54	3.4		79	4.4	
5	6.1		30	3.3	1/2	55	25		80	3.6	3/4
6	1.9		31	6.9		56	2 3		81	1.1	
7	2.9		32	3.6		57	2.5		82	24	
8	4.6		33	29		. 58	2.2		83	39	
9	7.1		34	3.0		59	3.3		84	3.4	
10	1.4	6	35	2 (60	4.4	14	85	4.7	
11	5.2	1	36	2.7		61	3.6	1	86	2.9	
12	1.8		37	1.4	-	62	1.6		87	4.9	14.2
13	3.6		38	1.3		63	2.1		88	3-2	
14	0.8		39	2.1		64	6.9		89	5.4	
15	1.6		40	4.1	3/4	65	4.3		90	5.5	1/4
16	1.6		41	5.2		66	6.6		91	34	
17	87		42	5.6		67	4.3		92	4.1	1
18	20		43	4.7		68	1.8		93	2.6	
19	6.8		44	53		69	4.3		94	4:7	
20	3.6	14	45	5.7		70	2.7	3/4	95	2.2	
21	3.9		46	3.5		71	3.6		96	5.2	
22	2.9		47	2,6		72	5.0		97	1.1	
23	5.5		48	5.7		73	6.4		98	3.8	
24	4.9		49	4.1		74	2.1		99	5.6	
25	6.0		50	3.8	1/2	75	2.2	_	100	2.6	1

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

☑ 1 - (silt) <0.1 cm

- ☑ 2 (sand) 0.1 0.2 cm
- ☑
 3 (gravel) 0.2 1.6 cm

 ☑
 4 (pebble) 1.6 3.2 cm

□ 5 - (pebble) 3.2 – 6.4 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

			0.00	Page 3		
Sampling Date (D/M/Y) 28-Jul-20		>	Sit	e Code:	YPS-544	
3. Sediment Samples Co	llected: 🖬	(300-500g)				
Depth of easily penetrable se	diments (cm)		Depth of sed	iment sample	od (om):	
Sediment text		51			su (cm). 5	100~1
	voody debri	L Jarn Dri	er 🖾 macroph		filme 🗖 i	periphyton
] odour	io ily shee	•			Denpriyton
Comments:			int in water		(allect-)	
				L COMP IE	aNis	Cor
BIOLOGICAL: BENTHIC	; INVERTE	BRATE SAN	IPLES			
Kicknet Sample (location	on): 🛛	riffle □ r	apid 🖸 stra	ight run	🗆 pool/ba	ick eddy
500 µm mesh Kicknet**		Riffle 1		Riffle 2		ile 3
Operator:	1	A.MacPhail		/	-	2
Time of Day:		8 15		/		
Sampling time (i.e. 3 min)		3 min		/		
No. of sample jars		2	/		1	
Typical depth (in kick area)		240cm	/		. /	
CHANNEL DATA . Channel Slope/Gradient (%) 2		F	Flow Stage: □ L	ow/ 🖄 Mode	erate/ 🗆 Hig	h/ □ Flood
Bankfull Width (m)	7	V	Vetted Stream \	Vidth (m)	6.1	
Bankfull Wetted Depth (dis	tance betwe	en water level	and top of ban	k) (cm)	350 (2)	300 ^(R) (325
Location in site (note whe	ere in sample	ə site taken i.e	. d/s of kick are	a)	Ne Kick Are	
. Channel Transect	8				•	
Velocity/Depth	1	2	3	4	5	AVG
velocity/Deptil		-				
	H	Z	3	Ч	5	
Distance from shore (m)	1	Z		434	5	0.32
Distance from shore (m) Depth (cm) Velocity (m/s) (Average)	0.2	Z	3		-	0.32
Distance from shore (m) Depth (cm) Velocity (m/s) (Average)		Z 31	3	34	23	
Distance from shore (m) Depth (cm) Velocity (m/s) (Average)	0.2	Z 31	3	34	23	
Distance from shore (m) Depth (cm) Velocity (m/s) (Aurrase) From left bank,	0.2 Iminute	Z 31	3	34	23	
Distance from shore (m) Depth (cm) Velocity (m/s) (Aurrase) From left bank,	D-2 Iminute	Z 31	3	34	23	
Distance from shore (m) Depth (cm) Velocity (m/s) (Aurrase) From left bank,	0.2 Iminute	2 31 0.4	3	34	23	
Distance from shore (m) Depth (cm) Velocity (m/s) (Aurrage) From left bank,	D-2 Iminute Instrument reads to	2 31 0.4	3	34	23	

	Yukon CABIN Field Sheet (DFO/YTG 2019)	Page	1 of 3
	Sampling Date (D/M/Y) 29-July-20	Site Code:	Yp5-079
\sim	PRIMARY SITE DATA		
	CABIN Study name: Yould - AHM River/Stream name: Hunker Greek	Basin:	Klandike River
	Site Location Description:	is heavily disturbed. Walk	ed ~ 20m from
	rood down steep bank.		
	GPS Datum: WGS84 or NAD83	GPS Altitude (masl or	fasl) 470
	*Latitude: 63°57'42.1'' *Longitude: 138° 57' 81.9''	Stream Order (1:50	0,000): 3
	(*use decimal degrees)		Iniga Cordinana
	Photos taken:		J'Aquatic D'Aerial From substrate substrate ροι
	REACH DATA (Represent 6 x bankfull width)		
	1. Habitat Types Present/Flow State Rea	ach (check these present):	
65	□ hydraulic jump ☑ riffle	□ rapids	run 🛛 pool/back eddy
	2. Canopy Coverage (check one):		
	⊠ 0% □ 1-25%	□ 26-50% □ 51-75	i% □ 76-100%
	3. Macrophyte Coverage (check one): Di	ficult to access	
	☑ 0% □ 1-25%	□ 26-50% □ 51-75	% 🛛 76-100%
	4. Riparian Zone (check those present): No r	riparian weapon right bank	lm(i = 0/s)
2	🖄 1 - ferns/grasses 🛛 🖾 2 - shr	3	\square 4 - coniferous trees
	5. Periphyton Coverage on Substrate (be	enthic algae, not moss) (check one):	
	 1 – Not slippery, no colour (<0.5mm) 2 – Slightly slippery, yellow-brown to ligh 3 – Noticeably slippery, patches of thicket 4 – Very slippery, numerous large clump 5 - Rocks mostly obscured, extensive greet 	er green to brown (1.0-5mm) s of green to dark brown (5.0-20mm)	
	WATER CHEMISTRY		
	Air Temp (C) 14.0 Water T (C) 9.50	Cond. 377. Q	DO <u>(</u> mg/L) γ.۹5
0.9	pH 7.97 Turbidity 49.5	sp Cond. (us/cm) 498.3	DO % 76.6
0	Water SamplesImage: Constraint of the second se	I Total metals I Nutrients (250 ml) (250 ml)	Ø Other
			nalger nh Tilm

Revised	June 2019

Page 2 of 3

Sampling Date (D/M/Y)

29-502-20

Site Code:

YPS-079

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

100 Pebble Count & Substrate Embeddedness 1.

. Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

 Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0 Diameter Diameter Diameter Diameter Ε Ε Ε E (cm) (cm) (cm) (cm) 4.2 26 3.9 51 6.1 76 4.1 1 3.7 4.4 2.5 2 27 52 2.6 77 3 10.9 78 70 3.8 28 47 53 4 29 54 5.9 79 4.2 0.0 3.0 0 2.9 5 3.9 30 3.5 0 55 80 4.9 6 2.6 81 3.9 31 56 6.1 5.7 4.9 7 32 57 82 6.4 5.1 4.9 8 9.1 33 58 83 73 3.4 47 9 43 34 59 84 3.6 5.0 4.7 10 14 35 60 14 85 6.1 3.6 25 4.4 11 43 36 61 86 3.0 7-1 5.3 4.5 12 3.4 37 62 87 4.3 6.4 13 3.6 38 4.8 63 88 2.6 7.8 7.2 14 39 64 5.4 89 3.4 4.2 3/4 5.2 15 3.9 40 14 65 7.6 90 8.6 3.3 16 2.6 41 66 3.1 91 4.4 5.5 7.1 17 42 67 3.8 92 5.7 4.2 18 43 68 3.2 93 3.6 3.1 19 3.7 44 45 69 4.9 94 3.1 70 20 6.1 45 9.1 95 0 5.3 0 2.7 71 21 4.9 46 4.9 96 4.5 5.5 22 3.3 72 97 47 3 4.7 7.4 23 29 48 3.5 73 3.2 98 3.4 24 7.6 .5 74 49 4.2 99 2 3.2 4.9 100 25 50 74 75 3.7 2.7 6 5.1

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

- □ 1 (silt) <0.1 cm
- ĎX 2 (sand) 0.1 0.2 cm
- □ 3 (gravel) 0.2 1.6 cm □ 4 - (pebble) 1.6 – 3.2 cm

□ 5 - (pebble) 3.2 – 6.4 cm

- □ 6 (cobble) 6.4 12.8 cm
- □ 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

Yukon CABIN Field Shee	ABIN Field Sheet (DFO/YTG 2019)			Page 3 of 3				
Sampling Date (D/M/Y	29-001-20	_	Site Co	de: YPS-07	29			
3. Sediment Samples	Collected: 🛛 (30	0- <u>5</u> 00g)						
Depth of easily penetrable	sediments (cm):	13	Depth of sediment	sampled (cm):	5-10			
Sediment	texture and colour:	grey five 50	nd w/ one a	lojust of br	own smid () g	melly		
Check those present:	□ woody debris	Leaf litter	□ macrophytes	□ biofilms	periphyton	(
	🗆 odour	oily sheen	□ invertebrates					
Comments:	No alditio	inal comments						

BIOLOGICAL: BENTHIC INVERTEBRATE SAMPLES

. Kicknet Sample (location):	🖾 riffle 🛛 rapid	🗆 straight run	□ pool/back eddy
500 µm mesh Kicknet**	Riffle 1	Riffle 2	Riffle 3
Operator:	A. MacPhail		1
Time of Day:	1:35		
Sampling time (i.e. 3 min)	3 min		
No. of sample jars	2	- /	
Typical depth (in kick area)	~10-15		1

CHANNEL DATA

1. Channel

Slope/Gradient (%)	3	Flow Stage: Low/ Moderate/ High/ Flood						
Bankfull Width (m)	13	Wetted Stream Width (m)	4.2					
Bankfull Wetted Dept	Bankfull Wetted Depth (distance between water level and top of bank) (cm)							
Location in site (not	e where in sample site taken	i.e. d/s of kick area) 🛛 🕔	15 of Rick area					

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	0.6	1.20	1.80	2.40	3.00	
Depth (cm)	10	13	13	11	6.5	0.11
Velocity (m/s)	0.4	6.7	0.6	0.4	0+2	0.96

Notes: Left bank has been heavily diturbed, difficult to determine bankfull width with current conditions.

Had a visit from local miner who inco not pleased with our presence.

No canopy cover due to destruction of riparian zone from placer.

Discharge	١	2	3	4 -	5	Tobel
Discravge	0 024	0.055	0.047	0.02,6	6.008	0.1602 Mals

Sampling Date (D/M/Y) 2951-20	Site Code: Yps	-080
PRIMARY SITE	DATA		
CABIN Study			ndike River
River/Stream Site Location De Drove Jown ro	escription:	lers, approx your U's of coord.	
ciffle section			
GPS Datum:	WGS84 or WAD 83	GPS Altitude (masl or fasl)	474
*Latitude:	63. 58 06 0	Stream Order (1:50,000):	4
*Longitude:	138:58'56.7	Ecoregion:	Taiga Cordille.
1.00	(*use decimal degrees)		
Photos taken:		Across D/Dry DAqua hannel substrate substra	
	Represent 6 x bankfull width)		
🛛 hydrau		(check those present):	D pool/back edd
2. Canopy C	overage (check one):	☑ 26-50% □ 51-75%	□ 76-100%
	te Coverage (check one): Diffic		
3. Macrophy	/te Coverage (check one): Di€fic	out to assess	
3. Macrophy ⊠ 09	-	out to assess	□ 76-100%
3. Macrophy 図 09 4. Riparian Ze	% 1-25% One (check those present):	=014 to asses S □ 26-50% □ 51-75%	□ 76-100%
3. Macrophy ⊠ 09 4. Riparian Zo ⊠ 1 - fer	% 🛛 1-25%	 So 14 to asses S □ 26-50% □ 51-75% □ 3 - deciduous trees □ 4 	□ 76-100%
 3. Macrophy ☑ 09 4. Riparian Zo ☑ 1 - fer 5. Periphyton ☑ 1 - Not s ☑ 2 - Slight ☑ 3 - Notic ☑ 4 - Very 	% □ 1-25% one (check those present): ms/grasses ☑ 2 - shrubs n Coverage on Substrate (benthick lippery, no colour (<0.5mm) tly slippery, yellow-brown to light gre leably slippery, patches of thicker gre slippery, numerous large clumps of	 asses S 26-50% □ 51-75% ⊠ 3 - deciduous trees □ - c algae, not moss) (check one): een (0.5-1mm) een to brown (1.0-5mm) green to dark brown (5.0-20mm) 	 76-100% 4 - coniferous trees
 3. Macrophy ☑ 09 4. Riparian Zo ☑ 1 - fer 5. Periphyton ☑ 1 - Not s ☑ 2 - Slight ☑ 3 - Notic ☑ 4 - Very ☑ 5 - Rocks 	% □ 1-25% one (check those present): ms/grasses ☑ 2 - shrubs a Coverage on Substrate (benthic slippery, no colour (<0.5mm) tly slippery, yellow-brown to light gre eably slippery, patches of thicker gre slippery, numerous large clumps of s mostly obscured, extensive green,	 Iso \+ +s² asses S Iso \+ +s² asses S Iso 26-50% Iso 51-75% Iso 3 - deciduous trees Iso 4 - deciduous tree	☐ 76-100% 4 - coniferous trees
 3. Macrophy ☑ 09 4. Riparian Zo ☑ 1 - fer 5. Periphyton ☑ 1 - Not s ☑ 2 - Slight ☑ 3 - Notic ☑ 4 - Very ☑ 5 - Rocks 	% □ 1-25% one (check those present): ms/grasses ☑ 2 - shrubs a Coverage on Substrate (benthic slippery, no colour (<0.5mm) tly slippery, yellow-brown to light gre eably slippery, patches of thicker gre slippery, numerous large clumps of s mostly obscured, extensive green,	 asses S 26-50% □ 51-75% ⊠ 3 - deciduous trees □ - c algae, not moss) (check one): een (0.5-1mm) een to brown (1.0-5mm) green to dark brown (5.0-20mm) 	☐ 76-100% 4 - coniferous trees
 3. Macrophy ☑ 0 4. Riparian Z ☑ 1 - fer 5. Periphyton ☑ 1 - Not s ☑ 2 - Slight ☑ 3 - Notic ☑ 4 - Very ☑ 5 - Rocks WATER CHEMIS Air Temp (C)	% □ 1-25% one (check those present): Image: Strate (check those present): ms/grasses Image: Strate (check those present): in Coverage on Substrate (check those present): in Coverage on Substrate (check those present): in Coverage on Substrate (check those present): ilippery, no colour (<0.5mm)	 asses S 26-50% □ 51-75% ⊠ 3 - deciduous trees □ - c algae, not moss) (check one): een (0.5-1mm) een to brown (1.0-5mm) green to dark brown (5.0-20mm) brown to black mass may have long str 	☐ 76-100% 4 - coniferous trees

Revised June 2019

10.00

Sampling Date (D/M/Y)

Page 2 of 3

Site Code:

YP5-080

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

29-5-1-20

1. 100 Pebble Count & Substrate Embeddedness

• Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0
 Diameter _ D

	Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E
1	15.6		26	18.1		51	5.4		76	10.0	
2	7.2		27	15.6		52	5.2		77	00/	
3	99		28	6.2		53	8.3	1	78	4.4	
4	5.5		29	12.8		54	8.9		79	11.7	
5	5.9		30	10.5	0	55	15.9		80	6.0	1/2
6	19		31	4.3	4	56	4.2		81	8.9	
7	13.2		32	8.4		57	4.7		82	3.9	
8	8.6		33	11.1		58	10.4		83	16.5	
9,	3.3		34	5.1		59	8.5		84	6.4	
10	4.3	14	35	9.7		60	10.6	14	85	9.6	
11	10.4		36	18.4		61	10.5	1	86	17.1	
12	6.5		37	14.4	1	62	11.6		87	95	
13	96		38	4.9		63	5.9		88	4.9	
14	6.7		39	11.4		64	7.1		89	5.2	
15	6.6		40	13.7	6	65	5.1		90	4.Z	3/4
16	152		41	2.8		66	6.8		91	2.8	
17	6.3		42	9.2		67	6.7		92	12.6	
18	6.1	1	43	2.1.		68	5.4		93	9.4	
19	1%		44	- 5.6		69	10.4		94	11.2	
20	3.0-	3/4	45	9.1		70	6.2	1/2	95	7.2	-
21	15.6		46	8.6		71	8.4		96	2.0	
22	11.5	1	47	9.6		72	9.3		97	11.3	
23	7.9		48	5.4		73	7.6		98	2.7	
24	4.3		49	14.2		74	9.1	-	99	6.3	
25	19.6		50	15.8	0	75	10.2		100	5.3	1/2

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □__1 (silt) <0.1 cm
- ☑ 2 (sand) 0.1 0.2 cm
- 5 (pebble) 3.2 6.4 cm
- abiuod) 8 L

Revised June 2019

 \Box 4 - (pebble) 1.6 - 3.2 cm

÷.

- \Box 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

<i>(ukon CABIN</i> Field Sheet (DFO/YTG 2019)					Page 3 of 3				
Sampling Date (D/M/Y)					Site Code: Yps-osc				
Sediment Samples	Collected:	🛛 (300-500	0g)						
Depth of easily penetrable	e sediments (cm):	12	Dep	th of s	ediment sample	ed (cm):	2-10	
Sediment	t texture and d	colour:	1-		rorn				
Check those present:	□ woody o		eaf lit		nacrop	hytes 🗆 bio	films 🗆 p	eriphyton	
	□ odour		oily sh	een ⊡i	nverte	brates		. ,	
Comments:	Noa	aditional (Corne	ente, mil	lian al	line codime	mt Jepsychi	(m)	
BIOLOGICAL: BENT			EQA			area			
			LJA	INFLES					
Kicknet Sample (Io		I riffle		rapid	□ st	raight run	□ pool/ba	ck eddy	
500 μm mesh Kicknet	**		iffle 1			Riffle 2	Riff	le 3	
Operator:		A. Aact		1e.	<u> </u>)	
Time of Day:		9:45		· ·			*		
Sampling time (i.e. 3 min)		3 mi	<u>^</u>				1		
No. of sample jars		- 1			-	/			
Typical depth (in kick area	a)	~ 2	LOCM			. P.			
Channel	0			Elow Sto	ao: 🗖	Low/ Mod	oroto/ 🗆 Uist		
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth				Wetted S el and top	Stream of ba		4.2		
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note	ی ک distance be			Wetted S el and top	Stream of ba	n Width (m) ink) (cm)	4.2		
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Channel Transect	ی کے distance be			Wetted S el and top e. d/s of l	Stream of ba	n Width (m) ink) (cm)	4.2		
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth coation in site (note Channel Transect /elocity/Depth	ر الفائم (distance be where in sar	nple site ta	ken i. 2	Wetted S el and top e. d/s of l	Stream o of ba kick ar 3	1 Width (m) Ink) (cm) Tea) D	4.2 87.5 5 of Kick 5	area	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect /elocity/Depth	ی کے distance be	nple site ta 1 ()	ken i. 2 , 20	Wetted S el and top e. d/s of l	Stream o of ba kick ar 3	1 Width (m) Ink) (cm) Tea) Dr 4 2.40	4.2 87.5 5 of Kick	area	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm)	ر (distance be where in sai	nple site ta	ken i. 2	Wetted S el and top e. d/s of l	Stream o of ba kick ar 3 0	1 Width (m) Ink) (cm) Tea) D	4.2 87.5 5 of Kick 5 3.00	area	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm)	ل ال (distance be where in sar ال ال ال ال ال	nple site ta	ken i. 2 , २० ३७. <i>५</i> ०.५	Wetted S el and top e. d/s of l	Stream o of ba kick ar 3 0	Width (m) Ink) (cm) rea) Di 4 2.40 31.0	4.2 87.5 5 of Kick 5 3.00 26	area	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s)	(distance be where in san O. 35 07 actively V	nple site ta 1 C 1 C 1 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	ken i. 2 , <u>२</u> ० ३२. <i>इ</i> ०.५	Wetted S el and top e. d/s of l 1, y 32 0.	Stream o of ba kick ar 3 0 3	Width (m) Ink) (cm) rea) D/ 4 2.40 31.0 0.3	4.2 87.5 5 of Kick 5 3.00 26	area	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Wotes: Can hear of Kicking, area do	(distance be where in sain 0. 35 0. 3 0 0. 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nple site ta 1 C C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C C C C C C C C C C C C C	ken i . 2 , <u>2</u> 0 37.5 0.4 -с.	Wetted S el and top e. d/s of l 1,8 32 0.	Stream o of ba kick an 3 0 0 3	Width (m) mk) (cm) rea) D 4 2.40 31.0 0.3	4.2 87.5 5 of Kick 3.00 26 0.2	ÀVG	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Wotes: Can hear of Kicking. area do Moved Uls of poin	(distance be where in said 0. 35 0. 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nple site ta 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ken i. 2 , 20 37.5 0.4 -c. h.cavi	Wetted S el and top e. d/s of l 1,8 32 0.	Stream o of ba kick an 3 0 0 3 3 2 2 3 3	Width (m) mk) (cm) rea) D 4 2.40 31.0 0.3	4.2 87.5 5 of Kick 3.00 26 0.2	ÀVG	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Wotes: Can hear of Kicking. area do Moved Uls of poin	C. G (distance be where in sain O. B C. B C. B C. B C. B C. B C. B C. B	nple site ta 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ken i. 2 , 20 37.5 0.4 -c. h.cavi	Wetted S el and top e. d/s of l 1,8 32 0.	Stream o of ba kick an 3 0 0 3 3 2 2 3 3	4 2.40 31.0 0.3 1.0 0.3	4.2 87.5 5 of Kick 3.00 26 0.2	ÀVG	
Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth Location in site (note Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Wotes: Can hear of Kicking. area do Moved Uls of poin Compared to (6.6 (distance be where in sai 0. 3ctivety minated bu minated bu t to fire previous loce cam.	nple site ta 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ken i. 2 ,20 37.5 0.4 h.cavi h.cavi	Wetted S el and top e. d/s of l 1,8 32 0.	Stream o of ba kick an 3 0 0 3 3 2 2 3 3	4 2.40 31.0 0.3 1.0 0.3	4.2 87.5 5 of Kick 3.00 26 0.2	ÀVG	

Revised June 2019

2

.

River/Stream name: H=nker Creek ite Location Description: Drove down 503%31mt Road to confluence with thurker 100 m WS of cert road to sampling location GPS Datum: WGS84 or *Latitude: GH*00'31.21 *Longitude: GH*00'31.21 *Longitude: GH*0'4'46.2 ("use decimal degrees) GPS Altitude (m Stream Or "Stream Or *Longitude: GY Across [GF] GY Across [GF] Downstream channel Substrate [GF] Downstream channel Substrate [GF] Canopy Coverage (check one): - 0'st? Canopto App - 7 (or conopto a proper strest): [] hydraulic jump [G] [] 1.25% 26-50% [] 0% 1-25% 26-50% [] 0% 1-25% 26-50% [] 1.125% 26-50% [] [] 1.25% 26-50% [] [] 1.25% 26-50% [] [] 1.25% 26-50% [] <th>Page 1 of 3</th> <th>\$</th>	Page 1 of 3	\$
CABIN Study name: Yutton-AHM Harker Creek River/Stream name: Harker Creek ite Location Description: Prove down 503113 Inc Road to confluence with Hunter 100 m U/S of cetroad to samply location GPS Datum: WGS84 or 'Longitude: G4°00'31.21'' 'Longitude: G4°00'31.21'' 'Longitude: G130°04'46.9 ('use decimal degrees) GPS Altitude (m Stream Or Stream Or 'Longitude: G120°04'46.9 ('use decimal degrees) GPS Altitude (m Stream Or Stream Or 'Longitude: G'Across GYDry Field sheet Upstream Downstream Canopt Coverage (check one): - 0/3c2 (Across one) Canopy Coverage (check one): - 0/3c2 (Across one) 0% 1-25% 26-50% 0% 1-25% 26-50% 0% 1-25% 26-50% 1 National Streams 3 - deciduou 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check one) 1 - 125% 1 Noticeably slippery, not colour (<0.5mm)	Code: Yps-	621
River/Stream name: H=nder Creek ite Location Description: Drove down 503103 Int Read to confluence with Hunker 100 m U/S of cetroad to sampler location GPS Datum: WGS84 or GPS Altitude (m *Latitude: G4° 00'31.2'' Stream Or *Longitude: (39° 04'46.2) GPS Altitude (m ''Longitude: I' G' G' Across G/Dry ''Lengitude: I' G' G' Across G/Dry ''Steam Downstream channel substrate EACH DATA (Represent 6 x bankfull width) 1 Habitat Types Present/Flow State Reach (check those present): I hydraulic jump I' fiffle rapids I' or o 10% I 1-25% 26-50% I' or o I' or o I' or o I' or o 1 hydraulic jump I' 1-25% 26-50% I' or o I' or o I' or o I' or o 1 0% I -25% 26-50% I' or o		
River/Stream name: H=nder Creek ite Location Description: Drove down 503103 Int Read to confluence with Hunker 100 m U/S of cetroad to sampler location GPS Datum: WGS84 or GPS Altitude (m *Latitude: G4° 00'31.2'' Stream Or *Longitude: (39° 04'46.2) GPS Altitude (m ''Longitude: I' G' G' Across G/Dry ''Lengitude: I' G' G' Across G/Dry ''Steam Downstream channel substrate EACH DATA (Represent 6 x bankfull width) 1 Habitat Types Present/Flow State Reach (check those present): I hydraulic jump I' fiffle rapids I' or o 10% I 1-25% 26-50% I' or o I' or o I' or o I' or o 1 hydraulic jump I' 1-25% 26-50% I' or o I' or o I' or o I' or o 1 0% I -25% 26-50% I' or o	Basin:	Indike River
ite Location Description: Prove down 503°13 Tre Read to confluence with Hunker 100 m US of cot road to sampley location GPS Datum: WGS84 or *Latitude: 64° 0 0' 31.21' *Longitude: 13 9° 04' 46.8 ('use decimal degrees) Stream Or otos taken: Ø' Across Ø' Across Ø' Across Field sheet Upstream Downstream channel substrate EACH DATA (Represent 6 x bankfull width) 1. Habitat Types Present/Flow State Reach (check those present): Indyraulic jump Ø riffle 1. hydraulic jump Ø riffle rapids Ø 2. Canopy Coverage (check one): - 0/sc d Canopco App = 7 (orco 0% Ø 1-25% 26-50% Ø 3. Macrophyte Coverage (check one): - 0/sc d Canopco App = 7 (orco Ø Ø -25% Ø Ø 4. Riparian Zone (check those present): Ø 1-25% 26-50% Ø 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check or § 1 - ferns/grasses Ø 3 - deciduou 5. Periphyton Scale of thicker green to brown (1.0-5mm) 3 - Noticeably slippery, numerous large clumps of green to dark brown (5.0 <		
Prove down 503113The Read to confluence with Hunked 100 m US of certinal to sampling location GPS Datum: WGS84 or GPS Odium: GPS Altitude (m GPS Altitude: *Latitude: GP' 00'31.2'' GPS Altitude (m Stream Or ''Longitude: ''Longitude: GP' 0'' 4(6.2 (''use decimal degrees) GPS Altitude (m Stream Or otos taken: G' Across (''use decimal degrees) G/ Ory ('use decimal degrees) otos taken: G' Across (''use decimal degrees) G/ Ory ('use decimal degrees) otos taken: G' Across (''use decimal degrees) G/ Ory ('use decimal degrees) otos taken: G' Across (''use decimal degrees) G/ Ory ('use decimal degrees) otos taken: G' Across (''use decimal degrees) G/ Ory ('use decimal degrees) 1 Habitat Types Present/Flow State Reach (check those present): D O 1 Habitat Types Present/Flow State Reach (check those present): O O O 2 Canopy Coverage (check one): - Usc d Canop co App - 7 (arco (''use decimal degrees) O 3 Macrophyte Coverage (check one): - difficult to custers O 4 Riparian Zone (check those present): O 1 - 25% O 26-50% O		
100 m U/S of cect road to sampley location GPS Datum: WGS84 or *Latitude: GP' 00'31.2'' *Longitude: GP' 00'31.2'' *Longitude: GP' 00'31.2'' ''Longitude: GP' 00'31.2'' ''Use decimal degrees) GP' Across Otos taken: G' Across G' Across D' Dry Field sheet Upstream Downstream channel Substrate EACH DATA (Represent 6 x bankfull width) 1. Habitat Types Present/Flow State Reach (check those present): □ hydraulic jump I' riffle □ 0% I 1-25% □ 1 - hot slippery, no colour (<0.5mm)	· · · 1//-	1
GPS Datum: WGS84 or GPS Altitude (m) *Latitude: G+4°00'31.2" Stream Or *Longitude: 139°0'4'46.2 Stream Or *Longitude: 139°0'4'46.2 Stream Or otos taken: Image: Construction of the state of the sta	, warner	s approx
*Latitude: *Longitude: *Longitude: *Longitude: *Longitude: $39^{\circ} 0^{+} 46.2$ (*use decimal degrees) otos taken: 9 (*use decimal degrees) 1 (*use decimal degrees)		
*Longitude: 13 9° 04' 46.2 (*use decimal degrees) otos taken: Across aubstrate Canopy Coverage (check one): - Δ'Across aubstrate CACH DATA (Represent 6 x bankfull width) 1. Habitat Types Present/Flow State Reach (check those present): hydraulic jump ariffle arapids a Canopy Coverage (check one): - Used Canopeo App - 7 (area 0% a 1-25% acose a pop - 7 (area 1 - 0% acose a pop - 7 (area 0% a 1-25% acose a pop - 7 (area 1 - 0% assess a 2 - shrubs a 3 - deciduou 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check o 1 - Not slippery, no colour (<0.5mm) 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 - Very slippery, numerous large clumps of green to dark brown (5.0 5 - Rocks mostly obscured, extensive green, brown to black mass ma ATER CHEMISTRY Air Temp (C) (ost Water T (C) 7.3 Cond. (4 73.1 sp Cond. (uslcm) (60 ater Samples a TSS a General area total metals acose acos	nasl or fasl)	404
(*use decimal degrees) otos taken: Image: State and the state is the state	rder (1:50,000):	4
otos taken: Image: Construction of the second	Ecoregion:	Taiga Cordillero
Image: Section of the section of t		
Image: Section of the section of t	1	
EACH DATA (Represent 6 x bankfull width) 1. Habitat Types Present/Flow State Reach (check those present): □ hydraulic jump Image: Transition of the state reach (check those present): □ hydraulic jump Image: Transition of the state reach (check those present): □ 0% Image: Transition of the state reach (check those present): □ 0% Image: Transition of the state reach (check those present): □ 0% Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transition of the state reach (check those present): Image: Transet of the state reach (check those present):		
 Habitat Types Present/Flow State Reach (check those present): hydraulic jump riffle rapids Canopy Coverage (check one): - Used Canoper App - 7 (area 0% E 1-25% 26-50% 26-50% Macrophyte Coverage (check one): - difficulty to assess 0% 1 1-25% 26-50% 0% 1 1-25% 26-50% Riparian Zone (check those present): 1 - ferns/grasses 2 - shrubs 3 - deciduou Periphyton Coverage on Substrate (benthic algae, not moss) (check o 1 - Not slippery, no colour (<0.5mm) 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 - Very slippery, numerous large clumps of green to dark brown (5.0 5 - Rocks mostly obscured, extensive green, brown to black mass mathematical product product mass mathematical product mass mathematical product mas	e substr	ate substrate
 5. Periphyton Coverage on Substrate (benthic algae, not moss) (check on 1 - Not slippery, no colour (<0.5mm) 2 - Slightly slippery, yellow-brown to light green (0.5-1mm) 3 - Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 - Very slippery, numerous large clumps of green to dark brown (5.0 5 - Rocks mostly obscured, extensive green, brown to black mass mathematication of the streng of the stre	□ 51-75%] 51-75% - ́	 76-100% 76-100% 4 - coniferous trees
 I – Not slippery, no colour (<0.5mm) 2 – Slightly slippery, yellow-brown to light green (0.5-1mm) 3 – Noticeably slippery, patches of thicker green to brown (1.0-5mm) 4 – Very slippery, numerous large clumps of green to dark brown (5.0 5 - Rocks mostly obscured, extensive green, brown to black mass mathematication of the streng of the stren		
Air Temp (C) 6.5 Water T (C) 7.3 Cond. 4 pH 7.46 Turbidity 73.1 sp Cond. (us\cm) 60 ater Samples ISS IGeneral ITotal metals INutri	0-20mm)	rands (> 20mm)
pH 7.46 Turbidity 73.1 sp Cond. (us\cm) 60 ater Samples ITSS I General I Total metals I Nutri		
ater Samples 🖾 TSS 🖾 General 🖾 Total metals 🖾 Nutri	45.1 04.4	DO (mg/L) 9.54 DO % 79.4
		ner
	I L nalge	r e
	120ml T	

Sampling Date (D/M/Y)

29-July-20

Site Code:

YPS-621

Page 2 of 3

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

· Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

• Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0 Diameter Diameter Diameter Diameter Ε Ε Ε Ε (cm) (cm)(cm) (cm) 1 4.6 26 8.1 51 6.9 76 6.7 10.6 5.9 2 27 52 9.3 77 4.6 8.2 3 28 53 78 2 6 7.9 3.6 4 94 29 6 . 2 54 2.9 79 5.9 5 8.3 55 3.1 80 30 Yy 9.7 0 5.2 4.9 6 31 56 81 1.0 96 5.4 7 3.0 5.9 32 57 82 6.6 6.6 3.7 8 3.0 33 83 4.3 7.9 58 7.2 9 34 59 84 7.3 9.6 4.6 2.0 3.6 10 35 60 85 6.9 5. 14 14 9.2 11 36 2.2 61 4.1 86 2 2 12 5 37 62 87 6.8 5.6 6.6 8.3 13 38 63 88 6 2.9 2 14 1.7 39 64 89 4.6 6.2 15 7.0 40 0 65 90 7.7 7.7 4 0 16 41 4.3 66 7.3 91 6.6 5.6 17 42 67 49 92 9.3 2.6 58 18 12.0 43 8.1 68 4. 93 61 19 4.5 9.4 2 44 69 94 10.9 20 Y2 45 5.3 70 2 .7 95 5.6 6.5 0 71 21 7.4 46 14.8 2.6 96 4.2 22 47 72 5.9 97 4.4 3.6 6.1 23 6.4 48 73 98 3.3 10.7 6.9 24 74 6.3 7.7 49 5.0 99 4.0 8.4 2.7 7.3 0 25 50 75 100 6 6.6

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 1 - (silt) <0.1 cm

□ 2 - (sand) 0.1 – 0.2 cm

☑ 3 - (gravel) 0.2 – 1.6 cm

□ 4 - (pebble) 1.6 – 3.2 cm

- □ 5 (pebble) 3.2 6.4 cm
- □ 6 (cobble) 6.4 12.8 cm □ 7 - (cobble) 12.8 – 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

Yukon CABIN Field Sheet (DFC	D/YTG 2019)	Page 3 of 3				
Sampling Date (D/M/Y)	9-5-4-20	Site Code:	YPS-621			
3. Sediment Samples Collec	ted: 🗹 (300-500g)					
Depth of easily penetrable sedime	ents (cm):	Depth of sediment sample	d (cm):			
· Sediment texture	and colour: brown / gra	" u/ trace black s	elment			
Check those present: D wo	ody debris DX Leaf litter	🗆 macrophytes 🗆 biofi	and the state of t			
	our 🗆 oily sheen	☐ invertebrates				
Comments: D	plicate YPS-DUP co	Illected				

BIOLOGICAL: BENTHIC INVERTEBRATE SAMPLES

I. Kicknet Sample (location):	🖾 riffle 🛛 🛛	∃ rapid	straight run	D pool/back eddy
500 µm mesh Kicknet**	Riffle	1	Riffle 2	Riffle 3
Operator:	A Madka	1	1	7
Time of Day:	8:00			
Sampling time (i.e. 3 min)	3 min			
No. of sample jars	2.			
Typical depth (in kick area)	n 20cm			

CHANNEL DATA

1. Channel

Slope/Gradient (%)	3	Flow Stage: Low/ Mod	lerate/
Bankfull Width (m)	10.1	Wetted Stream Width (m)	80
Bankfull Wetted Depth	(distance between wate	er level and top of bank) (cm)	54

Location in site (note where in sample site taken i.e. d/s of kick area)

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	1.5	3.6	45	6.0	7.5	
Depth (cm)	15	25	24	18	5	0.17
Velocity (m/s)	0.2	0.4	0.4	0.3	0.1	0.28
Discharge (m3/s)	0.045	0.150	0.144	0.081	0 008	Total

0.4278 m3/s

.4275

	Yukon CABIN Field	Sheet (DFO/YTG 2019)	Page 1 of 3	
0	Sampling Date (D	(M/Y) 28-Jul-20	Site Code: Ves-e	թյել
Ϋ́, Ι,	PRIMARY SITE D	ΑΤΑ	<i>i</i> .	
	CABIN Study na			dike River
	River/Stream na	ame: Hunker Creek		est 🛛 Reference
	Site Location Des		200m followed ald Road	and
	then wa	thed up Creek		
		VGS84 or NAD 53	GPS Altitude (masl or fasl)	430
	*Latitude:	63° 58' 56.8''	Stream Order (1:50,000):	4
	*Longitude:	13900101.61	Ecoregion:	Taiga Cordillera
5.00		use decimal degrees)	07 V 0597035 .7096869	
	Photos taken:	অ অ	Across D'Dry D'Aqua	
	Field sheet Up	ostream Downstream	channel substrate substra	
	REACH DATA (Re	present 6 x bankfull width)		
	1 Habitat Type	s Present/Flow State Reac		
0-	□ hydraulic			
		/erage (check one):	🗆 rapids 🛛 straight run	☑ pool/back eddy
	□ 0%	⊠ 1-25%	□ 26-50% □ 51-75%	□ 76-100%
		Coverage (check one): $\neg \partial_{i} \langle i \rangle$		
	☑ 0%	□ 1-25%	□ 26-50% □ 51-75%	□ 76-100%
		e (check those present):		
	- Ø 1-ferns		s 🛛 3 - deciduous trees 🗆	4 - coniferous trees
		overage on Substrate (bent		
			ficult to determine, some with ,	minimal sed
	2 – Slightly	slippery, yellow-brown to light g	reen (0.5-1mm)	- (
		bly slippery, patches of thicker g		
			f green to dark brown (5.0-20mm) n, brown to black mass may have long str	ands (> 20mm)
	WATER CHEMIST			
	Air Temp (C) 4-4 pH 7.8		Cond. 345.1 De sp Cond. (us\cm) 479.1	DO % 60.9
0 -		전 TSS 전 General 전 500ml) (500 ml)	Total metals ⊠ Nutrients ⊠ Othe (250 ml) (250 ml)	
			1 L Valger 120mL TI	
- <u>s</u>	Revised June 2019		1 and mile 1	/

Page 2 of 3

29-11-20

Site Code:

1P5-614

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

• Embeddedness categories (E): Completely embedded = 1 3/4 embedded 1/2 embedded 1/4 embedded unembedded = 0

	Diameter (cm)	E		npletely embede Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E
1	5.1		26	6.9		51	41		76	4.3	
2	2.3		27	54		52	3.1		77	8.6	
3	2.7		28	3.5		53	3.7		78	6.6	
4	[3.]		29	3.0		54	3.9		79	12.0	
5	4.6		30	4.5	0	55	8.4		80	10.1	1/2
6	8.9		31	2.1		56	4.6		81	11.1	
7	6.3		32	8.7		57	7.5		82	5.9	
8	75		33	L/		58	6.9		83	8.4	
9	3.8		34	2.3		59	7.7		84	6.3	
10	5.4	YU	35	9.6	1	60	5.4	14	85	6.1	
11	76	1.	36	4.8		61	3.8		86	8.9	1
12	4.9		37	4.4		62	6.9		87	9.2	
13	3.2		38	5.1		63	5.3		88	6.5	
14	410		39	1,7		64	2.7		89	6.6	
15	91		40	3.0	0	65	6.3		90	9.9	0
16	5.1		41	4.2		66	4.9		91	96	
17	34		42	8.6		67	4.5		92	0.4	
18	99		43	3.5		68	4.5		93	3.8	
19	6.1		44	5.9		69	6.4		94	5.8	1.0
20	27		45	8.9		70	5.8	14	95	10.1	1
21	7.5	YU	46	2.2		71	7.4		96	7.0	1
22	8.6		47	24	1	72	58		97	6.5	
23	4.8		48	5.1		73	9.4		98	9.9	
24	11.7		49	7.8		74	26		99	42	
25	5.4		50	2.8	0	75	4.7		100	7.7	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

□ 0 - organic cover (>50% cover)

□ 1 - (silt) <0.1 cm

- □ 2 (sand) 0.1 0.2 cm
- ☑ 3 (gravel) 0.2 1.6 cm
 ☑ 4 (pebble) 1.6 3.2 cm

□ 5 - (pebble) 3.2 - 6.4 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

1.1

[•] Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

Yukon CABIN Field Sheet (DFO/YTG 2019	9) Page 3 of 3
Sampling Date (D/M/Y) 28-101y-2	Site Code: Yp5-614
3. Sediment Samples Collected: 🛛 (30	10-500g)
Depth of easily penetrable sediments (cm):	Depth of sediment sampled (cm):
Sediment texture and colour:	Brown/quin of free black organics, sand (F) I sin
Check those present:	☑ Leaf litter
odour	□ oily sheen □ invertebrates
Comments: 3 sample	y taken for one composite somete
	, , , , , , , , , , , , , , , , , , , ,

BIOLOGICAL: BENTHIC INVERTEBRATE SAMPLES

1. Kicknet Sample (location):	⊠ riffle □	rapid 👘 🗇 straight ru	In 🛛 pool/back eddy
500 μm mesh Kicknet**	Riffle 1	Riffle 2	Riffle 3
Operator:	A. Muchhail.		-
Time of Day:	17:20	-	
Sampling time (i.e. 3 min)	2 Min	/	
No. of sample jars	3		
Typical depth (in kick area)	~2005		

CHANNEL DATA

1. Channel

Slope/Gradient (%)	2	Flow Stage: D Low/ Ø Mod	lerate/
Bankfull Width (m)	8.8	Wetted Stream Width (m)	5.2
Bankfull Wetted Dept	h (distance between water lev	vel and top of bank) (cm)	LB= 1.90 RB= 270
Location in site (not	e where in sample site taken	i e d/s of kick area)	Sat Kurk and

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	0.80	1.60	2.40	3.20	4.0	1
Depth (cm)	34	27	19	12	5	0.19
Velocity (m/s)	0.6	0.6	0.4	0.3	6.2	0.14

Limited caropy cover at site. Used CANEPEO App to assess canopy cover.

Revised June 2019

Yukon CABIN Field Sheet (DFO/YTG 2019)			Page 1 of 3 Site Code:				
Sampling Date (D/M/Y) 28-Ju- 20							
PRIMARY SITE	DATA						
CABIN Study River/Stream		Which Arbith tunker Creek		Basi	in: Klordika	e River □ Reference	
Site Location Do	•	of large m	etal bridget	ford location			
GPS Datum:	WGS84 or /	VAD 83 -	GPS	Altitude (masl	or fasl)	420	
*Latitude:	63°59'3	30.4"		Stream Order	(1:50,000):	4	
*Longitude:	139°02			Eco	oregion:	/	
	(*use decimal	degrees) 07V	0595815				
Photos taken:		X	7097 5 73	🛛 Dry	🛛 Aquatic	from β. ☑ Aerial	
Field sheet	Upstream	Downstream	channel	substrate	substrate	substrate	
 Habitat Ty □ hydrau Canopy C 	ılic jump	/Flow State Re	ach (check those ⊠ rapids		ght run 🛛	pool/back eddy	
☐ hydrau 2. Canopy C ☐ 0 3. Macrophy ⊠ 0 ⁴	ulic jump overage (che % vte Coverage %	⊠ riffle eck one): □ 1-25% • (check one): [□ 1-25%		⊠ strai	-75%	pool/back eddy □ 76-100% □ 76-100%	
☐ hydrau 2. Canopy C ☐ 0 3. Macrophy ⊠ 0 4. Riparian Z	ulic jump overage (che % vte Coverage % one (check tho	⊠ riffle eck one): □ 1-25% (check one): [□ 1-25% se present):	☑ rapids □ 26-50% Difficult 1-3 de □ 26-50%	⊠ strai □ 51 Jermine □ 51-	-75%	□ 76-100%	
☐ hydrau 2. Canopy C ☐ 0 3. Macrophy ⊠ 0 4. Riparian Z ☑ 1 - fer	ulic jump overage (che % te Coverage % one (check tho ms/grasses	⊠ riffle eck one): □ 1-25% e (check one): { □ 1-25% se present): ^⊠ 2 - shu	図 rapids ロ 26-50% の代行にしま う。 ロ 26-50% rubs 図:	⊠ strai □ 51 Jermine □ 51- 3 - deciduous tre	-75%	□ 76-100%	
☐ hydrau 2. Canopy C ☐ 0 ⁻ 3. Macrophy ⊠ 0 ⁻⁴ 4. Riparian Z ☑ 1 - fer 5. Periphyton ☑ 1 - Not s □ 2 - Slight □ 3 - Notic □ 4 - Very	ulic jump overage (che % te Coverage % one (check tho ms/grasses a Coverage o lippery, no colu tly slippery, ye eably slippery, slippery, nume	 ☑ riffle ack one): □ 1-25% a (check one): () □ 1-25% ase present): a 2 - shi c 3 2 - shi 	لا rapids 26-50% کزا راندی از این کو 26-50% 26-50% rubs ⊠ senthic algae, not m Some sedimes to green to brown so f green to brown	Strain Strai	-75% -75% es 🔲 4 - c	□ 76-100% □ 76-100% oniferous trees	
 ☐ hydrau 2. Canopy C ☐ 0⁻¹ 3. Macrophy ⊠ 0⁻¹ 4. Riparian Z ☑ 1 - fer 5. Periphyton ☑ 1 - Not s ☑ 2 - Slight ☐ 3 - Notic ☑ 4 - Very ☑ 5 - Rocks 	ulic jump overage (che % te Coverage % one (check tho ms/grasses a Coverage o lippery, no colu tly slippery, ye eably slippery, slippery, slippery, nume s mostly obscu	⊠ riffle eck one): □ 1-25% e (check one): { □ 1-25% se present): √⊠ 2 - shu our (<0.5mm) low-brown to ligh patches of thicke erous large clump	لا rapids 26-50% کزا راندی از این کو 26-50% 26-50% rubs ⊠ senthic algae, not m Some sedimes to green to brown so f green to brown	Strain Strai	-75% -75% es 🔲 4 - c	□ 76-100% □ 76-100% oniferous trees	
☐ hydrau 2. Canopy C ☐ 0 ⁻ 3. Macrophy ⊠ 0 ⁻⁴ 4. Riparian Z ☑ 1 - fer 5. Periphyton ☑ 1 - Not s □ 2 - Slight □ 3 - Notic □ 4 - Very	lic jump overage (che % te Coverage % one (check tho ms/grasses a Coverage o lippery, no coluty slippery, ye eably slippery, ye eably slippery, nume s mostly obscu STRY 13 1 Wat	⊠ riffle eck one): □ 1-25% e (check one): { □ 1-25% se present): √⊠ 2 - shu our (<0.5mm) low-brown to ligh patches of thicke erous large clump	لا rapids ☐ 26-50%)(fficolt)-o de ☐ 26-50% rubs ☑ : enthic algae, not m Some sediment tigreen (0.5-1mm er green to brown bs of green to dan een, brown to bla	Strain Strai	-75% -75% es □ 4 - c nm) ve long strands	□ 76-100% □ 76-100% oniferous trees	
□ hydrau 2. Canopy C □ 0 3. Macrophy ⊠ 0 4. Riparian Z ☑ 1 - fer 5. Periphyton ☑ 1 - Not s □ 2 - Slight □ 3 - Notic □ 4 - Very □ 5 - Rocks MATER CHEMIS Air Temp (C)	lic jump overage (che % te Coverage % one (check tho ns/grasses a Coverage o lippery, no colutly slippery, ye eably slippery, ye eably slippery, nume s mostly obscu 5TRY	 ☑ riffle ack one): □ 1-25% a (check one): □ 1-25% (check one): □ 1-25% (se present): (☑ 2 - shr (□ 1 - shr <li< td=""><td>لا rapids 26-50% 26-50% 26-50% 26-50% rubs ⊠ enthic algae, not m Some sedimes tigreen (0.5-1mm er green to brown so f green to brown bs of green to dan een, brown to bla</td><td>Strain Strai</td><td>-75% -75% es □ 4 - c nm) ve long strands</td><td>□ 76-100% □ 76-100% oniferous trees s (> 20mm) g/L) 8.82</td></li<>	لا rapids 26-50% 26-50% 26-50% 26-50% rubs ⊠ enthic algae, not m Some sedimes tigreen (0.5-1mm er green to brown so f green to brown bs of green to dan een, brown to bla	Strain Strai	-75% -75% es □ 4 - c nm) ve long strands	□ 76-100% □ 76-100% oniferous trees s (> 20mm) g/L) 8.82	
□ hydrau 2. Canopy C □ 0 3. Macrophy ⊠ 0 4. Riparian Z ☑ 1 - fer 5. Periphyton ☑ 1 - Not s □ 2 - Slight □ 3 - Notic □ 4 - Very □ 5 - Rocks MATER CHEMIS Air Temp (C) pH	Ilic jump Soverage (che % te Coverage % one (check tho ms/grasses t Coverage of lippery, no colu ty slippery, ye eably slippery, ye eably slippery, nume s mostly obscu STRY 13 \ 13 \ 13 \ Tu 7.53 Vat	 ☑ riffle ack one): □ 1-25% a (check one): () □ 1-25% ase present): (☑ 2 - shite) (☑ 3 - shite) (☑ 4 -	☑ rapids ☑ 26-50% ☑ 1-26-50% ☑ 26-50% ☑ 26-50% I green (0.5-1mn I green to brown I green to brown I green to brown to bla I sp Cond. (u I Total metals	Strain Strai	-75% -75% es □ 4 - c nm) ve long strands DO (m 	□ 76-100% □ 76-100% oniferous trees s (> 20mm) g/L) 8.82	

÷

Page 2 of 3

05-05

Sampling Date (D/M/Y)	28-004-20	Site Code:

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

1. 100 Pebble Count & Substrate Embeddedness

Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

boddod

	mbeddedness c Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	ε
1	51		26	8.3		51	4.6		76	12.1	
2	4.6		27	6.1		52	4.6		77	5.6	
3	57		28	7.1		53	51		78	10.7	
4	8.7		29	4.5	1	54	8.3		79	10.6	
5	4.1		30	7-2	0	55	12.6		80	14.6	14
6	6.6		31	3.2		56	8.6		81	12.0	-
7	51		32	4.3		57	5.3		82	7.3	17
8	34		33	5.3		58	11.3		83	9.1	
9	5.1		34	4.9		59	2.0		84	8.7	
10	8.7	14	35	5.9		- 60	15.1	Y4	85	6.0	-
11	4.1		36	1.9		61	4.4		86	5.3	
12	4.2	10.00	37	47		62	2.5		87	18.2	
13	6.3		38	6.3		63	4.0		88	1.00	
14	10.1		39	8.5		64	2.6		89	10.6	
15	4.6		40	4.0	Y4	65	2.2		90	6.9	14
16	2.2		41	7.8		66	45		91	6.2	
17	7.4		42	10.6		67	5.8		92	3.3	
18	10.6		43	4.8		68	6.7		93	3.8	
19	39		44	4.7		69	10.8		94	3.4	
20	4.6	0	45	2.3		70	2.6	1/4	95	6.6	
21	8.0		46	3.6		71	18.3		96	8.4	
22	6.8		47	5.2		72	1.9		97	3.2	
23	6.5		48	6.5		73	8.9		98	16.6	
24	8.3		49	7.6		74	1.6		99	10.8	
25	12.9		50	12.1	0	75	2.7	1000	100	4.2	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 – 12.8 cm

- □ 1 (silt) <0.1 cm
- □ 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm
- □ 5 (pebble) 3.2 6.4 cm
- □ 7 (cobble) 12.8 25.6 cm
- □ 8 (boulder) > 25.6 cm
- 9 Bedrock

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.

Yukon CABIN Field She	et (DFO/YTG 201	9)	P	age 3 of 3	
Sampling Date (D/M/Y	28-July - 20		Site Cod	e: Yps-os	1
3. Sediment Samples	Collected: 🖾 (30	00-500g)	12		
Depth of easily penetrable	e sediments (cm):	Tom	Depth of sediment s	sampled (cm):	5cm
Sediment	texture and colour:		n trace organic	Es Sand	
Check those present:	🗵 woody debris	D Leaf litter	The second second second Water Street and a	D biofilms	periphyton
х.	🗆 odour	oily sheen	□ invertebrates		
Comments:	Composite	sample of the	ce locations.		
BIOLOGICAL: BENTI	HIC INVERTEBI	RATE SAMPI	ES		
1. Kicknet Sample (loc	cation): 🛛 🖾 rif	fle 🛛 rapi	d 🛛 🗆 straight ru	in 🗆 po	ol/back eddy
500 µm mesh Kicknet	**	Riffle 1	Riffle 2		Diffle 2

out pin mean Micknet	Rine	RITTIE Z	Riffle 3	
Operator:	AMacPhail			
Time of Day:	15:15			
Sampling time (i.e. 3 min)	3 min			
No. of sample jars	3			
Typical depth (in kick area)	~ 70cm			

CHANNEL DATA

1. Channel

Slope/Gradient (%)	20/0	Flow Stage: □ Low/ Ø Moderate/ □ High/ □ Flood		
Bankfull Width (m)	8.3	Wetted Stream Width (m)	RB-25 LBLI	11
Bankfull Wetted Depth (distance between water level and top of bank) (cm)			9.7	J suitzh

Location in site (note where in sample site taken i.e. d/s of kick area) Within Kick area

2. Channel Transect

Velocity/Depth	1	2	3	4	5	AVG
Distance from shore (m)	1.10	2.20	3.30	440	550	
Depth (cm)	4	16	15	25	19	0.16
Velocity (m/s)	0.2	0.5	0.5	0.6	0.4	44
Discharge	0.009	0.088	0.099	0.165	0.084	Tatal

Total

0. 9499m3/s

ukon CABI	N _, Field	Sheet	(DFO/Y	TG 201
akon CADI		Sileet	(DFO/T	16 201

	Yukon CABIN Field Sheet (DFO/YTG 2019)	Page 1 of 3
	Sampling Date (D/M/Y) 29-11-20	Site Code: Yps-GM
)	PRIMARY SITE DATA	
	CABIN Study name: Yuken - AHM	Basin: Klandike River
	River/Stream name: Hunker Creek	☑ Test □ Refere
	Site Location Description: Parked beside C below pup, sample	coordinates in heavily impacted bea
	area. Moved DIS approx. Yom to find	adequate Kick location
	GPS Datum: WGS84 or	GPS Altitude (masl or fasl)
	*Latitude: 63°56'58.2	Stream Order (1:50,000):
	*Longitude: 138° 54' 22.6" (*use decimal degrees)	Ecoregion
		Across Dry Aquatic Aeri channel substrate substrate substrate
	REACH DATA (Represent 6 x bankfull width)	
6	1. Habitat Types Present/Flow State Reach	
)	 hydraulic jump I riffle Canopy Coverage (check one): 	🖾 rapids 🛛 Straight run 🖾 pool/back e
	 Canopy Coverage (check one): 0% 1-25% 	☑ 26-50%
	3. Macrophyte Coverage (check one): Diffic	
		□ 26-50% □ 51-75% □ 76-100%
	4. Riparian Zone (check those present):	
	区 1 - ferns/grasses 区 2 - shrubs	☑ 3 - deciduous trees
	5. Periphyton Coverage on Substrate (benthi	
	 1 – Not slippery, no colour (<0.5mm) 2 – Slightly slippery, yellow-brown to light gre 3 – Noticeably slippery, patches of thicker gr 4 – Very slippery, numerous large clumps of 5 - Rocks mostly obscured, extensive green, 	een to brown (1.0-5mm)
	WATER CHEMISTRY	
	Air Temp (C) 17.5 Water T (C) 9.6	Cond. 392.3 DO (mg/L) 9.0
	pH 7.64 Turbidity 56.2	sp Cond. (us\cm) 553.3 DO % 79.3
	Water Samples DTSS Deneral D	Total metals INutrients
)	Collected: (500ml) (500 ml)	(250 ml) (250 ml)

Revise	ed June	2019	

Yukon CABIN Field Sheet (DFO/YTG 2019)

Page 2 of 3

Sampling Date (D/M/Y)

Site Code:

e: YPS-6.11

SUBSTRATE COMPOSITION IN RIFFLE (kicking area)

29-51-20

1. 100 Pebble Count & Substrate Embeddedness

Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.

Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
 Embeddedness categories (E): Completely embedded = 1.3/4 embedded 1/2 embedded

Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E		Diameter (cm)	E		odded, 1/2 embe Diameter (cm)	E		Diameter (cm)	Ε
1	5.6		26	10.6		51	5.5		76	12.2	1.
2	2.8		27	6.0		52	7.3		77	3.9	
3	52		28	9.9	1+1	53	6.4		78	16.0	
4	6.6		29	5.4		54	2.3		79	8.6	
5	9.1		30	4.8	0	55	3.5		80	11.5	14
6	9.7		31	10.6		56	2.9		81	16.2	
7	8.3		32	3.6		57	3.1		82	11.0	
8	4.8		33	6.0		58	2,8		83	6.9	
9	11.4		34	9.8	(1	59	2.2		84	5.9	
10	14.3	Y4	35	113		60	4.9	14	85	9.0	
11	5.1		36	21		61	3.4		86	3.7	
12	3.2		37	114		62	4.4		87	7.3	
13	6.8	-	38	10.0		63	29		88	4.5	
14	7.7		39	14.7		64	3.1		89	12.3	
15	4.3		40	21.2	0	65	7.9		90	22	0
16	9.9		41	15.1		66	11.1		91	3.8	
17	3.9		42	6.5		67	6.6		92	4.7	
18	5.5		43	1.9	1	68	4.8		93	2.6	
19	42		44	12.5		69	4.2	1	94	7.9	
20	4.7	1/4	45	14.6		70	8.8		95	7.1	
21	10.6		46	10.1		71	6.5	1/2	96	6.4	
22	11.6		47	3.3		72	7.9		97	7.0	
23	1.6		48	7.6		73	13.4		98	12.2	
24	4.6		49	9.6		74	12.5		99	4.9	
25	3.9		50	9.6	0	75	13.1		100	6.4	YH

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

2. Surrounding/Interstitial Material - check the substrate size category for the surrounding material.

 \Box 0 – organic cover (>50% cover)

□ 3 - (gravel) 0.2 – 1.6 cm

□ 6 - (cobble) 6.4 - 12.8 cm □ 7 - (cobble) 12.8 - 25.6 cm

- □/ 1 (silt) <0.1 cm
- ▲ 2 (sand) 0.1 0.2 cm
- □ 4 (pebble) 1.6 3.2 cm □ 5 - (pebble) 3.2 – 6.4 cm
- □ 8 (boulder) > 25.6 cm □ 9 - Bedrock

Yukon CABIN Field Sheet (DFO/YTG 2019)				Page 3 of 3					
Sampling Date (D/M/Y)	29-5-4-	20]	Si	te Code:	YPS-	61	
Sediment Samples Col	llected: 🛛	₫ (300-500g])		×.				
Depth of easily penetrable see	diments (cn	n): [19		Dep	th of se	diment samp	ied (cm):	5-	15
Sediment text	ure and col	our: br	own	Sand	(f-1	m)			
Check those present:] woody del	bris 🗆 Le	af litte	er 🖾 i	nacroph	ivtes Dic	ofilms	D pe	riphyton CH
] odour		y she	en 🗆 i	nverteb	1			
Comments:	ollected fi	sn depu	sitio	und are	n abou	re riffle.		_	
IOLOGICAL: BENTHIC	INVERT	EBRATE	SAI	MPLES					14)
Kicknet Sample (location		⊠ riffle		rapid	□ str	aight run	D po	ol/bac	k eddy
500 µm mesh Kicknet**			fle 1			Riffle 2		Riffle	
Operator:		A. Nac							1
Fime of Day:		13:00	sva.			/			/
Sampling time (i.e. 3 min)		3 mi	~			/		1	
No. of sample jars		1				1	1	1	
Typical depth (in kick area)		~ 200			1				
					-		-		
			_						
Channel Slope/Gradient (%) Bankfull Width (m)	3 54	ween wate		Wetted S	Stream	Low/ ⊡ Moo Width (m) nk) (cm)	3)	/ 🗆 Flood
Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis	54 stance betw		r leve	Wetted & el and top	Stream	Width (m) nk) (cm)	3	1	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe	54 stance betw		r leve	Wetted & el and top	Stream	Width (m) nk) (cm)	3	1	/ 🗆 Flood
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis ocation in site (note whe Channel Transect	54 stance betw		r leve	Wetted & el and top	Stream	Width (m) nk) (cm)	3) 2 :16 0.0	
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe Channel Transect /elocity/Depth	54 stance betw are in samp	ple site tak	r leve cen i.c	Wetted & el and top	Stream o of bai kick are	Width (m) nk) (cm) ea)	3 Q1 S of Kic) 2 :16 a.	τ ο
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe Channel Transect /elocity/Depth Distance from shore (m)	5.व stance betw are in sam	ole site tak	r leve cen i.c	Wetted S el and top e. d/s of	Stream o of bai kick are 3	Width (m) hk) (cm) ea) D/ 4	3 S of kic 5) 2 :16 a.	τ ο
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe	5.4 stance betw ere in samp 1	ole site tak	r leve cen i.c 2	Wetted S el and top e. d/s of t.	Stream o of bai kick are 3	Width (m) nk) (cm) ea) D/ 4 2.0	3 80 5 of kic 5 2.5) 2 :16 a.	AVG
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes. Extensive become more	5.4 stance between in samp 1 015 14 0.1 beaver of confine	activity d, heav	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wetted S el and top e. d/s of t. Q oproc. 4 (ipar	Stream o of bai kick are 3 5 .5 0 - \$ om	Width (m) nk) (cm) a) D1 4 2.0 20 0.7 U/S of v/s of	3 80 5 of kic 5 2.5 5 0.1) 2 	AVG 0.14 0.36
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe Channel Transect /elocity/Depth Distance from shore (m) Depth (cm) /elocity (m/s) Notes. Extensive become more Canopy cover	5.4 stance between samp 1 015 14 0.1 beaver of confine measur	activity d, heav	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wetted S el and top e. d/s of t. Q oproc 4 (ipar (ANORE	Stream o of bai kick are 3 5 3 5 5 0 - 5 um ian o o App	Width (m) nk) (cm) a) D1 4 2.0 20 0.7 V1s of vrea.	3 80 5 of kin 5 2.5 5 0.1 5 0.1) 2 	AVG 0.14 0.36
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe Channel Transect /elocity/Depth Distance from shore (m) Depth (cm) /elocity (m/s) Notes Extensive become more	5.4 stance between samp 1 015 14 0.1 beaver of confine measur	activity d, heav	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wetted S el and top e. d/s of t. Q oproc 4 (ipar (ANORE	Stream o of bai kick are 3 5 3 5 5 0 - 5 um ian o o App	Width (m) nk) (cm) a) D1 4 2.0 20 0.7 V1s of vrea.	3 80 5 of kin 5 2.5 5 0.1 5 0.1) 2 	AVG 0.14 0.36
Channel Slope/Gradient (%) Bankfull Width (m) Bankfull Wetted Depth (dis Location in site (note whe Channel Transect Velocity/Depth Distance from shore (m) Depth (cm) Velocity (m/s) Notes. Extensive become more Canopy cover	5.4 stance between samp 1 015 14 0.1 beaver of confine measur	activity d, heav	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wetted S el and top e. d/s of 1. 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream o of bai kick are 3 5 3 5 5 0 - 5 um ian o o App	Width (m) nk) (cm) a) D1 4 2.0 20 0.7 V1s of vrea.	3 80 5 of kin 5 2.5 5 0.1 5 0.1) 2 	AVG 0.14 0.36

CI HEMMENA

Location ID: KLHU-02	Project Number:		Date: 28-J.1-20	
Sampler: CH AM, AB	Project Name: WGOM		Sampling Method:	
Weather/Temp: 210°C Overcist		Photo No. Toha	ne	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Very turbid, no odour			
Flow Direction and Intensity:	Moderate flow			
Depth of water (approximately):	~ 40cm		e martin	
Disturbance (i.e. rain, surface water flow from other areas):	Heavy rainfall on 27. Tily. extensive	place development		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some SWD + LEUD			
Sampled for:	TSS, setability	4		
Comments/Notes	GPS point is off circle, moved pain Nom to take sample, couldment		moved up	

Time :	0950	,	
Temperature (C)	10-6	DO (mg/L)	8.44,
Specific Conductivity	759 (ms/cm)	pH	8.13
TDS (g/L)		ORP (mV)	300.3
Salinity		Turbidity (NTU)	243

Salinity

Location ID: KLHU_01	Project Number:		Date: 28754-20		
Sampler: CH AM		Project Name: - WGOM	4		Sampling Method:
Weather/Temp: ~16°C Overa	254			Photo No. Joh	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Very silk)			
Flow Direction and Intensity:	See Cabin	notes for flows,	appear his	h	
Depth of water (approximately):	See cobin	for notes, 2 40	Deng		
Disturbance (i.e. rain, surface water flow from other areas):	Heavy rain	fall on July 27, exte	nsive glace	r development	+ UKS
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some SW	D + LWD	j.		
Sampled for:	See CABIN) notes			
Comments/Notes	Taken at but paral	Same location as lel with YPS 594	YPS-594,	coordinate l	was off of creek
Field Parameters:					
Time :	7:50				
Temperature (C)	10.6		DO (mg/L)	8.48	76.6%
Specific Conductivity	766		pH	7.85	
TDS (g/L)	/		ORP (mV)	/	

ORP (mV)

Turbidity (NTU)

CI HEMMERA

Location ID: KLHU_04		Project Number: 105	Project Number: 10525-01		
Sampler: CH AM, AB		Project Name: · WQOM	Project Name: WQOM		
Weather/Temp: ~15°C Out	rous Y	31		Photo No.	evert.
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Turbid, no o	daar			
Flow Direction and Intensity:	Moderate	flow			
Depth of water (approximately):	~ 10 · 20c	<i>ب</i> دی			
Disturbance (i.e. rain, surface water flow from other areas):	Hraun rai	is on 27-July- exten	sive placer de	evelopment	
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	LWD +	swD			
Sampled for:	Setalibit), 755			
Comments/Notes	Unable to c Appear.	jes to GPS point, en creek has been diverted	nds up in ac	tire mining a	
Field Parameters:					7099526
Time :	14:20	60			
Temperature (C)	8.7		DO (mg/L)	9.36	.80.5%.
Specific Conductivity	663 50	6	pH	7.74	+ 0 / [*
TDS (g/L)			ORP (mV)	/	
Salinity		Г	urbidity (NTU)	71.9	
the second secon		4			5

Salinity

Location ID: KHU_03	Project Number: 205725			Date: 28-J.4-20	
Sampler: CH AM, AB	Project Name: WGOM			Sampling Method:	
Weather/Temp:				Photo No. Joh	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Very for	bid, ac odour	10		4
Flow Direction and Intensity:	Mo	derate flows	1	u	
Depth of water (approximately):	~ 30cr	ς			
Disturbance (i.e. rain, surface water flow from other areas):	Heavy	, rainfall on 27	- Nly - 20, P	lacer mihily U	ıs
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	SwD	+ LIWD press	ent in creek		<i>i</i>
Sampled for:	See	COC			
Comments/Notes	Approx	30m VIS of	YBS GIZ		
Field Parameters:				•	
Time :	Hio	0			
Temperature (C)	96		DO (mg/L)	8.67,	76.5
Specific Conductivity	712		pH	7.78	
TDS (g/L)	1	ORP (mV)	1		

Turbidity (NTU)

Location ID: KMIO	Project Number: 105725-	Project Number: 10525		
Sampler: CHT A-M, AB	Project Name: - WOOM		Sampling Method:	
Weather/Temp: ~15°C Overcost	1	Photo No.	Iphone	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Very turbid, no odbur	1 - 4 1		
Flow Direction and Intensity:	Moderate fleri			
Depth of water (approximately):	~30-90cm			
Disturbance (i.e. rain, surface water flow from other areas):	Heavy rainfall on 27-July, ect	ensive placer developma	N	
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	SWD - LWD			
Sampled for:	Selbalability			
Comments/Notes	Uls of Hester Creek inflew	Sample token @ 63-6 139	°02°29.1')	

Field Parameters:		A Real Providence of Second Second	
Time :	16:19		
Temperature (C)	8.4	DO (mg/L)	9.04. 77.7
Specific Conductivity	547.3, C-418.4	pH	7.37
TDS (g/L)	/	ORP (mV)	
Salinity		Turbidity (NTU)	107

Salinity

CI HEMMENA

Location ID: KL-HUOS		Project Number: 105125-01			Date: 29-Jul-20
Sampler: CH-AM, AB	Project Name: WQOM			Sampling Method:	
Weather/Temp: ~15°c Overcas	÷			Photo No. Tp	hone
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Silty, turbi	id, no odow			
Flow Direction and Intensity:	Moderate				
Depth of water (approximately):	~ 30cm				
Disturbance (i.e. rain, surface water flow from other areas):	Placer mi	ing UIS. can	hear equipment		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Lots of los joms + swip + vivib				i i
Sampled for:	Setalability	, TSS			
Comments/Notes			, march parralell to	s take sampl	e @ 63°58'08.4"
Field Parameters:					
Time :	10:10				
Temperature (C)	7.1		DO (mg/L)	9.75, 4	65
Specific Conductivity	454.50		pH	8.07	
TDS (g/L)			ORP (mV)	8.0.	

Turbidity (NTU)

Location ID: KL_HU-GO1		Project Number:		Date: 29-JUI-20	
Sampler: CHAM, AB		Project Number: 105125-01 Project Name: WOOM			Sampling Method:
Weather/Temp: ~15°C Overca	5L			Photo No. Tohor	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)		rbid, na odour			
Flow Direction and Intensity:	Moderate	flow			
Depth of water (approximately):	20-30cm				
Disturbance (i.e. rain, surface water flow from other areas):	Heavy rai	nfall in pravious	s two days		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Minimal	LWD, some	SWP		÷
Sampled for:	TSS, Set	alability			
Comments/Notes			of GB Creek w	the creek itse	elf. NG3° 57'50.7 W 138° 58 '02.0
Field Parameters:					
Time :	11:00				
Temperature (C)	6.5		DO (mg/L)	10.12.	82.5%
Specific Conductivity	435.9		pH	8.10	and a second
TDS (g/L)	/		ORP (mV)	0.10	
Salinity			Turbidity (NTU)	10.1	

CI HEMMERA

Location ID: KLHUOG	P	roject Number:			Date:
Sampler: CH AM, AB	Р	roject Name:	WOOM		Sampling Method:
Weather/Temp: MISPC Over	vst			Photo No. Jph	ane .
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Silly, no ode	204			
Flow Direction and Intensity:	Moderate fle	لىلا			
Depth of water (approximately):	~ 30cm				
Disturbance (i.e. rain, surface water flow from other areas):	Placer miniv	y, heavy r	ain in post couple	day s	
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some SWP	+ lewP			
Sampled for:	TSS, Setabil	ity			
Comments/Notes	Sample taken	Len approx. You Uls of Gold Bottom Creck			63° 57' 55.5 "
Field Parameters:		-			1
Time :	11:05				
Temperature (C)	8.8		DO (mg/L)	9.04	77.9 %
Specific Conductivity	501.4	ALL CALL	pH	8.1	
TDS (g/L)			ORP (mV)	/	
Salinity			Turbidity (NTU)	50.0	

CI HEMMERA

Location ID: YN_OK)		Project Number:	105125-01		Date: 28 31-02 - 20
eather/Temp: ~10°C Summer pearance & Odour lear, Silty, HC sheen/odors, m, etc.) ow Direction and Intensity: Model epth of water (approximately): ~ 4 Q sturbance e. rain, surface water flow om other areas): ~ Unknown egetation/Debris e. chunks of wood, reeds,		Project Name: - 🗸			Sampling Method:
Weather/Temp: ~10°C Summer				Photo No.	Spione
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Clar no	c abur	-		
Flow Direction and Intensity:	Moderat	e			
Depth of water (approximately):	~ 40cm				
Disturbance (i.e. rain, surface water flow from other areas):	Unknown	t			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Jors' cf	SMDT MD			<i>i</i> .
Sampled for:	TSD, John	icebrilly		- ¹	
Comments/Notes		aven about f	urd on Greek	Sample tarkan	© 67°01'3950" 132°31'2300"
Field Parameters:					
Time :	7:20				S.
Temperature (C)	6.8		DO (mg/L)	9.42	, 77.2
Specific Conductivity	64.6		pH	7.70	, ,
TDS (g/L)	/		ORP (mV)	/	100 M
Salinity			Turbidity (NTU)	6.5	-

Location ID:	Project Number:		Date:
Sampler: CH	Project Name:		Sampling Method:
ampler: CH Project N 'eather/Temp:		Photo	No.
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)			
Flow Direction and Intensity:			2
Depth of water (approximately):			
Disturbance (i.e. rain, surface water flow from other areas):			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):			÷ .
Sampled for:			
Comments/Notes			
Field Parameters:			
Time :	•		
Temperature (C)		DO (mg/L)	
Specific Conductivity		pH	
TDS (g/L)		ORP (mV)	
Salinity		Turbidity (NTU)	

CI HEMMERA

Location ID: KL_Huog		Project Number:	105125-01			Date:	
Sampler: CH AM, AD		Project Name: ·				Sampling Meth	od:
Weather/Temp: ~ 20°C Clear				P	hoto No.		
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Ctrar, no od	laur					
Flow Direction and Intensity:	Moderak	flew		1			
Depth of water (approximately):	-10cm	1					
Disturbance (i.e. rain, surface water flow from other areas):	Placer US	5					
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Minimal					÷	
Sampled for:	TSS, Sel.			,		4	
Comments/Notes		VIS of continues		Sample taken	-44-	° 53° 25.7 " ? 55° 34. ("	
Field Parameters:							_
Time :	G:10	¥					
Temperature (C)	4,3		DO (m	g/L)	10.42	80.3	
Specific Conductivity	435.3		pH		7.75		
TDS (g/L)	/		ORP (1	nV)	1	/	1
Salinity			Turbidity	(NTU)	4,0	97	

Location ID: KL-HU07		Project Number:	10525-01		Date: 29-5-1-20
Sampler: OHAM, HB		Project Name: ·			Sampling Method:
Weather/Temp: 2 200 C Summe		1		Photo No.	nhone
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Cheer, no	odour			
Flow Direction and Intensity:	Moderate			÷	
Depth of water (approximately):	10-200	· ~)			
Disturbance (i.e. rain, surface water flow from other areas):	Uhknown				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Mininal				
Sampled for:	TSS.				
Comments/Notes	Coordinate y	provided is a	above Winker Creek Y	Royd, sompled Q 6325	pointallel to ponit on H 53°08.6"
Field Parameters:				1380	53'08.6"
Time :					
Temperature (C)	15 35		DO (ma th)	1.	
Specific Conductivity	5.0		DO (mg/L)		7. 74.1
TDS (g/L)	363.4		pH	7.2	
Salinity			ORP (mV)		
Samilly			Turbidity (NTU)	6.58	

CI HEMMENA

Location ID: KL HUO9	Projec	et Number: 105125-0	1	Date: 29-July-20			
Sampler: CH AM, AB	Projec	ct Name: WQOM		Sampling Method:			
Weather/Temp: ~ 20°C Sunny			Photo	Photo No. Tphine			
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Silly, no dour						
Flow Direction and Intensity:	Moderate flow						
Depth of water (approximately):	~ 20-30cm						
Disturbance (i.e. rain, surface water flow from other areas):	Placer mining	U/S					
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some SWD, M	inimal LWD		4			
Sampled for:	TSS, Schalabiti	L					
Comments/Notes		n 220m Uls of Re	rd over honke	1 6 (3°54'54.0"			
Field Parameters:							
Time :	15:15						
Temperature (C)	7.1	DO	(mg/L)	9.54, 78.9			
0 10 0 1 11			TI				

Specific Conductivity438.3pH7.30TDS (g/L)ORP (mV)/SalinityTurbidity (NTU)39.1

reather/Temp: NISC ppearance & Odour Durbin Clear, Silty, HC sheen/odors, Turbin m, etc.) work ow Direction and Intensity: Mc epth of water (approximately): Mc	Project Number: 105125-	0 Date: 29-Jul-20		
Sampler: CHT AN, AB	Project Name: - WQOM	Sampling Method:		
Weather/Temp: \sim_{15}	ather/Temp: NISec pearance & Odour Dearance & Odour ear, Silty, HC sheen/odors, Turbid, no odour a, etc.) Moderate w Direction and Intensity: Moderate oth of water (approximately): No oden turbance Racer mining heavy rain rain, surface water flow Racer mining heavy rain getation/Debris LWD + SWD , heavy con ss, etc): LWD + SWD , heavy con			
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)				
Flow Direction and Intensity:	Photo No. Iphone - 611 Turbid, no adour Moderate ~ 30cm Racer mining, heavy rain in previous days LWD + SusD, heavy concept carer			
Depth of water (approximately):	Turbid, no adour Moderate N 30cm Placer mining, heavy rain in previous days LWD + SWD, heavy concer			
Disturbance (i.e. rain, surface water flow from other areas):	Placer mining heavy rain in	previous days		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	LWD + SWD, heavy can	epy carer :		
Sampled for:	TSS setalability			
Comments/Notes	See details for rite on YPS-GI	Cabin Roms		

Parameters:			
Time :	13:50		
Temperature (C)	9.6	DO (mg/L)	9.02/-7931%
Specific Conductivity	503.3	pH	7.64
TDS (g/L)	/	ORP (mV)	1
Salinity		Turbidity (NTU)	56.2

NUKON	I WOON	1	~	Sept 2	9,90
15:00					
cleary	later s	amolo.			
- collect	by on	me u	ing to	vocune	4.
	4	in she			69
		lan 1			
upstrea	in of	bridge.		1	
		0			
Coordin	ales.	on sheet			
		weman			
)	2	3	4	5
pistance Anno shoe (m)) a.a.	44	le, ce	8.8	11,0
Dept.	19an	34cm	47am	57am	5loc
veicus. (mis)	0,2	0,7	0.8	1.1	1.0
6	202	are not	a		5
Trom v	est bo	interso .	CCD-1	-	
	6			10	
		a start		/ Nat	in the Ra

9 25 NPS-A1 Avenza	:ma 7 V O	30-10 Ned.	en li	×46		YUKONI WOOM divieup to placer opean on to terre to numers. Opean ons also co torre to numers. Opean ons also co torre discharge out of setting pond. Adams curve right by mad. Discharge relatively minor and discapates
	ean b	-2	ht my		026- 0.3 m 22 cm	Anially. Marked up creek to AD02 10.14
deptin.	14	14	21	13	9	Incation (Maggi d downstream from aparan and absorved discharge.
Cmls)					0.2	bankful: 3.2 m via th Wetted: 2.5m width
						Retein the Rains

YUKON	uson	2	Scpt 3	13/202		NUKO	N UDO	M .		Sept 23	2020
distance.	0.4	0.8	12	1.6	2.0	11:19 YPS-1	B/KL-	BO_AG	03		-
tonith chi)	15.	16	1 b.f.	11		63°55	46.5	N	NADE	\$	
rmis)	0.7	0.9	0.7	0.2	0.4.	- 139°21					
* right	to les	to loar	nK.			Upsma dead	cam fr	ong ch	eratnar 20 K.		
DTV	7091	756	- C° FL 104	agged		loanch	unote	n: 5.1	m		
(Nad2=	em83)			wetted					
X SIVIL	ing s	aned Diecec	just 1 san	short	ny la		light bri			CLEGY	
						GISI.	0.7 ØPA	1.4	2.1	2.8	3.5
•						dayah	9	14 0:5	8	26	4
						nel Mis-	0.5	0.7	0,1	0.1	Ò
			- 11			from .	nghi ta	o leta	bonk		

	wac	M	5	Sept 23,	2020		12:55	h-		he ar	SEP	+ 23,2022
11:5		BO_AC	04				YPS-/	95 /	KL_BO.	- ADOS		-
neticd	depin						nght l	and k	OCKe-1			
2	blidth.			*				1				1
	_			<u>0</u>			bankpy	1 wichth	3.8 m			0
bankfu	i width	lom		<u> </u>			wetted wetted	r d	· 2.7m			
	Ø	Ø	Ô	@ .	025		depth		: 44cm		final	
distance.	0.5	1	1.5	2	No		4		Ø	B	ED V	0
m		198 Mar 1					distance	0.45	09	1.35	1.8	2.35 m
deptin	_11	14	17	5	13		depth	3	9	14	10	4 an
cm		<u> </u>					velocity	0	0.2	0.8	0.4	0.1 mls
mis	0.2	0.5	0.3	0	0			1		-		
							63°5 139°0	5 32	4 N	4		· · · · · · · · · · · · · · · · · · ·
63° 57	5'40.4	t N			· · · ·		1396	4 00	3 W			
-139°2	2'226	"W					samp	ed in	ara ji	est cy	shear	7
d							Of very					
-h04	osenced		di Qos_V	rearray	·		shubs locatho		bank	INS	ampi	8
						- Andreas						
									1			
			_					52				
_									(
												te in the Rain
-				1		_	-				Ra	e in the Kain

-		1		1 80		1	· 1		÷		1	
13:22	L			Sept 2	3,2070		13:59				Sept 2	3,2020
			-			3	looved	for un	namee	a creet	<u>c the</u>	<u></u>
Warked	diaz	acorgias	in par	ns bes	ndu.		Sometiv	nes(?)	freds	N	Edan	75
cieev,	upsh	com,	No er	ndence			We four	rd du	1 chai	anel 2	hat	
orach							maylor	the a	dry ci	eev loc	el	
vnoss c	oveny	banks	and :	Shubb	ey		P	1 4				- ×
overna	mm	ne ba	nks.					3°55 33			_	
							- W 13	9°23' (F-01			
KL_B	D_ADC	le.										-
6.02-		И		-								
03 55	27.9	_N	Modis	3			Stam	peole s	fulch	JUST	upsho	am_
[39 °24	+ 35,8	w.					from	consi	unce	tak	talams	· • · · · · ·
	0		~	Ð				6)	Ø	Ø	Ø	0
disionce		@ 0.5	ه- ۵,75	1.0	1.25		distance		and a	024	W. E.E.	
m	0.25	0.5	Q.35	(i wat			depts.	4	9	12	18	17
depty	13	14	18	16	12	-	veloy .		0.2	0.1	0,2	0.2
cin "	-	_										
Kelocit	0.1	0.3	0.3	0.4	0.3		bankhil			1.2m		
mis							inet	indh.	1	1.0m		
*from	non	to control	bank.	and the second sec		13.2	weeked	depon		Sern.		
								1				
hietted								ing				
banch		-							sam	ple tork	Fe (
ucfkd c	légéh	· lacu			1		_63°5	5365	<i>≤n</i> '			
1							139,2	2112.	w c		4	te in the Rain
1		-	-			-)	_		-	1	a in the right

YUKOr	u woo	im		Sept 2:	3,2020	YUKON WOOM Sept 23,2020
		-		@-ALO	1-12	pecided not to sample
Brable II KI	BO A	071nr 5	v v	(2-ALO	2	NN_SWOI downstream of
		D02 - 2	d		8	Pording, Not representatives of nanual conditions, petricult
			a			access for low importance
						- Sample.
		ow C	KLRO	ALOI		
Neitcel	Midth	540	0	0		6.56
	0	٨	6)	4		NPS-38CO
(m)	0.4	0.8	1.2	1.6	20	Clubed & Clear
(cm)	8	14	17	12		Much larger, good from z ever / nrca. Placer googeneous à
every MIS.	0.3	0.5	0,7	0.4	0.1	2010 permitted discharge
						(said Mice) in 4km upstream_
6:15	YN_C	ko]				bankmundth 13.1m
amp	ingab	ace por	d, as	destr	bed	neeted dagh, 360m
in Ar	dun	\$ 50	43 Fr	mJu	4.1	From let to ngt banks ?
auho	lig	6725	100ral	inale	S	
d 4fter	Slig	hty:				duel. (m) 2.2 4.4 6.6 8.3 40201
(A°)	1'20	J"N	-			diption (e) 35 46 32 [7]
126 2	121	7 W.		1		= u(^m / ₅) 0,8 0.8 0.5 6.3 0.1
· · ·	67	0 N).				no achiever disturbance in ingelie

UNKOW WOOM	50101 23,2020	4UKON WQOM	
N 64°01'31,2"			SEPT24,
W 139:34 24 9		9:51	2020
		KL-141101	
100001 0000 -0			
nght antop of July,	coordinates	we that wath and be	inkall indit
		very similar, u zoco	Ann
NUG all a last		uerted to bankrul,	
Nore about ioday:			
-conducted Reid 4	one a	too muddy i deep r	o trade in
Mice Mcculley from	n T.H.	brower dam's achier	i chelde in
hshz wollife		- and a content	1 -
- doudy to party	douar,	64°01'46.4" N	
ulamer, cool u	vamer -	139°10'42.5" W	
man uarmed up	hund -		
day from jacket	to sucal		
venner.		measure wetted distan	ce usy
		bhage: 9.30m	
X		9:20	
		KL HUOZ	
		430-35 m upshear	n of ford
	the state of the s	(655 13 a little 04)	
		nen (583:	
		= 64° N142.3"	
		64° 01 42.3 6 139° 10' 26.3''	

YUKOr	v woor	\sim		Sept 2	24,2020		× 1 ⁴ .	1 - Cal	1 -	2	Sept 24	2072
bank	B.C. M	11.9					10:	45			0.01 21	, coa
uebec	8	8.3					-KL-	Huog				
		- 65						4	-			
							Dainie	stal 4	lath ?	9.1	m	
	Q	Ø	Ó	-	6		1 welle	g - m	old i	8.1	100	
tist. (m	1	2.8	4.2	Ð 5.6	@-7			di	pth:	510	m	
up lan	23	16	10	9	8			0				
el (m/s) 1.0.	0,7	0.6	0.4	0.6		dist.	0	Ø	Q	Ø	Q
-		1				-	Msc.	1.35		5		
from	nght	to left	bank.				deals	15	0.01			
	~						dephi	15	28	22	14	
KL							val	0.4	0.1	0 /		
10.08		l						0.1	0.6	0.6	0.5	0.3
	1 6											
	1 w	8.3m					from	loft	to vigi		1. 1.	
		8.0m					1		- C rigt	14 100	anc	
e vica	a	32 cm	7				OTU	059	3548		NAD	00
	~	0						7090	510		- 1410	62
A.C	0	0	0	- CU	3							
np.@	1.3 7112 8	2,60	3,9		6.5							
in which	# 0.3	13	13	17	24							
	7	5 015	0,5	0.4	0,4	C						
41	JP- 2	00		10	1							
			_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							41
										1		
				-	_	_					Peite in	the Rain

.....

ЧИКО	n wou	JM		Sept :	24,2020	Sept 24, 2020
Fallow voad Idanes	-621 ecd mi to ut	nere n avked	aneche Decel cr 10000 c	ussh-	own	- have up to KM 10 noted: - have the many around on operation, however could have ten it surger, large claims and difficult to see from weid.
TOOK	sampi	e and	ed in 5 meas	uly.		= operations and unredmartenal extensive tou surcs.
0:	FO		9389° 99938°		ad 83_	
dis-L m	0	2.2	Ø. 33	Ð 4.4	5.5	brage and Hester Creek Inport. Hester is a small montary.
depth cin	7	9	6	6	24	YPS-05/ 63°59'30.5 "N NAW 33 13902'29.3" W
vel n15	0.6	0.6	0,7	0.4	1,1	pankarlwich. 9.2 m
From	rgh.	to left	bank			
Lett(cl	al uidh uidh depan		8.2 m 6.8 m 16 cm		9 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 (\mathbf{w})

12:08	Sept 24,2020		4		So	20+24,	2020
outton Km/D		117.8	do h	D	-		- Sec.
pesimamby hes	C CLEEK	14.19	mill			1.1	
-alterow of from 1		8.38					
Hunker (setting pund		0.66 - 14	POR	1			
0 P			÷.		_		
45anx Ban							in the
ang velocity 1.3 m	15.	12:20	9				
at "wer", fully ce					_		
In this aross sector	, unters	samp	ed up	Schred	m o	t and	nere
some water fairs	mout	W Hes					
allung warn.							
		KM1					
Major 15 dear		bankha					
		Wetted.					
N 63° 59 298"	u .		depth	i M	aloo 3	san	<u> </u>
-w 139°02'26.6	· · · · · · · · · · · · · · · · · · ·						-
			\bigcirc	D.	Ĝ	Ð	6
6.48 puroiding (NTY		distance Un)	1.2	24	3.6	4.8	6
7 200 11		de al	9	12	8	13.	18
7.22°C Jemp		I and		12	0	13	. 10
0.735 million SPC			0.3	0.6	0.5	0.6	0.7
0.485 msS/cm cend 0.477 tosao		= (mls)	0.5	0.4		0.0	- · · · ·
0.36 sal	1						
		from 1	raht h	n left	ban	K	
			0.0	- 10-11 I	2017	F	te in the Rein

1.29 10/22 1	20/04	24,2023	YUKON	woom		1	Sept 2	4,2526
63° 59' 29.6 N 139°02' 25.9 W			10 anit	1 cura	20 :-	8m		a fr menter merte
(NAD 83)			Wette	mars		HIGM		
				depth	246.5	35m		
13.30	12			Ø	.0	Ø	Ð	A
1PS-GR4 X			dist.	0.75	1.5	2.25	3	3.75
			alephn (cm)	- 18			14 ¹⁰	
discrepency tax points i	navre	121		.7	12	-18	at	26
an GPS and unat was	no	1	(m(1)	0.2	0.3	0.6	0.7	0.6
nonced motos (2 0	at's		non 🖬	ngn	to C	ett be	ank.	
0 9 YPS-614) no	mnk							
narked hear winten	cood.				_			
ampled Q.			-					
			1					
63° 59'06.9" N 139°01'011" U	Mad	83		-				_
			I —			•	-	
	5	· .						
				V	_			

1411	540+24,2020	4:36		1	Sept-24	2020
KL HUOS		#1 KL-Hu	-60.01			
bankhilundhi 73 neited unath 29	m E	bunkar u	ah 46	on		
depth 430		uettel vie vettel der	2h, 210	m	~	0
dist 05 1 15	@ \$ 25		D	Q	40	S
(m)	(d) (1) 2 32 32 32 32		15 1.5	2.25	3	3.75
vel 0,2 0,3 0.9	32 11	depty. 5	(q.	11	12	11
(mis) " nght to left bank		(mis) 0.1	0.5	05	0,5	0.5
057 GPS						
126° 58 59 511				loanic		
NAD 83		63°57 138°58'	50.7	N W		-a:
		- NAD 83.				
4 ²						
						r the Rain

×.

13	07		-	Sept 2	4,2020	40KON WOO M SCOT 24, 2020
KL-H						15:20
vedice	et work.	5,4	MA.	2		YPS-079
camenal	uidh.	10.1				Droxedown from Hurker racial
rested	depth.	29	cm			House and through placer
	Ø	Ô	B	Ð	6	Operation to get to ste-
m m	0.9	1.8	2.7	3.6	4.5	area upshearn is heavily
laph cm	10	13	9	6	4	remarked Noted large setting pond on the may.
al no15	0.5	0,5	05	0.3	0.)	NO observed shirely of activity
leta	to ngr	rt bart	and the second sec			63°57'41.5" 138°57'22.3"
_	62 5	7 50.	6			138°57'22.3 N/m 52
	13805	57'56.	. , , ,			Same as July
	NAOS					
	-					
					10	
						Pett in the Rein

Yukon	WOOM			Sept 2	4,2020	Yu	KON	WOON	1	sep-1	24,2	020
	1 und		2 m				5:15	3/		>	(9)	1 1
	urang dizon		lem Icm				M20	<i>T</i> #	PS-GU	/		n en
_	0	0	B)	۵.	5				rdn:	3.3		
(m)	0.75	1.5	2,25	3	3.75	- lue	Atco	dip		3.0 30cm		-
eyoth Canil	5	10	12	10	6			6	Ō	Ð	Ð	6
vel,	0.3	0.6	0,6	0.6	0,4	dist (m		05	_/	15	2	25
inis-	9) 				2.1	desp (Um	n	23	24	22	19	6
						yel (m		0.6	6.3	0,5	0.1	01
	1 ¹							1	U.		1	
			. 2			13	5 50	658. 4'24	5"N 4"W			
							AD 8.					
				-								
-												
		P.1					4				4	lte in the Rain

YUKO,	n noc)M		Sept 2	24,2020	-				1.0	Sept a	24,
16:0							KI-10	57 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2020	-
YPS	- 078						-M-la	aug				
locan	anya	Here	to p	vad			Upstre	enn 2	onß	on h	xd	
_	\bigcirc						630	4 54	11 M			
138	0530	2.5"	N				BB 53	3'046"	w			
-	under	-					bankf	n ura	th:	3.4	m	
	al uld		4.1m				nested	uida	2.	3	m	
	dept		S.7m 31cm				netted	depth	12 a	24	cm	
	6		40	0			diel	0	Ø	Ð	Ð	3
use.	0.7	62	21	0	G			0.5	1.0	1.5	2.0	325
m			6.1	2.8	3.5		depth (cm)	7	6	7	16	9
m	9	(q	6	5	9		(mis)	0.5	0.2	0.2	0,7	0.6
e1.	0.4	6.1	6.6	0.2	0.5							
n15 -												
									2			
						1_						
_												
		-									a	In the Rein.

MUKON LOOM	sept 24,2020					Sept 24 2024	
aner and tothe tothe of		=1 KL_HO			NASIA		
		ory o	Noe on t	ion to	c Wor	vade	itter] .
left humer forme here		2 site		1.1			
gave (upper road is	locked		2	u			
(0°54/000"		63 5	3 25	7" - N	<u> /></u>	14083.	
63°54'02.3" 138°53'23.9"		L 138° 5	5 34	4 " U		1	
······································		banka	d and	No 1	25	m	
		uerkel	ind	th :	1.5	m	
the and brackange	ny giant	uerted	dep	m :	18	cm .	
the and be change o	cone.						
63°53'57.3" N			0	and the second sec	Ô	Ð	B
63 53 57.3 N (38° 55' 35 8" W		dist.	0.25	0,5	0,75	1.0	125
<u>, , , , , , , , , , , , , , , , , , , </u>		apphy	5	5	4	6	4
			1.0	0.2	0.1	0	0
		cmis)			- Vet	(LOD)	(20.1)
						R	Ein die Rin

YUKAN WOOM	Sept 241,2020		1	[sept 2	4,2020
end of plater acc US from 1408	285 Deral,	Dankful un murch una neurch una		3.9 m 1.2 m		
63°53'11.5" 138,°55'42.4	NA093	And anald	-		t-ful i	wretthe
tox photo.				-1		
M 17:537		■ distance. 0.2 ■ dapth. 4 	0.4 5 0.2	0.6	0.8 4 0	1-0 4 0 0 m
neu potential re. stahen		18:445			0	
wanted along or o		63°54'37.	8 ¹¹	· · · ·		
Ann where you steeper gradu y puter valley	d ended.	138°53'03.	MR.			
picked or nice can	And anamal.	banient nic		1.1	m M	
63°53'06.9 N 138°55'45.7. U	NP10183		e i	23	CM Bu	
		deptr 8	0.4	0.6 7	0.9	© 1.0 4
		mis 0.2	0,3	0.3	D.L	ten Other.

*

ukkon woom Sep125,2020 velennet: valing Woke up to duizely tain progessed hppcarance: to valing conditions by 8:50. made coc. for Y.G. (yell our paper. 10:00 NADO? Mark VL-ALO/ 07 V 0616 # to 10:00 NADO? Mark VL-ALO/ 07 V 0616 # to 10:00 NADO? Mark VL-ALO/ 07 V 0616 # to 10:00 NADO? Mark VL-ALO/ 07 V 0616 # to 10:00 NADO? Mark VL-ALO/ 07 V 0616 # to 10:00 NADO? 10:00 NADO? 10:10:10 10:10:10 10:10:10 10:10:10 10:10:10 10:10:10	hay	112				YUKON WOOM	Sept 25 -, 2020
to vainy conditions by 8:50. made coc for Y.G. yell ou paper 10:00 NADS? MA KL-ALDI 07 V 0616780 Ha KL-ALDI 07 V 0616780 Ha KL-ALDI 07 V 0616780 Ha KL-ALDI 07 V 0616780 Hog800 aking a couple samples in 11 gold ciev, Locahan = 5 min Rom pauson an me Lay back to universe a samuent undth: 79 4 7.9 Whed wath: 9 7.9 Whed wath: 9 7.9 Whed wath: 9 7.9 Whed is a for the sampled by: Channel just upsprant of	ILIKON	waam		Sept 24	12020	vieanner: rainy	
Made COC. FOR N.G. (yell an paper Distributione 10:00 NADO3? M VL ALOI 07 V 0616 780 Jaking a couple samples in Banks aie barge blocks of vock Jaking a couple samples in Sme Smile aug bank (ueok all gold clear, Location me Sme Smiles aug bank (ueok Iay back to uniteloge Sampled bai sampled bai 73 authod dapm: 79 authod dapm: 79 authod dapm: 79 authod 30 @ 30 @ 20 authod Sampled bai authod Sampled bai	HOKE (TO VA	up to d	nizzly h nauhons	by 8:50		dear, odouness	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40:00 10:00 144 10:00	KL-AL	er NAD 07 07 07	V OGIG7 FO980 plosim		Distribunce In area heavily re Barris are large blu Engineered chan viget/debns. Drie Smiles ally	als of vock. nel.
1156 1.35 (m) Sand bar Notes: (m) Sand bar Channel 1051 upsprann 61	zanka Nekd	n wia	145: 79 12: 9	9		sampled for: 735	j.
(al 0.6 0.3 0.1 0.3 D.9 (a)	list (m) Uph (m).	1.35	sand	94/	© 1	Notes: Channel just upst highway ourvest.	uans of

YUKON WOOM SEPT 25, 2020	YUKON WOOM SEPT 25
TIME	11530
TEMP 2.44°C	block up extent of passable wad
SPC 0.297 cendi 0.109 ms/cm	to hyand access undisturbed area
TDS 0.193	at Gold "bottom, but wad took us
Sal. 0.14	
bo 12 14.32	grunned around
p0 d/0 104.8	
PH 7.51	establishing station upshear
	of anguersa to lucky creek,
1416. 332 * NTU	Incheoma of And and disputed
	area.
ATWA dity meter irady hum	
zeroral ul blank to get leady.	Mot ansidered a veterence
1 NTU = 1.32 14.	Staha
-1N14 = 1.10 $2nd$	
	KL-ALO2 (Check I 46 HOR
flow toward highway	hame).
rapads, amall untertails.	
	banking work T.3 M
★ DUP-300	werted width 3.7 m
	nerved depty 27 cm
	dish D O O O O
	[m] U.O (-L 1.0 d.T 3.0
	- c(m) 21 LT 24 15 VI
	King 0.2 0.5 0.6 0.3 Reter Defan.

×.

YUKDN	WOOM	Sept 25,207							A
Incato	n of ner	n Station :							
07	1 061	1716							
	102	38481							*
NAO	83.	4		-	ű.			_	
1 4/10		e							
	DACK	- O LILETITADO							
DROVE	BRE	TO UHITED P			2				
	No.								
								12	
		-							
			_						
							_		
						-			
									Rete in the Rain
								1	till in the Main.

C HEMMERA

Location ID: YPS-614		Project Number:			Date: Sept 24, 2020		
Sampler: CH NM & AB	Project Name: YU	20	Sampling Method:				
Weather/Temp: Cloudy				Photo No.	-		
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	brown, SU can su li in bolle,	7, cannot	see bottom of shallow sec own.	deapest	scorons, my clear		
Flow Direction and Intensity:	brown, Silty, cannot see bottom of deepest scorons, can see bottom in shallow section nearly clear in bottle, faint brown. N, netres, some unite caps of roces.						
Depth of water (approximately):	7-27cm.						
Disturbance (i.e. rain, surface water flow from other areas):	norre.						
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	occassion	ner truig	or leaf. les	its subm	reged.		
Sampled for:	769.	-					
Comments/Notes	trugs thees to bank of creek, under rubed area. (although place oet ulty hearing)						
Field Parameters:	· · · ·		. ,				
Time :	12:32						
Temperature (C)		.23	DO (mg/L)	14.03	(110.4 %)		
Specific Conductivity	0494 1	(ond: 12307)	pН	7.91	N.		
TDS (g/L)	0.321		ORP (mV)	17.4			
Salinity	0.24		Turbidity (NTU)	23.8			

CI HEMMERA

Location ID: 12M10		Project Number:			Date: Sept 24,2020
Sampler: OH NM 2AB		Project Name: HU	KON MODH 303	0	Sampling Method: GRAIB
Weather/Temp: cloudy, cor	21.			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	braun; 571	of oneek	hy sa both	n in sha	llavest
Flow Direction and Intensity:	West				
Depth of water (approximately):	8-1	8 cm.			
Disturbance (i.e. rain, surface water flow from other areas):	Nure add	evled.			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	vare lead				
Sampled for:	75S -				
Comments/Notes	uls of cur Contrated Vegetated	thurse the the incide-st	Hester Creek (?) and is an	n outflow nks are
Field Parameters:		14) 14)			
Time :	12:27	*			
Temperature (C)	4.72		DO (mg/L)	13.45	(105.200)
Specific Conductivity m5/m		nd: 0.223	pH	7910	(100.0)
TDS (g/L)	0.343	V 200	ORP (mV)	7.8	
Salinity	0.25		Turbidity (NTU)	25.5	NTU

HEMMERA

Location ID: YPS -051		Project Number:			Date: Supt 24,2020
Sampler: CH HM & AB	Project Name: - N	ukon woom zon	90	Sampling Method:	
Weather/Temp: CLOUdy				Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)		in, ho do			
Flow Direction and Intensity:	west, large	notes is	mall tapids o	ice screac	ie of locks
Depth of water (approximately):	n 15-170	m			
Disturbance (i.e. rain, surface water flow from other areas):	innow fre	om small	mbutany (Hegker cre	ier)
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	None.				
Sampled for:	785				
Comments/Notes	sampled infigur, 1 achary.	dis of b trea surrou	unding creek a	tal broye distu-becci	z Hester by place
Eista Devenue stand	1				
Field Parameters: Time :	11:40				
Temperature (C)	11:53		DO (mg/L)	15.81	(1290%)
Specific Conductivity	4.95 0.59 cm	1. 0 214	pH	7.84	1011
TDS (g/L)	0.384	0.364	ORP (mV)	- 24.2	
Salinity	0.29		Turbidity (NTU)		
Juminty	1V. OL			30.5	

CI HEMMERA

Location ID: YPS -621		Project Number:			Date: Segat 24, 2020
Sampler: CHT AB ZNM		Project Name: YUKON WOO	M 2020)	Sampling Method:
Weather/Temp: Overcast.				Photo No.	L OLAS
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	grey-brou where s	n (SILM) can s	ee port	in St alex	is boltom
Flow Direction and Intensity:	NW				
Depth of water (approximately):	7 - 24m	1			
Disturbance (i.e. rain, surface water flow from other areas):	Norle.				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	None	i i			i e
Sampled for:	T55				
Comments/Notes	Surroundin tailings). 3 as will as	7 area distributed l multis up to bank s reworked alluviu	n pro	d allerian ans of me is drove b	Morecanans, unmediouse stell
Field Parameters:					
Time :	1212222		-		
Temperature (C)	4.82	DC	0 (mg/L)	106,500	13.61 mg/2
Specific Conductivity "?	0.051 con	d: 0.400	pН	7.80	
TDS (g/L)	0.423	OF	RP (mV)	0.4	
Salinity	0.32	Turbi	dity (NTU)	45.0	

CI HEMMERA

Location ID: KM20 (YPS-6	u)	Project Number:			Date: Sept 24/		
Sampler: CH NM 2 AB		Project Name: NUKAN WOOM 2020		20	Sampling Method:		
Weather/Temp: abudy				Photo No.			
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	simi :		ur, clear		of of		
Flow Direction and Intensity:	NW, SN	nall rapids, nthe.					
Depth of water (approximately):	n 20cr	n 20cm					
Disturbance (i.e. rain, surface water flow from other areas):	snall c	Snall creak contruence upstream.					
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	learces	along shore.					
Sampled for:	755						
Comments/Notes	sample or up h heave	sue hear voac o bank, felation-u ly disturbed 6	, moss 2 molishirla p 2 dou	Vegetation and Creek	alhoungs		
Field Parameters:		The cleak coming u					
Time :	15:51	1			(4)		
Temperature (C)	5.55		DO (mg/L)	1359	(108 7)		
Specific Conductivity ""S	0.477	0.300	pН	8.00			
TDS (g/L)	0.310		ORP (mV)	16.1			
Salinity	0.23		Furbidity (NTU)	12.3.			

CI HEMMERA

Location ID: YPS -079		Project Number:			Date: Sept 24,2020
Sampler: CH NM 2 AB	Project Name:	Yukon woom 20	90	Sampling Method:	
Weather/Temp: doudy co	sol, dave	to to the	orce.	Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	home lis	un, can s	a bottom of s	hallon c	ier
Flow Direction and Intensity:	west non				
Depth of water (approximately):	6-12cm				-
Disturbance (i.e. rain, surface water flow from other areas):	extensive ; active place	enority l	upstream. Ho obstreet /_	knaun/das	forcal "
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	noro		- P-		
Sampled for:	TSS				1
Comments/Notes	in area c	y genatic	ons à recconced	allution	2
Field Parameters:					
Time :	15:29				
Temperature (C)	6.00		DO (mg/L)	13.96	1111.9%)
Specific Conductivity	0.481 and.	0.207	pH	802	
TDS (g/L)	0.313		ORP (mV)	5.2	
Salinity	0.23		Turbidity (NTU)	13.8	

Location ID: KL_ALOI (AI	1001d orek)			Date: 5404 25, 2020		
Sampler: CH NN & AB		Project Name: 40Kon woom 202	90	Sampling Method:		
Weather/Temp: dvizzly, Gen	cast		Photo No.			
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	cuar, ode	gurless				
Flow Direction and Intensity:	perpendicular to highward					
Depth of water (approximately):	12-30 cm					
Disturbance (i.e. rain, surface water flow from other areas):	light rain.					
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some skinks around bank but champel in heaving removed area in constructed/removed champel. Engineered channel.					
Sampled for:	TSS					
Comments/Notes	upstram of highway current below mints operation, in nearly disturbed and remarked area.					

eld Parameters:				
Time :	10:00			
Temperature (C)	2.44	DO (mg/L)	14.32	(104.80%)
Specific Conductivity/mS/C	m) 0.297 cond. 0/69	pН	7.51	
TDS (g/L)	D.193	ORP (mV)	66.6	
Salinity	0.14	Turbidity (NTU)	3.32	

* DUP-300 *

CI HEMMERA

Location ID: 1/L-A/_0	> * new station	Project Number:			Date: Sept 25, 2020
Sampler: CH NM & AR		Project Name: -			Sampling Method:
Weather/Temp:				Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	alear, adolu	less.			
Flow Direction and Intensity:	the Ea	si, vi plus.			
Depth of water (approximately):	11-29Ch	1			
Disturbance (i.e. rain, surface water flow from other areas):			rainity or diasu	Nice!	
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	leaks, gra	nss up to nubs.	& bounks -		
Sampled for:					
Comments/Notes	Lacition se and existing	lected for he - operation	w lest station (not active a	uls of 10 unientry).	nexy were connerce
Field Parameters:					
Time :	11:43	-			~
Temperature (C)	1.76		DO (mg/L)	18.06	(126,200)
Specific Conductivity	0.256 ms/cm	0.142	pH	7.27	
TDS (g/L)	0.166		ORP (mV)	13.7.	
Salinity	0.12		Turbidity (NTU)	12.40F	NTU

1.0 KT U aveck 1.32

* DUP-200

Location ID: KL-HUO3	Project Number:	Project Number: Project Name: - YUKON WQOM 202-D		
Sampler: CH HM Z AB	Project Name: - YUKON			
Weather/Temp: Cloudy, du	×1.	Photo No.	ORAB .	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Slipy, cannot see bottom, n	0		
Flow Direction and Intensity:	NNW			
Depth of water (approximately):	8-24cm			
Disturbance (i.e. rain, surface water flow from other areas):	some melles, generally floi	+ Ae-w		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	som granz, grassy aler no significano delas in	27 band", Alan		
Sampled for:	755			
Comments/Notes	sampled benueen ford à area heaven distributed bu or heard from sile.	londge. Marsed 44 NO Monse cr twicks on roa	activity VISIBLE	

Field Parameters:			
Time :	10:05		
Temperature (C)	4.90	DO (mg/L)	119.1 " 15.05 hall
Specific Conductivity	0-675 and: 0.416	pН	7.70
TDS (g/L)	0,439	ORP (mV)	10.0
Salinity	0.33	Turbidity (NTU)	48.9

Location ID:	Project Number:		Date:
Sampler: CH	Project Name:	Project Name:	
Weather/Temp:		Photo N	Jo.
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)			
Flow Direction and Intensity:			
Depth of water (approximately):			
Disturbance (i.e. rain, surface water flow from other areas):			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):			
Sampled for:			
Comments/Notes			
Field Parameters:			
Time :	•		
Temperature (C)		DO (mg/L)	
Specific Conductivity	-	pH	
TDS (g/L)		ORP (mV)	
Salinity		Turbidity (NTU)	

* DUI2-100

SURFACE WATER SAMPLE COLLECTION SHEET

CI HEMMENA

Location ID: YPS - 386	Project Num	nber:		Date: Sept 23,2020
Sampler: CH NM 2 AB	Project Nam	ne: Yukon WQC	Sampling Method:	
Weather/Temp: 1000	cloudy dry.		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	clear, od ouress.			
Flow Direction and Intensity:	south, niffle, sor	re while caps	5	
Depth of water (approximately):	up to Andreus u	laber trailer	17-61cm	
Disturbance (i.e. rain, surface water flow from other areas):	NUMO			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Nono			,
Sampled for:	TSS.			
Comments/Notes	Claim 14km up 1 no activity or distu	from sample	unglocation.	neek

Time :	16:56		
Temperature (C)	4.20	DO (mg/L)	12100/ 1576 24/1
Specific Conductivity	0.224 ms/an cong.125	pН	7.91
TDS (g/L)	0.145	ORP (mV)	22.8.
Salinity	011	Turbidity (NTU)	3.60

Location ID: UN_OKO		Project Number:			Date: Sep-12	3/20
Sampler: CH MMZAB		Project Name: MUKON WOOM 2020				d:
Weather/Temp: Overcast			Phot	to No.		
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	light bre	eur .				
Flow Direction and Intensity:	South					
Depth of water (approximately):	0.10 - 0,5	5 m				
Disturbance (i.e. rain, surface water flow from other areas):	nare obs	exect				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	lok of ve branches	setatoriand debris. Ma cheeks, impossy	bank		4	30
Sampled for:	TS -					
Comments/Notes	sampled a	above jound.				

ield Parameters:			
Time : 16	-15		ſ
Temperature (C)	94	DO (mg/L)	1047 00/14.07-m/L
Specific Conductivity	let mstern eme 283	рН	8.01
TDS (g/L)	430	ORP (mV)	19.4
Salinity 0	32	Turbidity (NTU)	16.9

Temperature (C)

Specific Conductivity

TDS (g/L)

Salinity

94

110

7-8

22.4

929

ALA

mill

Location ID: KL_BO_ADO1-	-2_	Project Number:		Date: Sept 23,2020
Sampler: CH NM/AB		Project Name: YUKON K	00M 2020	Sampling Method:
Weather/Temp: DUNCaSt	100 A		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	cannot see	s Wottum of cleek	very turbid.	
Flow Direction and Intensity:	East, htte	25		
Depth of water (approximately):	sa otro	r instes (114cm)		
Disturbance (i.e. rain, surface water flow from other areas):	shuay	upsream		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	occassion	-pi lead à trus	in frow	÷ .
Sampled for:	TSS -			
Comments/Notes	sluian dec upstream	gung upshearn (p	place operation	immediale.
Field Parameters:				,
Time :	14:55			. 1

DO (mg/L)

pН

ORP (mV)

Turbidity (NTU)

ms/cm

 $\overline{\Lambda}$

Y

ちぞう

371

28

5.21

0

()

Card

8/1

0.351

CI HEMMELA

Location ID: KL - BO - ADO2	- 2	Project Number:		Date: Sept 23,2000	
Sampler: CHY NM ZAB		Project Name: · V	Project Name: YUKON WROM 2020		Sampling Method:
Weather/Temp: Mannuday.	sume cloud	2		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)			sce looken of o	ncel	
Flow Direction and Intensity;	BUSI, HISI	91.0			
Depth of water (approximately):	See Gren	notes	÷		
Disturbance (i.e. rain, surface water flow from other areas):	Quicing u	pStream a	t mans age	rahan.	
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Olcas S Gra	d leat/hu	2-3		i i i
Sampled for:	735.				
Comments/Notes	Shriay e	etters ap	parent colle at cy	actual to ca actual ski 289100 im	mediale wastern
Field Parameters:					
Time :	15:04				1
Temperature (C)	4.98 0 1		DO (mg/L)	104.0	/13.22 mg/L
Specific Conductivity	0 569 mJan	cund. 0.35-)	pH	13,00	
TDS (g/L)	0.340		ORP (mV)	18,2	
Salinity	0.28		Turbidity (NTU)		11

Location ID: KL-BO_KDO2	(YDS-A7)	Project Number:			Date: Sept 23/20
		Project Name: YUK	ON WOON 202	D	Sampling Method: GPAB.
Weather/Temp: COOL CLOI	idy			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Sightag	more hirbia	I than hol others of ace	k in h	nost parts.
Flow Direction and Intensity:	East, NF	fres			
Depth of water (approximately):	~ 0.14m				
Disturbance (i.e. rain, surface water flow from other areas):	Nono VISIBI Scitting por	1 mm stre	havely million mapshean	or discr	age Ann
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	sprile ile	aves alorg k	prink, and in	Mar,	
Sampled for:	TSS				
Comments/Notes	dourstea large open	ph. CHIK A	tons along a side of	cless h	ansists of
Field Parameters:					
Time :	10:14	•			1
Temperature (C)	2.37		DO (mg/L)	90 112.8	1 15.3 woli
Specific Conductivity	0.534 ms/c	in ozoz	pН	7.73	
TDS (g/L)	0.347 012		ORP (mV)	16.1	
Salinity	0.26		Turbidity (NTU)	12.3	

Location ID: KL_BO_ADO5	Project Number:			Date: Selpt 23, 2020
Sampler: CH MM 2 AB	Project Name: 44KON WOOM 2020 Sampling Meth			
Weather/Temp: CODI 2 Cloud	N		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	clear, ode	dierle-SS		
Flow Direction and Intensity:	bast, smo	ul steps, niffles.		
Depth of water (approximately):	4-14cm			
Disturbance (i.e. rain, surface water flow from other areas):	Nore			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	leanes alo shokined	ng bank z occasso over side of beir	nally introvus, fe Ir, have traine ad	w branches served inscreek.
Sampled for:	TSS			4
Comments/Notes	veterence e upstream	station upstream, of confluences w,	of activity by a other checks (i.e	at least 1km. . stampede)

ield Parameters:			
Time :	12:55		
Temperature (C)	1.05	DO (mg/L)	104 90/ 145 m/2.
Specific Conductivity	O, 218 cm (O, 12/ms/cm)	pН	7.47
TDS (g/L)	0.[4]	ORP (mV)	28.3
Salinity	0.10	Turbidity (NTU)	1.69

CI HEMMENA

Location ID: KL_BU_ADOH /Y	PS-A4	Project Number:		Date: Sept 23, 2020	
Sampler: CA NMZAB		Project Name: - MU	KOM MOON 2020		Sampling Method:
Weather/Temp: cloudy, h	4-10°C			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	clear, oder	UMESS			
Flow Direction and Intensity:	East, niff	res, one ca	y small rapid		
Depth of water (approximately):	11-280				
Disturbance (i.e. rain, surface water flow from other areas):	Nove.				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some. Lech	s in incortace	ek, à tree brar	nches.	
Sampled for:	TSS				
Comments/Notes	close to roa starm be	ad very clear	r water (can	se entre	Coltrn OJ
Field Parameters:					
Time :	11:57	•			
Temperature (C)	1.88		DO (mg/L)	115.6%	H037 15.80 mg/l
Specific Conductivity	SPC 0.431ms	Icon cond and in	pH	7.70	
TDS (g/L)	0.280	-	ORP (mV)	24.5	
Salinity	0.21		Turbidity (NTU)	2.35	

Location ID: YPS-AI/KL-BC	LADO1	Project Number:			Date: Sept 23,2020
Sampler: CH MM Z AB		Project Name: - NL	Sampling Method:		
Weather/Temp: 70C, UDUO	M.			Photo No.	
Appearance & Odour ' (Clear, Silty, HC sheen/odors, film, etc.)	clear,	can see bob	ton of shall	sw creek	· ·
Flow Direction and Intensity:	Mainz	east, viffu	S .		
Depth of water (approximately):	9-2	-1 cm	-		
Disturbance (i.e. rain, surface water flow from other areas):	Nare	observed.			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Some bank a allusiu	mposid of a mposid of a m from pla	ally zaro debu allumium and a actually.	s in thou lar ren	orked!
Sampled for:	75S.			1	
Comments/Notes		d another so	ample at loc upspecim.	ation du	nny active
Field Parameters:					
Time :	9:35			Salar	/
Temperature (C)	211		DO (mg/L)	Imie	10/ 14.2 mylL.
Specific Conductivity	0533	mslem	pH	7.80	- preservice.
TDS (g/L)	D 347		ORP (mV)	12.7.	
Salinity	0.26		Turbidity (NTU)	8 05	

Location ID: KL_BO_A:00.3		Project Number:			Date: 300-123,2020
Sampler: CH NM Z A.B.		Project Name: - YUKON	100M 20	30	Sampling Method:
Weather/Temp: parmy cloud	04,2001			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	Clear				
Flow Direction and Intensity:	East , niff	us.			*
Depth of water (approximately):	8-26 cm)			
Disturbance (i.e. rain, surface water flow from other areas):	None.				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	occassional	Leonces			4
Sampled for:	TSS				
Comments/Notes	detudfall, s generaliy	teep slumped bo viffu	inks som	nall rapid	our lock,

eld Parameters:			
Time :	utiments 11:25		1
Temperature (C)	1.00	DO (mg/L)	103.900 / 14 34 mall
Specific Conductivity	0/11/11 10 01 10-15	found pH	7.65
TDS (g/L)	0.301	ORP (mV)	19.7
Salinity	0.23	Turbidity (NTU)	3.12_

CI HEMMENA

103

7.13

28.2

12.70

ài

DO (mg/L)

pH

ORP (mV)

Turbidity (NTU)

SURFACE WATER SAMPLE COLLECTION SHEET

Temperature (C)

Specific Conductivity

TDS (g/L)

Salinity

50

129

10

213 msi

and OITT

Location ID: KL BO-ADO6		Project Number:		Date: Sept 23, 2020
Sampler: CH MM Z AB		Project Name: VUKON WOOM	9090	Sampling Method:
Weather/Temp: doudy 5	-10°C.		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	clear			
Flow Direction and Intensity:	East, sma	all steps, nifeles.		
Depth of water (approximately):	12-18 0	m -		
Disturbance (i.e. rain, surface water flow from other areas):	None.			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	some loon	os along bank z in u	valer,	:
Sampled for:	TSS			
Comments/Notes	reference.	Station upstreen		
Field Parameters:				
Time :	1-50-5 1	3:22	-7p;://	_

Location ID: STAMPEDE MOR	Project Numb	er:		Date: 500123,2020
Sampler: CH MM Z AB	Project Name	NUKON WROM 2	020	Sampling Method:
Weather/Temp: cool son	ne cioude.		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	nearry dear, light	t brown colour		
Flow Direction and Intensity:	East -			
Depth of water (approximately):	4-26 cm			
Disturbance (i.e. rain, surface water flow from other areas):	NO.			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Leaks fronting on some organics m	top, along bank	2	
Sampled for:	TSS	Circoull		
Comments/Notes	Sampled just upstree Adorns creek, star	mon of waterfalls mode parallels,	rastad y di Adams be	the confluence
Field Parameters:				
Time :	14.16			1
Temperature (C)	3.53	DO (mg/L)	112.2010	1/ 14.85 mm/c
Specific Conductivity	0.570 mls/cond () 23		7 SD	1
TDS (g/L)	10,371	ORP (mV)	21.0	
Salinity	0.38	Turbidity (NTU)	a.30	

Specific Conductivity

TDS (g/L)

Salinity

Location ID:	Project Number:		Date:
Sampler: CH	Project Name:		Sampling Method:
Weather/Temp:		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)			(A)
Flow Direction and Intensity:			
Depth of water (approximately):			
Disturbance (i.e. rain, surface water flow from other areas):			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):			÷
Sampled for:			
Comments/Notes			
Field Parameters:			1
Time :			
Temperature (C)		DO (mg/L)	

pН

ORP (mV)

Turbidity (NTU)

63.62840°N 137.60727°W

CI HEMMENA

		Project Number:		Date: Sept 22, 2620	
	Project Name: WOOM 2020			Sampling Method: GRAB	
n	1		Photo No.		
brown in	cleek, ear in boltc	7			
19-57cm	19 - 57 cm				
Flowing So	Flowing south towards landge.				
None assenced					
Generaut	y none, dea	sslomat lea	£	÷ .	
TSS					
Sample je Cieck to	er 100Ks dean bod. Samples	I however, ca I upstream	from bi	botton 04- nalge.	
15:25	•				
		DO (mg/L)	1797	. 1%: 997	
	MSIGM	pH		-/	
	J/L.	ORP (mV)			
0.08		Turbidity (NTU)	27.6		
	nearry de 19-57cr Flowing So Name ass Banple as Cieek to Cieek to 15:25 435 0.162 0.162	horown in cleek, hearny clear in botto 19-57cm Flowing south towards Name assented Banally hone, acea TSS Sample jar looks dean creek to bad. Samples 15:25 435 0.162 Mslam 0.10521	hour in cleer, heary clear in botto 19-57cm Flowing south towards bridge. None assented Benerally none, accassional lea TES Sample jar 100Ks clear, however, co cleek to bed. Sampled upstream 15:25 4:35 DO (mg/L) 0.162 Mslam pH 0.105 J/L ORP (mV)	M Photo No. brown in creek, nearly clear in botto 19-57cm 19-57cm Flowing south towards bridge. Name assented Bandy none, acassional leaf 5cnerally none, acassional leaf TSS Sample jar looks clear, however, carnol see, cleek to bed. sampled upstream from bit 15:25 4:35 DO (mg/L) 15:25 4:35 DO (mg/L) 0.105 J/L	

Specific Conductivity

TDS (g/L)

Salinity

Location ID:	Project Number:		Date:
Sampler: CH	Project Name:	Project Name:	
Weather/Temp:		Photo No.	·
Appearance & Odour(Clear, Silty, HC sheen/odors,film, etc.)			-
Flow Direction and Intensity:			
Depth of water (approximately):			
Disturbance (i.e. rain, surface water flow from other areas):			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):			
Sampled for:	1		
Comments/Notes			
E:-14 D			
Field Parameters:			
Time :			
Temperature (C)		OO(mg/L)	

pН

ORP (mV)

Turbidity (NTU)

х

Specific Conductivity

TDS (g/L)

Salinity

Location ID: KL-17407		Project Number:			Date: Sept 24, 2030
Sampler: SH NM ZAB		Project Name: YUKON WQOM 2020		20	Sampling Method:
Weather/Temp: param d	andy con	c/		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	vení clear Steps z n	1 no odour Stres.			
Flow Direction and Intensity:	- NW				
Depth of water (approximately):	n4-8cm	2			
Disturbance (i.e. rain, surface water flow from other areas):	none obs	erced			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	none. (ou	assigned (cert)			-
Sampled for:	-755.				
Comments/Notes	orange ker	d sheam bed 1 1. Lots of parted	muscovi	kidized ar le -schef	nd starmed in area
Field Parameters:					
Time :	18:50				1
Temperature (C)	2.49		DO (mg/L)	13.72	(100.304)

pН

ORP (mV)

Turbidity (NTU)

7.37

4.76

13 2

0.336 ms/cm cmd: 0.192

0.219

0.14

CI HEMMERA

Location ID:	Project Number:		Date:
Sampler: CH	Project Name:		Sampling Method:
Weather/Temp:		Photo N	I
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)			
Flow Direction and Intensity:			
Depth of water (approximately):			
Disturbance (i.e. rain, surface water flow from other areas):			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):			
Sampled for:			
Comments/Notes			
Field Parameters:			
Time :			
Temperature (C)		DO (mg/L)	
Specific Conductivity		pH	
TDS (g/L)		ORP (mV)	
Salinity	1	Turbidity (NTU)	

Location ID: KL-HU-GOC	ocation ID: KL_HU_GO01		Project Number:		Date: Sept 24,2020
Sampler: CH NM & AB		Project Name: YU	kon whom add	30	Sampling Method:
Weather/Temp: COOI, dm, C	loudy			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	can see uater lig	ht brown t	shallon clea	dear in 1	sotte.
Flow Direction and Intensity:	Plong n	orth, vittle	-S -		
Depth of water (approximately):	5-12cm)			
Disturbance (i.e. rain, surface water flow from other areas):	none.				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	nore				, ⁱ
Sampled for:	TSS.				
Comments/Notes	sampled facility	at mouth a	of shearn. a	location	near nounstry
Field Parameters:					
Time :	14:36		¥:		
Temperature (C)	5.50		DO (mg/L)	110.40	(134,2")
Specific Conductivity my		1: 292	pH	8.21	
TDS (g/L)	0.202	de tot	ORP (mV)	-8.6	
Salinity	0.22		Turbidity (NTU)	16.9	

CI HEMMENA

Location ID: KL-17406		Project Number:			Date: 50,0+24,2020
Sampler: SM NMZAB		Project Name: - YU	kan waam 2020)	Sampling Method:
Weather/Temp: Cloudy, Co	10			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	light brack bothe iscle	1 Az	sceanne boths	m.	
Flow Direction and Intensity:	uest.				
Depth of water (approximately):	n locm				
Disturbance (i.e. rain, surface water flow from other areas):	none.				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	OCCASSUST	ial leat.			
Sampled for:	-785				
Comments/Notes	near sam bank (um	provide of all	m almod by a winth, grass,	unus of n	oursem output
Field Parameters:			-		
Time :	14:50	0			
Temperature (C)	6.07.		DO (mg/L)	13.88	(111.300)
Specific Conductivity		V: 0.307	pН	8.21	
TDS (g/L)	0.321		ORP (mV)	2.4.	
Salinity	0.33		Turbidity (NTU)	15.2	

Location ID: KL-HUO2		Project Number:		Date: Sept 23, 2020
Sampler: CH NM ZAB	11	Project Name: YUKON WOOM	2020	Sampling Method:
Weather/Temp: cloudy			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	sity, canv no odou	not see boltom of a	eek,	
Flow Direction and Intensity:	considerate	pour ves-2.		
Depth of water (approximately):	8-23cm			
Disturbance (i.e. rain, surface water flow from other areas):	mil see it have in	placer delivity is occur immediate vicinit	ng upskean 7.	; 514
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	leaves ab	on banks, wate in than		<i>I</i>
Sampled for:	7755.			
Comments/Notes	upstream	from ford (is 30m)		

Field Parameters:			1. C
Time :	9:20		
Temperature (C)	575	DO (mg/L)	104.9°0 / 13.27 mdi L
Specific Conductivity	0.685 and nung	pH	8.26
TDS (g/L)	1)-448	ORP (mV)	3.4.
Salinity	6.3+t	Turbidity (NTU)	(45.7

Specific Conductivity

TDS (g/L)

Salinity

Location ID: KL_HUO1	Pr	oject Number:				Date: Sept	194/20
Sampler: CH NM & AB	Pr	Project Name: NUKON WOOM 0020			Sampling Method:		
Weather/Temp: cool, cloudy	idni			Ph	ioto No.		
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	silty, cannot	+ see bo	itoria.				
Flow Direction and Intensity:	Nearly stag O.Imis ally too deeps to v	2 bank	u Row N	MW	- C		
Depth of water (approximately):	to deep to u	Nade (n.	too munu	1 20 see	bottern	7 -	
Disturbance (i.e. rain, surface water flow from other areas):	none observed	d					
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	stals à Lean	as in cu	d-r			1	÷.,
Sampled for:	755						
Comments/Notes	Beance Observe Lencel notical batance dar	ed buildin by sthy n. Mida	nr since	JUly, annel	presum 29000	ably du	re ho
Field Parameters:			10-				
Time :	8.59						
Temperature (C)	5.44		DO (mg/	′L)	114.300	/ 1439	moli

pН

ORP (mV)

Turbidity (NTU)

8.26

25.3

167.4

ano 0.420

1.60=

0.23

CHA

Im

Salinity

0.22

Location ID: KL-HU05		Project Number:			Date: Sept 24,2020
Sampler: CH NM ZAB		Project Name: - Y	ukon wqom a	020	Sampling Method: GRAB
Weather/Temp: cool, cloudy	1			Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)					
Flow Direction and Intensity:	Weest, Pil.	st inbres.	; rapids.		
Depth of water (approximately):	11-32cm				
Disturbance (i.e. rain, surface water flow from other areas):	nav.				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	deadtail	a trac de	ibns in shac	in.	
Sampled for:	755			-	
Comments/Notes	sampled	n, spoke ho hoar sa	ind bar	r, Near	_ road
Field Parameters:					
Time :	14:11	*			
Temperature (C)	5100		DO (mg/L)	1404	(111.500)
Specific Conductivity mS/	0.475 10	0.299	pH	8.13	
TDS (g/L)	0.309		ORP (mV)	8.6	

Turbidity (NTU)

1

Location ID: KL-HU04		Project Number:			Date: Sept 24, 20
Sampler: CHNM 2 AB		Project Name: - 44	KON WQOM 202	20	Sampling Method:
Weather/Temp: Over ast				Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	brown, no cennoz se	odour. er boitin e	t-reek.		
Flow Direction and Intensity:	West, nit	les.			
Depth of water (approximately):	11-280				
Disturbance (i.e. rain, surface water flow from other areas):	have been cleak he	cut off by	res à d'écrere voad, no vi	ns just a	lounshearn suis to
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	Dord. U.O.	xes alon assonal l	show sma	all hury	
Sampled for:	GRAB				
Sampled for: Comments/Notes		o kery la. net no dos agjacent to	se appropriation	n, bullar from the empty	s far away.
		no kery la not-no dos agjacent-fr	se apration enced suicing oncer a	n, bullar from mi e empt	s far dway.
Comments/Notes		o kery la nut no dos agjacent h	se garation enced studios accer a	n, bullar from thi e empt	s far away.
Comments/Notes Field Parameters:	agalant 1 distance b setting		Je goration bred Suiony DO (mg/L)		. /
Comments/Notes Field Parameters: Time :	agalant 1 distance b setting			1124	to / 14.32 mg/L
Comments/Notes Field Parameters: Time : Temperature (C)	addicent 1 distance 6 setting o		DO (mg/L)		to / 14-32 mg/L

Location ID: KL-HUOS		Project Number:		Date: Sept 24/20
Sampler: CH NMZAB		Project Name: YUKON WQOM	1 2020	Sampling Method:
Weather/Temp: Cloudy, USU	21		Photo	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	c.	odourness.		
Flow Direction and Intensity:	AMAII but	bling accor, sleps		
Depth of water (approximately):	h 6 cm			4
Disturbance (i.e. rain, surface water flow from other areas):	none obse	Nord		
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	receives in	DEE E.		
Sampled for:	TSS			
Comments/Notes	Maxi to	closed operations		

Field Parameters:				
Time :	17:31			
Temperature (C)	2.31	DO (mg/L)	17.59 (127.000)	
Specific Conductivity	0.416 ms/cm (and 0.236	pН	8.27.	
TDS (g/L)	0.271	ORP (mV)	-0.3.	
Salinity	0.20	Turbidity (NTU)	2.79	

CI HEMMERA

Location ID: KL_HUID		Project Number:			Date: Sept 24, 2020
Sampler: CH NM & AB.		Project Name: - V	ukon woom zo	9-0	Sampling Method:
Weather/Temp: aoudy, a	light sonne	6		Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	clear odornes:	5			
Flow Direction and Intensity:	N, bubb	No CLECK. S	stepped due to	graduent zi	NOCKS -
Depth of water (approximately):	4cm				
Disturbance (i.e. rain, surface water flow from other areas):	none-				
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	leaves, tu	ugs			
Sampled for:	GRAB T				-
Comments/Notes	potential	iekvence st vs. No dis,	ation, although a hubance, moss	did not p 9 stora	to banks.
Field Parameters:	-				
Time :	17:55	"	1	1.0	()
Temperature (C)	2.32	5	DO (mg/L)	(96.6.0)	0/ 13.13
Specific Conductivity		d'0.154	pH	7.61	
TDS (g/L)	0.176		ORP (mV)	15.4	
Salinity	0.13		Turbidity (NTU)	3,28	

Location ID: KL-HUDG	Pro	oject Number:			Date: Sept 24,2020
Sampler: OF NM 2 AB	Pro	oject Name: YUK	con woom ac	050	Sampling Method:
Weather/Temp: cloudy, 001.				Photo No.	
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	clear, odom	mess.			
Flow Direction and Intensity:	ntres t smal	ll haplos.			
Depth of water (approximately):	6-lleam.				
Disturbance (i.e. rain, surface water flow from other areas):	nome observe	201			
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	-lots of leaves - Nocks and sea over entrue u	alment Sta	rined oranges	col (inon	oxidanan?)
Sampled for:	TSS				
Sampled for: Comments/Notes	TSS - Oxidoithan In -Sampled 20	oled abac	e rain 0+ ford	- mosí z bank. - unclisti	shribs to
Comments/Notes	TSS - Oxidoition in - Sampled 20	oted abac om upstre	e cum of ford	- mosí z bank. -unalisti	shribs to
Comments/Notes	- Oxidoition in - Sampled 20	oled above orn upstre	e cum of ford	- mosí z bank. -unelisti	shrills to
Comments/Notes	- Oxidoition in - Sampled 20	oted abac	e com 0+ ford	- mosí z bank. -unclisti	
Comments/Notes Field Parameters:	- 0x1doithon 11 - Sampled 20 		P Curr Ot ford DO (mg/L)	- moss z bank. -unclisti	shrills to iched (recentry) (127.300)
Comments/Notes Field Parameters: Time :	- Oxidoition in - Sampled 20 - 16:38			1.	
Comments/Notes Field Parameters: Time : Temperature (C)	- 0x1doithon 11 - Sampled 20 		DO (mg/L)	16.81	

SURFACE-WATER SAMPLE COLLECTION SHEET

CI HEMMERA

Location ID: YIX - 075		Project Number:	Project Number:		
Sampler: CH NM & AB		Project Name: - 104	Project Name: JUKON WOOM 2020		
Weather/Temp: (a), aloudy	. bug 74!	Photo No.			Grab
Appearance & Odour (Clear, Silty, HC sheen/odors, film, etc.)	CIONIC IN	oks clear. data, cled) a	1 was (araig	ae?)	
Flow Direction and Intensity:	nffres and small vapids.				
Depth of water (approximately):	6-9 cm)	-		
Disturbance (i.e. rain, surface water flow from other areas):	VACE AL	transfor side a	channel duec	to us th	15m).
Vegetation/Debris (i.e. chunks of wood, reeds, grass, etc):	lok of leaves along bank and increek. Sume truigs				2
Sampled for:	TSS				
Comments/Notes	next to road (? Y.S. coordinatin.				
Field Parameters:	2				
Time :	10:15	4			
Temperature (C)	421		DO (mg/L)	13.09	(10600)
Specific Conductivity 25/	0.431	cand 0.260	pH	7.77	(100)
TDS (g/L)	0.280	U-260	ORP (mV)	10.2	
Salinity	0.21		Turbidity (NTU)	4.74	

APPENDIX C Photolog

July 2021

Photo 1 Adams Creek, KL_BO_AD01 (YPS-622) looking across.

Photo 3 Adams Creek, KL_BO_AD01 (YPS-622) looking upstream.

Photo 4 Adams Creek, KL_BO_AD01 (YPS-622) substrate aquatic.

Photo 5 Adams Creek, KL_BO_AD01 (YPS-622) substrate dry.

Photo 6 Adams Creek, KL_BO_AD02 (YPS-623) looking across.

Photo 7 Adams Creek, KL_BO_AD02 (YPS-623) looking downstream.

Photo 8 Adams Creek, KL_BO_AD02 (YPS-623) looking upstream.

Photo 9 Adams Creek, KL_BO_AD02 (YPS-623) substrate aquatic.

Photo 10 Adams Creek, KL_BO_AD02 (YPS-623) substrate dry.

Photo 11 Adams Creek, KL_BO_AD03 (YPS-624) looking across.

Photo 12 Adams Creek, KL_BO_AD03 (YPS-624) looking downstream.

Photo 13 Adams Creek, KL_BO_AD03 (YPS-624) looking upstream.

Photo 14 Adams Creek, KL_BO_AD03 (YPS-624) substrate aquatic.

Photo 15 Adams Creek, KL_BO_AD03 (YPS-624) substrate dry.

Photo 16 Adams Creek, KL_BO_AD04 (YPS-625) looking across.

Photo 17 Adams Creek, KL_BO_AD04 looking (YPS-625) downstream.

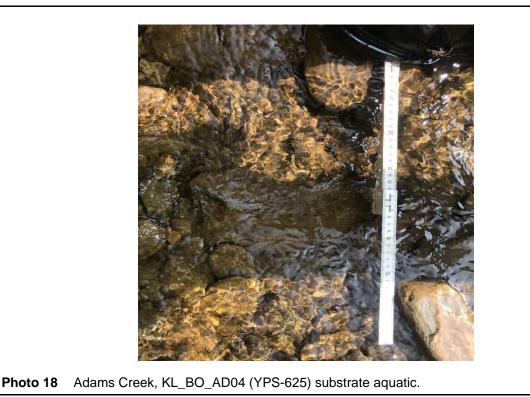


Photo 19 Adams Creek, KL_BO_AD04 (YPS-625) substrate dry.

Photo 20 Adams Creek, KL_BO_AD05 (YPS-626) looking across.

Photo 21 Adams Creek, KL_BO_AD05 (YPS-626) looking downstream.

Photo 22 Adams Creek, KL_BO_AD05 (YPS-626) looking upstream.

Photo 23 Adams Creek, KL_BO_AD05 (YPS-626) substrate aquatic.

Photo 25 Hunker Creek, KL_HU02 looking across.

Photo 26 Hunker Creek, KL_HU02 looking downstream.

Photo 27 Hunker Creek, KL_HU02 looking upstream.

CD Hemmera An Ausenco Company

Photo 29 Hunker Creek, KL_HU05 looking downstream.

Photo 31 Hunker Creek, KL_HU06 looking across.

Photo 32 Hunker Creek, KL_HU06 looking downstream.

Photo 33 Hunker Creek, KL_HU06 looking upstream.

Photo 34 Hunker Creek, KL_HU07 looking across.

Photo 35 Hunker Creek, KL_HU07 looking downstream.

Photo 36 Hunker Creek, KL_HU07 looking upstream.

Photo 37 Hunker Creek, KL_HU08 looking across.

Photo 38 Hunker Creek, KL_HU08 looking downstream.

Photo 39 Hunker Creek, KL_HU08 looking upstream.

Photo 40 Hunker Creek, KL_HU09 looking across.

Photo 41 Hunker Creek, KL_HU09 looking downstream.

Photo 42 Hunker Creek, KL_HU09 looking upstream.

Photo 43 Hunker Creek, KL_HUGO01 looking across.

Photo 44 Hunker Creek, KL_HUGO01 looking downstream.

Photo 45 Hunker Creek, KL_HUGO01 looking upstream.

Photo 46 Hunker Creek, YPS-051 looking across.

Photo 47 Hunker Creek, YPS-051 looking downstream.

Photo 48 Hunker Creek, YPS-051 looking upstream.

CD Hemmera An Ausenco Company

Photo 51 Hunker Creek, YPS-078 looking across.

Photo 52 Hunker Creek, YPS-078 looking downstream.

Photo 53 Hunker Creek, YPS-078 looking upstream.

Photo 54 Hunker Creek, YPS-078 substrate aquatic.

Photo 55 Hunker Creek, YPS-078 substrate dry.

Photo 56 Hunker Creek, YPS-079 looking across.

Photo 57 Hunker Creek, YPS-079 looking downstream.

Photo 58 Hunker Creek, YPS-079 looking upstream.

Photo 59 Hunker Creek, YPS-079 substrate aquatic.

Photo 60 Hunker Creek, YPS-079 substrate dry.

Photo 61 Hunker Creek, YPS-080 looking across.

Photo 62 Hunker Creek, YPS-080 looking downstream.

Photo 63 Hunker Creek, YPS-080 looking upstream.

Photo 64 Hunker Creek, YPS-080 substrate aquatic.

Photo 65 Hunker Creek, YPS-080 substrate dry.

Photo 66 Hunker Creek, YPS-544_KLHU01 looking across.

Photo 67 Hunker Creek, YPS-544_KLHU01 looking downstream.

Photo 68 Hunker Creek, YPS-544_KLHU01 looking upstream.

Photo 70 Hunker Creek, YPS-611_KM20 looking across.

Photo 71 Hunker Creek, YPS-611_KM20 looking downstream.

Photo 72 Hunker Creek, YPS-611_KM20 looking upstream.

Photo 73 Hunker Creek, YPS-611_KM20 substrate aquatic.

Photo 74 Hunker Creek, YPS-611_KM20 substrate dry.

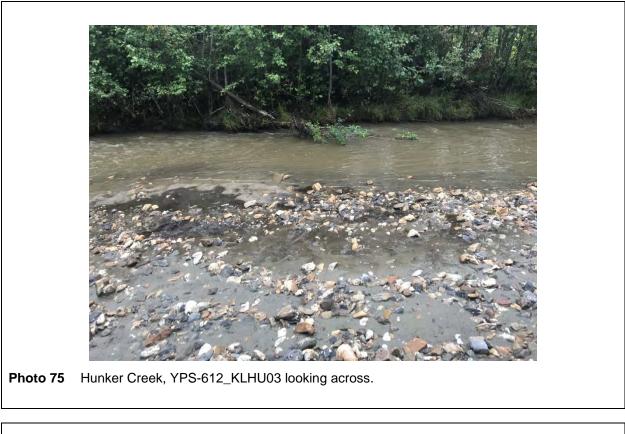


Photo 76 Hunker Creek, YPS-612_KLHU03 looking downstream.

Photo 77 Hunker Creek, YPS-612_KLHU03 looking upstream.

Photo 79 Hunker Creek, YPS-612_KLHU03 substrate dry.

Photo 80 Hunker Creek, YPS-613_KLHU04 looking across.

Photo 81 Hunker Creek, YPS-613_KLHU04 looking downstream.

Photo 82 Hunker Creek, YPS-613_KLHU04 looking upstream.

Photo 83 Hunker Creek, YPS-613_KLHU04 substrate aquatic.

Photo 84 Hunker Creek, YPS-613_KLHU04 substrate dry.

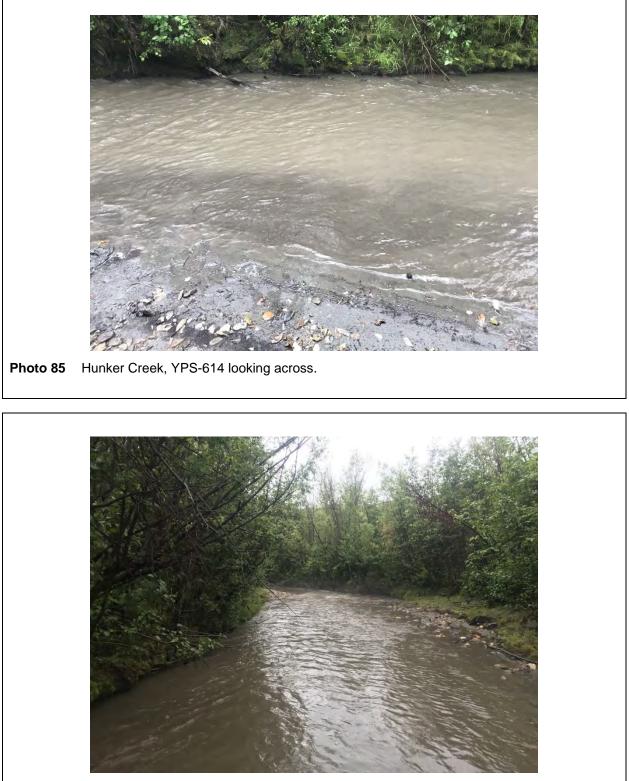


Photo 86 Hunker Creek, YPS-614 looking downstream.

Photo 89 Hunker Creek, YPS-614 substrate dry.

CD Hemmera An Ausenco Company 210506 July Site Photographs.do

Photo 91 Hunker Creek, YPS-621 looking downstream.

Photo 92 Hunker Creek, YPS-621 looking upstream.

Photo 93 Hunker Creek, YPS-621 substrate aquatic.



Photo 97 OK Creek, YN_OK01 looking upstream.

Photo 98 Swede Creek, YPS-386 looking across.

Photo 99 Swede Creek, YPS-386 looking downstream.

Photo 100 Swede Creek, YPS-386 looking upstream.

Photo 101 Swede Creek, YPS-386 substrate aquatic.

Photo 102 Swede Creek, YPS-386 substrate dry..

September 2021

Photo 1 Adams Creek, KL_BO_AD01 (YPS-622) left bank.

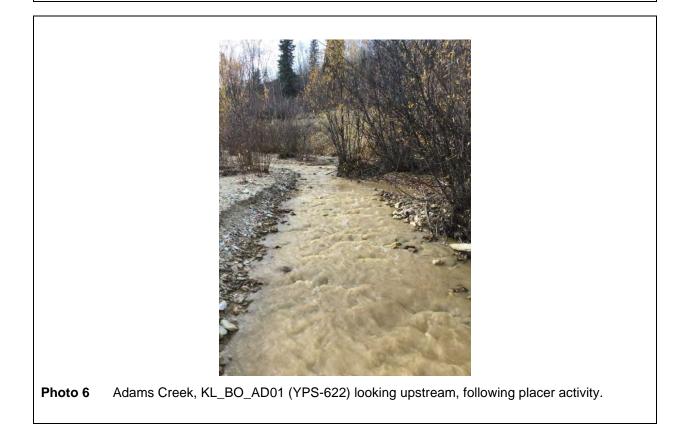

Photo 3 Adams Creek, KL_BO_AD01 (YPS-622) looking upstream, prior to placer activity.

Photo 4 Adams Creek, KL_BO_AD01 (YPS-622) looking downstream, prior to placer activity.

Photo 5 Adams Creek, KL_BO_AD01 (YPS-622) looking downstream, following placer activity.

Photo 7 Adams Creek, KL_BO_AD02 (YPS-623) looking downstream, prior to placer activity.

Photo 8 Adams Creek, KL_BO_AD02 (YPS-623) looking upstream, prior to placer activity.

Photo 9 Adams Creek, KL_BO_AD02 (YPS-623) right bank.

Photo 10 Adams Creek, KL_BO_AD02 (YPS-623) left bank.

Photo 11 Adams Creek, KL_BO_AD02 (YPS-623) looking downstream, following placer activity.

Photo 12 Adams Creek, KL_BO_AD02 (YPS-623) looking upstream, following placer activity.

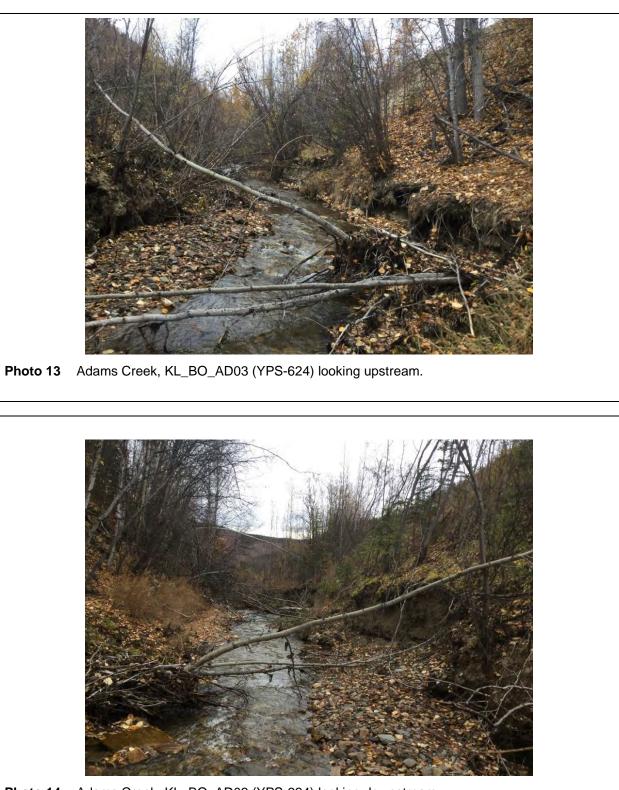


Photo 14 Adams Creek, KL_BO_AD03 (YPS-624) looking downstream.

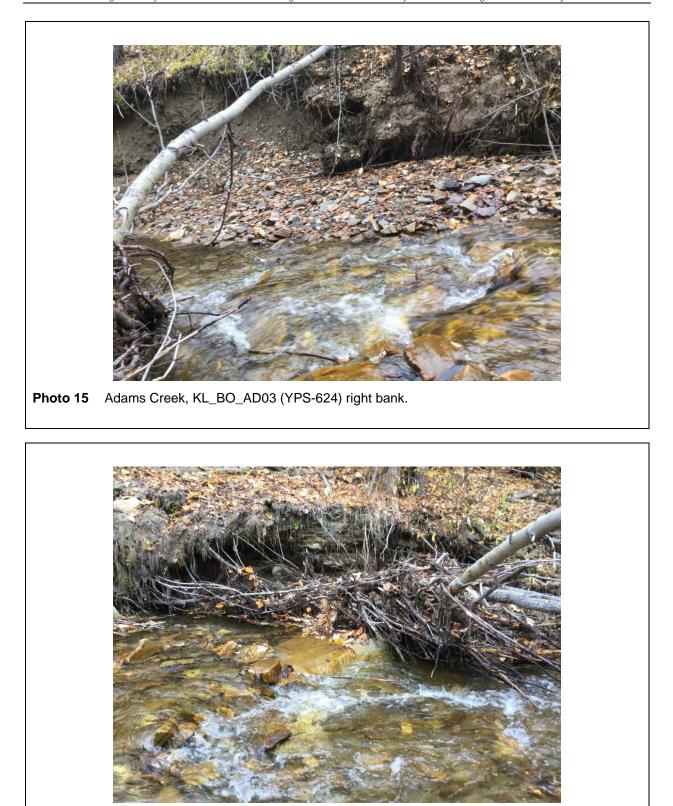
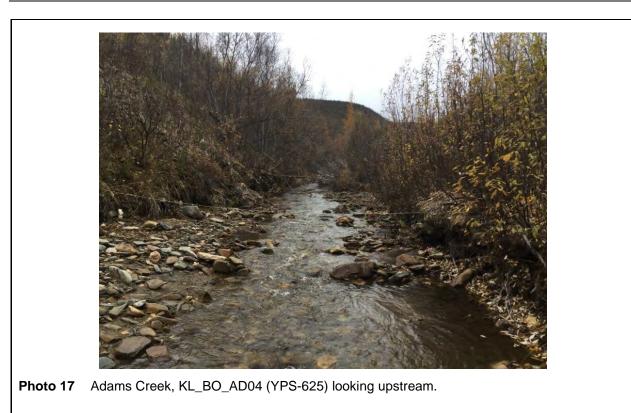



Photo 16 Adams Creek, KL_BO_AD03 (YPS-624) left bank.

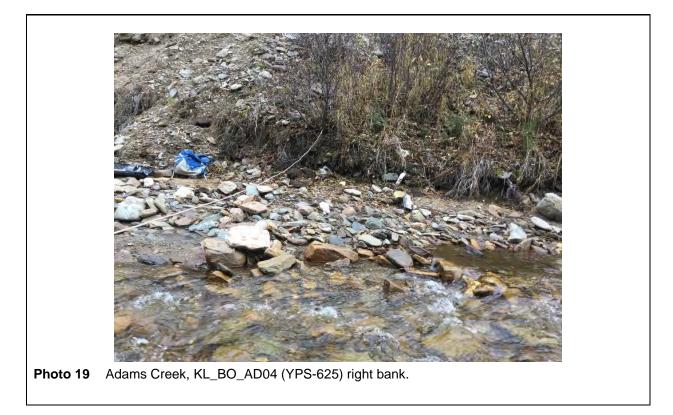


Photo 20 Adams Creek, KL_BO_AD04 (YPS-625) left bank.

Photo 21 Adams Creek, KL_BO_AD05 (YPS-626) looking upstream.

Photo 22 Adams Creek, KL_BO_AD05 (YPS-626) looking downstream.

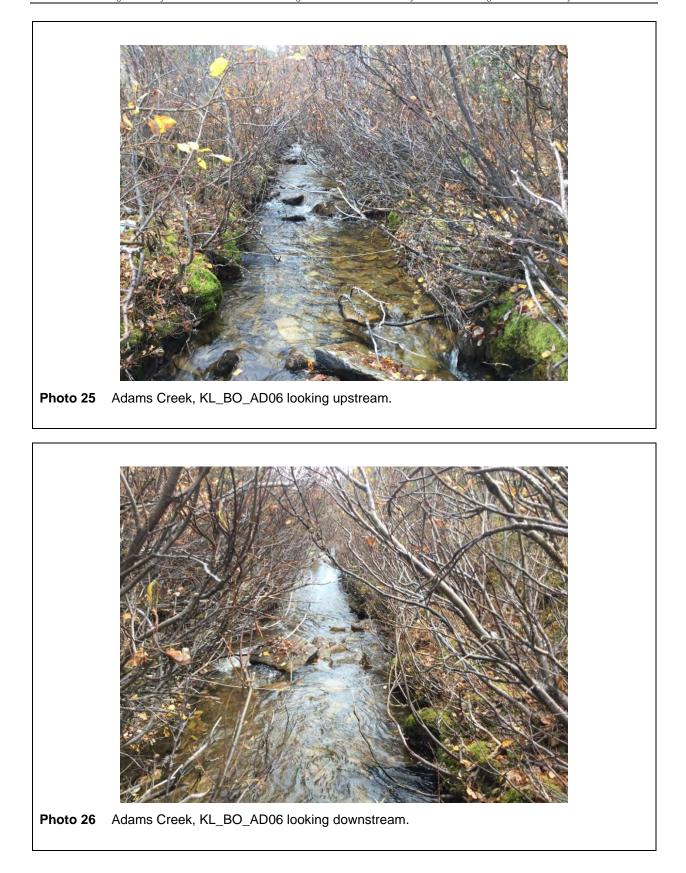


Photo 23 Adams Creek, KL_BO_AD05 (YPS-626) right bank.

Photo 24 Adams Creek, KL_BO_AD05 (YPS-626) left bank.

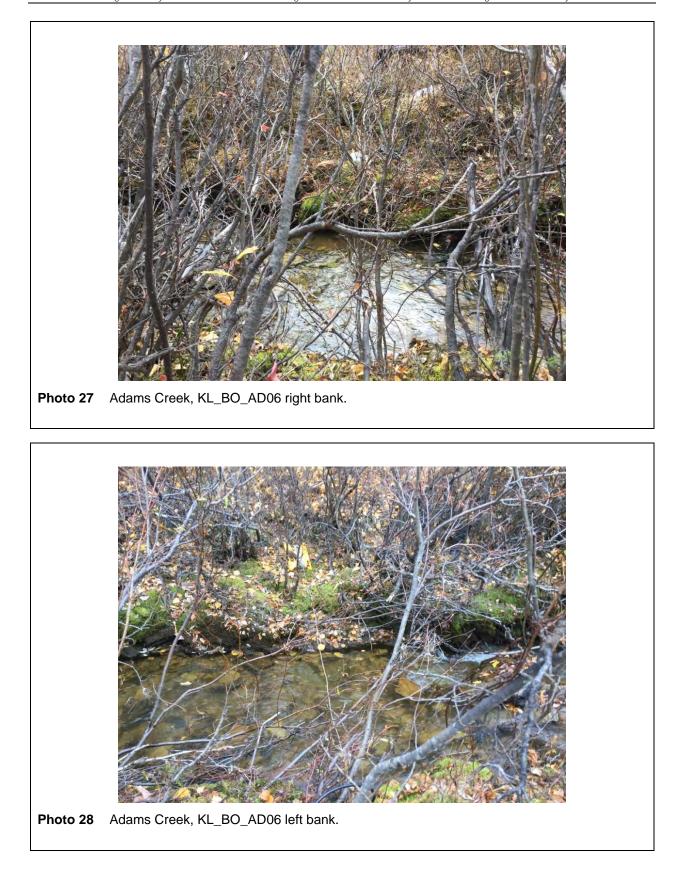


Photo 29 Stampede Gulch, looking upstream.

Photo 30 Stampede Gulch, looking downstream



Photo 33 Stampede Gulch confluence with Adams Creek.

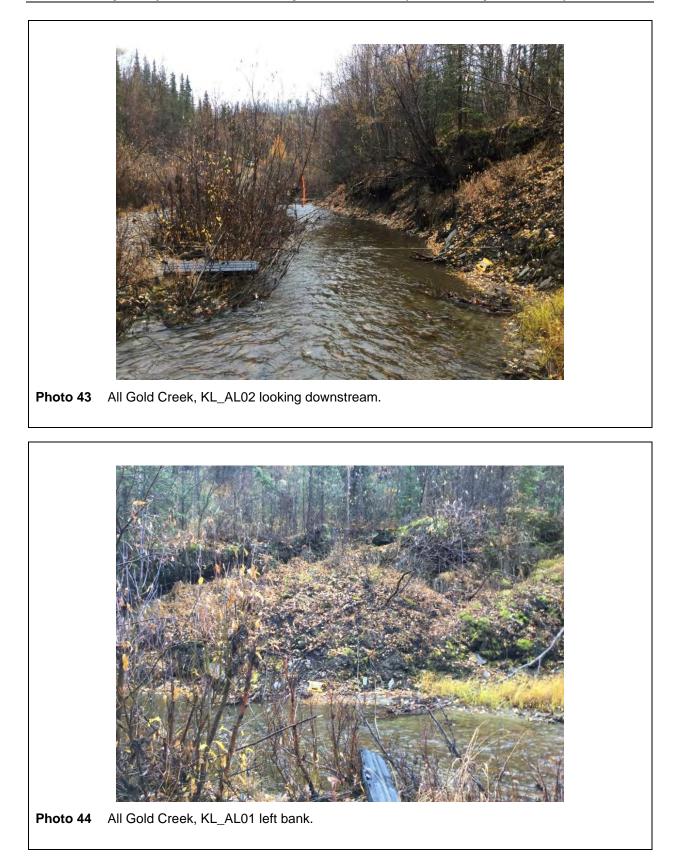
Photo 34 Clear Creek, looking upstream.

Photo 35 Clear Creek, looking downstream.

Photo 36 Clear Creek, right bank.

Photo 37 Clear Creek, left bank.

Photo 39 All Gold Creek, KL_AL01 looking downstream.



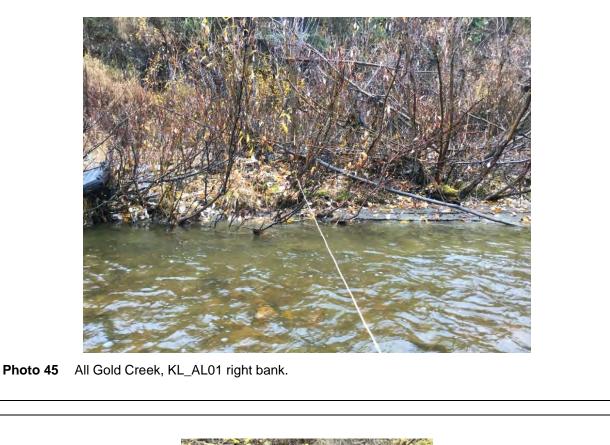

Photo 41 All Gold Creek, KL_AL01 right bank.

Photo 42 All Gold Creek, KL_AL02 looking upstream.

Photo 46 OK Creek, YN_OK1 looking upstream.

Photo 47 OK Creek, YN_OK1 looking downstream.

Photo 48 OK Creek, YN_OK1 right bank.

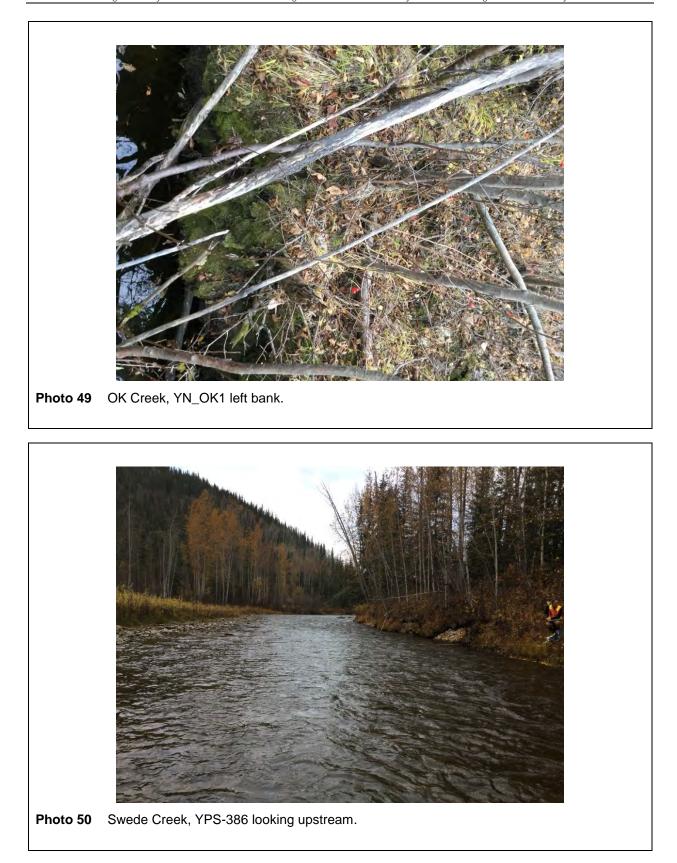


Photo 51 Swede Creek, YPS-386 looking downstream.

Photo 52 Swede Creek, YPS-386 left bank.

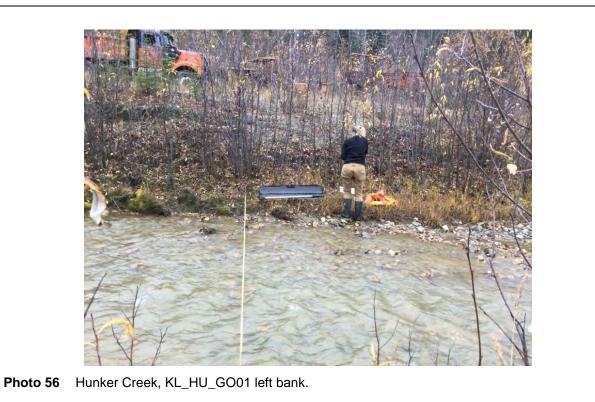


Photo 54 Hunker Creek, KL_HU_GO01 looking upstream.

Photo 55 Hunker Creek, KL_HU_GO01 looking downstream.

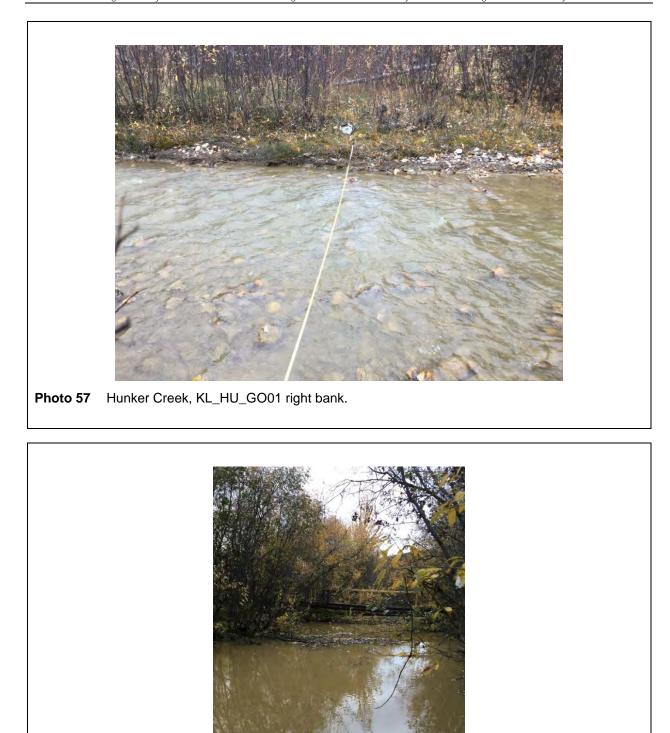
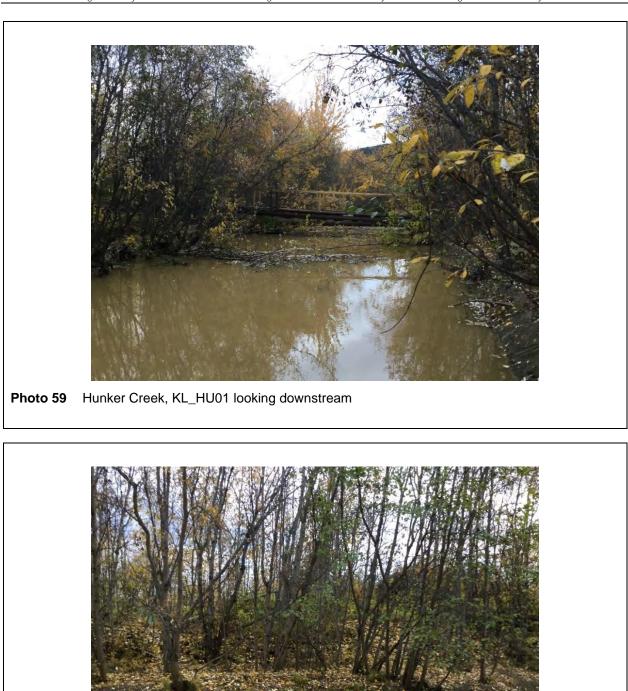



Photo 58 Hunker Creek, KL_HU01 looking upstream.

Photo 60 Hunker Creek, KL_HU01 right bank.

CD Hemmera An Ausence Company

Photo 61 Hunker Creek, KL_HU01 left bank.

Photo 62 Hunker Creek, KL_HU02 looking upstream.

Photo 63 Hunker Creek, KL_HU02 looking downstream.

Photo 64 Hunker Creek, KL_HU02 left bank.

Photo 65 Hunker Creek, KL_HU02 right bank.

Photo 66 Hunker Creek, KL_HU03 looking upstream.

Photo 67 Hunker Creek, KL_HU03 looking downstream.

Photo 68 Hunker Creek, KL_HU03 left bank.

Photo 69 Hunker Creek, KL_HU03 right bank.

Photo 70 Hunker Creek, KL_HU04 upstream.

Photo 71 Hunker Creek, KL_HU04 downstream.

Photo 72 Hunker Creek, KL_HU04 left bank.

Photo 73 Hunker Creek, KL_HU04 right bank.

Photo 74 Hunker Creek, KL_HU05 looking upstream.

Photo 75 Hunker Creek, KL_HU05 looking downstream.

Photo 76 Hunker Creek, KL_HU05 left bank.

Photo 77 Hunker Creek, KL_HU05 right bank.

Photo 78 Hunker Creek, KL_HU06 looking upstream.

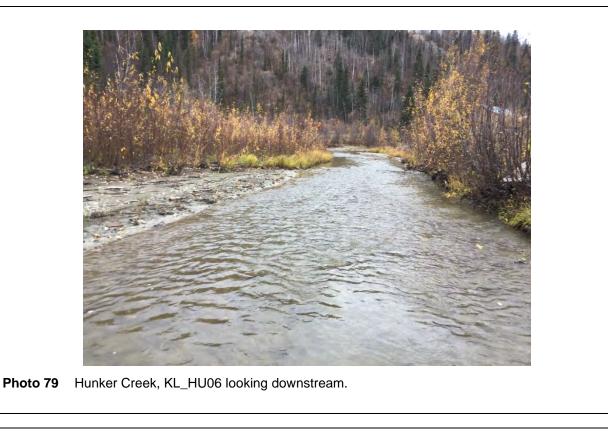


Photo 80 Hunker Creek, KL_HU06 left bank.

Photo 81 Hunker Creek, KL_HU06 right bank.

Photo 82 Hunker Creek, KL_HU07 looking upstream.

Photo 83 Hunker Creek, KL_HU07 looking downstream.

Photo 84 Hunker Creek, KL_HU07 left bank.

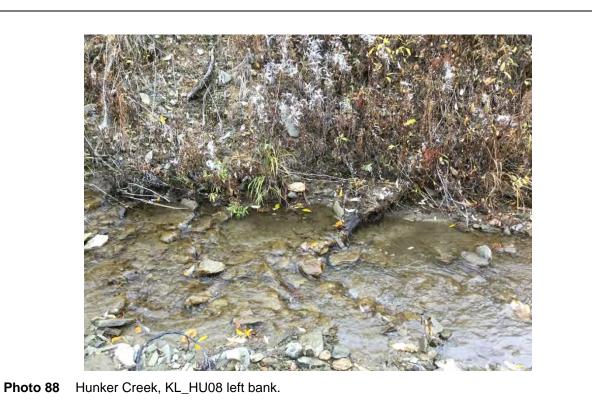

Photo 85 Hunker Creek, KL_HU07 right bank.

Photo 86 Hunker Creek, KL_HU08 looking upstream.

Photo 87 Hunker Creek, KL_HU08 looking downstream.

Photo 89 Hunker Creek, KL_HU08 right bank.

Photo 90 Hunker Creek, KL_HU09 looking upstream.

Photo 91 Hunker Creek, KL_HU09 looking downstream.

Photo 92 Hunker Creek, KL_HU09 left bank.

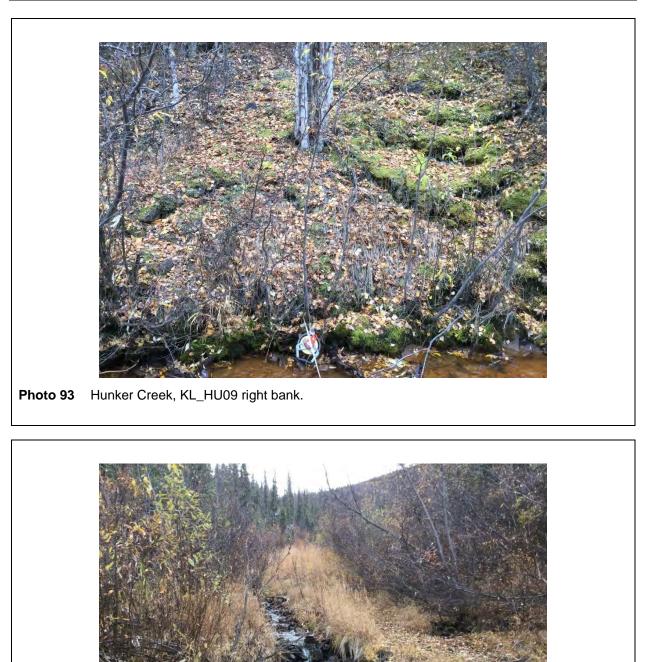


Photo 94 Hunker Creek, KL_HU10 looking upstream.

Photo 95 Hunker Creek, KL_HU10 looking downstream.

Photo 96 Hunker Creek, KL_HU10 left bank.

Photo 97 Hunker Creek, KL_HU10 right bank.

Photo 98 Hunker Creek, KM10 looking upstream.

Photo 99 Hunker Creek, KM10 looking downstream.

Photo 100 Hunker Creek, KM10 left bank.

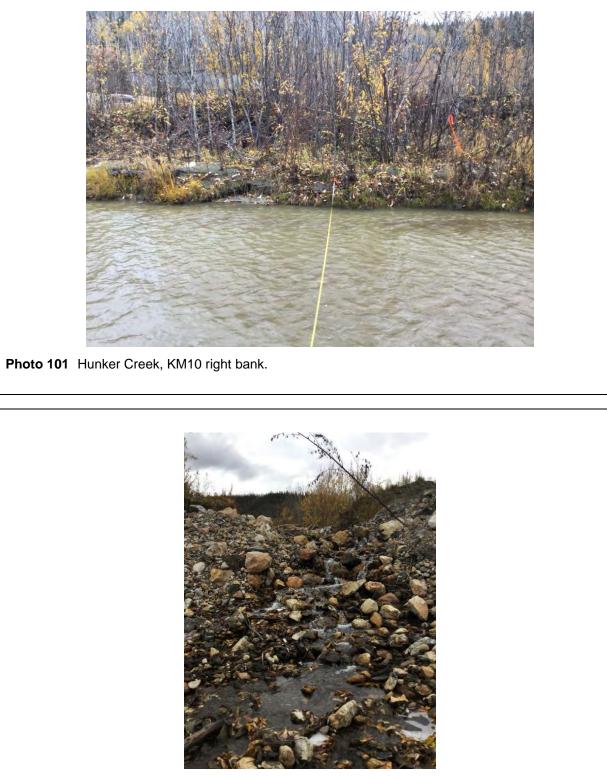


Photo 102 Hunker Creek, KM10 Outflow right bank.

Photo 102 Hunker Creek, KM10 Outflow downstream.

Photo 103 Hunker Creek, KM20 looking upstream.

Photo 104 Hunker Creek, KM20 looking downstream.

Photo 105 Hunker Creek, KM20 left bank.

Photo 106 Hunker Creek, KM20 right bank.

Photo 107 Hunker Creek, YPS-051, looking upstream.

Photo 108 Hunker Creek, YPS-051, looking downstream.

Photo 109 Hunker Creek, YPS-051, left bank.

Photo 110 Hunker Creek, YPS-051, right bank.

Photo 111 Hunker Creek, YPS-078, looking upstream.

Photo 112 Hunker Creek, YPS-078, looking downstream.

Photo 113 Hunker Creek, YPS-078, left bank.

Photo 114 Hunker Creek, YPS-078, right bank.

Photo 115 Hunker Creek, YPS-079, looking upstream.

Photo 116 Hunker Creek, YPS-079, looking downstream.

Photo 117 Hunker Creek, YPS-079, left bank.

Photo 118 Hunker Creek, YPS-079, right bank.

Photo 119 Hunker Creek, YPS-614, looking upstream.

Photo 120 Hunker Creek, YPS-614, looking downstream.

Photo 121 Hunker Creek, YPS-614, left bank.

Photo 122 Hunker Creek, YPS-614, right bank.

Photo 102 Hunker Creek, YPS-621, looking upstream..

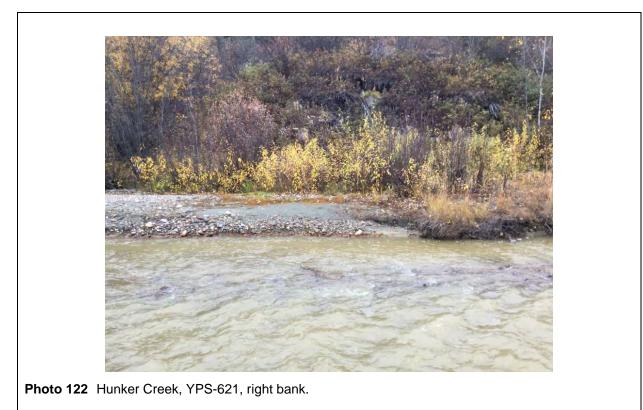


Photo 122 Hunker Creek, YPS-621, looking downstream.

Photo 102 Hunker Creek, YPS-621, left bank.

APPENDIX D WQOM Data

Lab ID	Database ID Column1	Site Code	FIELD SAMPLE ID	Sample Date	Established or New Site	WQO (TSS in mg/L)	Above or Below WQO?	TSS (mg/L)	Settable Solids (mL/L)
WQOM Stations				Cample Date				roo (iiig/L)	
20-0909	WQG-20-0909	KL AL01	KL AL01	25-Sep-20	Established	80	Below	6.8	0.0
20-0910	WQG-20-0910	KL AL02	KL AL02	25-Sep-20	New	200	Below	2.8	0.0
20-0383	WQG-20-0383	KL BO AD01 (YPS-622)	YPS-A1	30-Jul-20	New	200	Below	13.6	0.0
20-0898	WQG-20-0898	KL BO AD01 (YPS-622)	KL BO AD01	23-Sep-20	Established	200	Below	15.2	0.0
20-0905	WQG-20-0905	KL BO AD01 (YPS-622)	KL BO AD01-2	23-Sep-20	Established	200	Above	725.0	0.3
20-0385	WQG-20-0385	KL BO AD02 (YPS-623)	YPS-A2	30-Jul-20	New	200	Below	9.6	0.0
20-0899	WQG-20-0899	KL BO AD02 (YPS-623)	KL BO AD02	23-Sep-20	New	200	Below	10.0	0.0
20-0906	WQG-20-0906	KL BO AD02 (YPS-623)	KL BO AD02-2	23-Sep-20	New	200	Above	728.0	0.3
20-0386	WQG-20-0386	KL BO AD03 (YPS-624)	YPS-A3	30-Jul-20	New	200	Below	2.8	0.0
20-0900	WQG-20-0900	KL BO AD03 (YPS-624)	KL BO AD03	23-Sep-20	New	200	Below	2.4	0.0
20-0387	WQG-20-0387	KL BO AD04 (YPS-625)	YPS-A4	30-Jul-20	New	200	Below	2.8	0.0
20-0901	WQG-20-0901	KL BO AD04 (YPS-625)	KL BO AD04	23-Sep-20	New	200	Below	0.4	0.0
20-0388	WQG-20-0388	KL BO AD05 (YPS-626)	YPS-A5	30-Jul-20	New	200	Below	2.0	0.0
20-0902	WQG-20-0902	KL BO AD05 (YPS-626)	KL BO AD05	23-Sep-20	New	200	Below	4.4	0.0
20-0903	WQG-20-0903	KL BO AD06	KL BO AD06	23-Sep-20	New	200	Below	0.8	0.0
20-0897	WQG-20-0897	ST CL02	Clear Creek	22-Sep-20	Established	50	Below	30.4	0.0
20-0364	WQG-20-0364	KL HU GO01	KL HU GO01	29-Jul-20	Established	200	Below	5.2	0.0
20-0304	WQG-20-0923	KL_HU_GO01	KL GO01	24-Sep-20	Established	200	Below	18.8	0.0
20-0323	WQG-20-0323	KL_HU01	KL HU01	28-Jul-20	Established	80	Above	204.4	0.5
20-0371	WQG-20-0914	KL_HU01	KL_HU01	24-Sep-20	Established	80	Above	90.8	0.3
20-0914	WQG-20-0314	KL_HU01	KL_HU01	28-Jul-20	Established	80	Above	194.4	0.4
20-0370	WQG-20-0370	KL_HU02 KL_HU02	KL_H002 KL HU02	24-Sep-20	Established	80	Above	91.2	0.2
20-0313	WQG-20-0313	KL_11002	KL HU03	28-Jul-20	Established	200	Below	193.2	0.4
						200		48.4	0.3
20-0916	WQG-20-0916 WQG-20-0368	KL_HU03	KL_HU03	24-Sep-20	Established	200	Below	240.4	0.4
20-0368	WQG-20-0368	KL_HU04	KL_HU04	28-Jul-20	Established	200	Above Below	53.6	
20-0917		KL_HU04	KL_HU04	24-Sep-20	Established	200			0.1
20-0366	WQG-20-0366	KL_HU05	KL_HU05	29-Jul-20	Established		Below	21.6	0.0
20-0922	WQG-20-0922	KL_HU05	KL_HU05	24-Sep-20	Established	200	Below	20.8	0.0
20-0365	WQG-20-0365	KL_HU06	KL_HU06	29-Jul-20	Established	200	Below	28.4	0.2
20-0924	WQG-20-0924	KL_HU06	KL_HU06	24-Sep-20	Established	200	Below	27.2	0.0
20-0361	WQG-20-0361	KL_HU07	KL_HU07	29-Jul-20	Established	200	Below	3.6	0.0
20-0928	WQG-20-0928	KL_HU07	KL_HU07	24-Sep-20	Established	200	Below	2.0	0.0
20-0360	WQG-20-0360	KL_HU08	KL_HU08	29-Jul-20	Established	200	Below	3.2	0.0
20-0929	WQG-20-0929	KL_HU08	KL_HU08	24-Sep-20	Established	200	Below	2.8	0.0
20-0362	WQG-20-0362	KL_HU09	KL_HU09	29-Jul-20	Established	200	Below	13.6	0.0
20-0930	WQG-20-0930	KL_HU09	KL_HU09	24-Sep-20	Established	200	Below	1.2	0.0
20-0931	WQG-20-0931	KL_HU10	KL_HU10	24-Sep-20	New	200	Below	0.8	0.0
20-0367	WQG-20-0367	KL_HU_KM10	Km10	28-Jul-20	Established	200	Above	349.6	0.8
20-0943	WQG-20-0943	KL_HU_KM10	KM10	24-Sep-20	Established	200	Below	24.4	0.0
20-0363	WQG-20-0363	KL_HU_KM20	Km20	29-Jul-20	Established	200	Below	16.8	0.1
20-0926	WQG-20-0926	KL_HU_KM20	KM20	24-Sep-20	Established	200	Below	35.6	0.1
20-0904	WQG-20-0904	KL_BO_AD_SG01	Stampede	23-Sep-20	New	200	Below	0.8	0.0
20-0389	WQG-20-0389	YN_SW01 (YPS-386)	YPS-386	30-Jul-20	Established	25	Below	2.0	0.0
20-0907	WQG-20-0907	YN_SW01 (YPS-386)	YPS-386	23-Sep-20	Established	25	Below	1.6	0.0
20-0359	WQG-20-0359	YN_OK01	YN_OK01	31-Jul-20	Established	25	Below	6.0	0.0
20-0908	WQG-20-0908	YN_OK01	YN_OK01	23-Sep-20	Established	25	Below	5.6	0.0
AHM Stations									
20-0375	WQG-20-0375	YPS-051	YPS-51	28-Jul-20	Established	200	Above	230.4	0.5
20-0919	WQG-20-0919	YPS-051	YPS-051	24-Sep-20	Established	200	Below	34.0	0.0
20-0377	WQG-20-0377	YPS-078	YPS-78	29-Jul-20	Established	200	Below	3.6	0.0
20-0927	WQG-20-0927	YPS-078	YPS-078	24-Sep-20	Established	200	Below	1.2	0.0
20-0378	WQG-20-0378	YPS-079	YPS-79	29-Jul-20	Established	200		37.6	0.0
20-0925	WQG-20-0925	YPS-079	YPS-079	24-Sep-20	Established	200	Below	26.8	0.0
20-0379	WQG-20-0379	YPS-080	YPS-80	29-Jul-20	Established	200	Below	36.0	0.0
20-0372	WQG-20-0372	YPS-544	YPS-544	28-Jul-20	Established	80	Above	229.6	0.6
20-0380	WQG-20-0380	YPS-611	YPS-611	29-Jul-20	Established	200	Below	44.4	0.1
20-0373	WQG-20-0373	YPS-612	YPS-612	28-Jul-20	Established	200	Below	92.8	0.3
20-0374	WQG-20-0374	YPS-613	YPS-613	28-Jul-20	Established	200	Below	92.4	0.3
20-0376	WQG-20-0376	YPS-614	YPS-614	28-Jul-20	Established	50	Above	313.6	0.5
20-0921	WQG-20-0921	YPS-614	YPS-614	24-Sep-20	Established	50	Below	27.6	0.0
	WQG-20-0381	YPS-621	YPS-621	29-Jul-20	Established	200	Below	85.2	0.2
20-0381	WQU-20-0301	11 3 021	115-021	2 <i>3</i> -Jui-20	Latabilaticu	200	DCIOW	03.2	0.2

Lab ID	Database ID	Conductivity (Lab) (uS/cm)	pH (Lab)	Turbidity (Lab) (NTU)	Watershed Name	Watershed Category	Watercourse	Site Description	Habitat Suitability Classification
WQOM Stations									
20-0909		346		4.0	Klondike River	A	All Gold Creek	All Gold Creek below all mining	Moderate-Low
20-0910		295		3.0	Klondike River	A	All Gold Creek	All Gold Creek above most mining	Low
20-0383		475	7.7	6.0	Klondike River	A	Adams Creek	Adams Creek mouth	Low
20-0898	WQG-20-0898	619		9.0	Klondike River	A	Adams Creek	Adams Creek mouth	Low
20-0905		674		246.0	Klondike River	A	Adams Creek	Adams Creek mouth	Low
20-0385		477		4.0	Klondike River	A	Adams Creek	Adams Creek downstream placer settling pond (PM18-006)	Low
20-0899		619		9.0	Klondike River	A	Adams Creek	Adams Creek downstream placer settling pond (PM18-006)	Low
20-0906		666		81.0	Klondike River	A	Adams Creek	Adams Creek downstream placer settling pond (PM18-006)	Low
20-0386		419		0.0	Klondike River	A	Adams Creek	Adams Creek upstream placer operation (PM10-051)	Low
20-0900		537	7.9	1.0	Klondike River	A	Adams Creek	Adams Creek upstream placer operation (PM10-051)	Low
20-0387		384		0.0	Klondike River	A	Adams Creek	Adams Creek downstream Stampede Gulch	Low
20-0901	WQG-20-0901	501 214			Klondike River	A	Adams Creek	Adams Creek downstream Stampede Gulch	Low
20-0388		251	7.8 7.7	0.0	Klondike River	A	Adams Creek	Adams Creek upstream Hawley Gulch	Low
20-0902				0.0	Klondike River	A	Adams Creek	Adams Creek upstream Hawley Gulch	Low
20-0903	WQG-20-0903	258		36.0	Klondike River	A	Adams Creek	Adams Creek above all mining	Low
20-0897 20-0364	WQG-20-0897 WQG-20-0364	191 470	7.9	6.0	Stewart River Klondike River	A	Clear Creek	Clear Creek upstream highway bridge Goldbottom Creek mouth	Moderate-Moderate
20-0923	WQG-20-0384 WQG-20-0923	545		20.0	Klondike River	A	Goldbottom Creek Goldbottom Creek	Goldbottom Creek mouth	Low
		824		261.0		A			
20-0371 20-0914	WQG-20-0371 WQG-20-0914	796		133.0	Klondike River Klondike River	Λ	Hunker Creek Hunker Creek	Hunker Creek below all mining Hunker Creek below all mining	Moderate-Low Moderate-Low
20-0914	WQG-20-0914 WQG-20-0370	820		185.0	Klondike River	Δ	Hunker Creek	Hunker Creek below all mining Hunker Creek downstream of Henrry Gulch	Moderate-Low Moderate-Low
20-0370		802		126.0	Klondike River	A	Hunker Creek	Hunker Creek downstream of Henry Guich	
20-0913	WQG-20-0315	776	8.1 7.5	60.0	Klondike River	A	Hunker Creek	Hunker Creek downstream of Last Chance Creek	Moderate-Low
20-0916	WQG-20-0369	785		63.0	Klondike River	A	Hunker Creek	Hunker Creek downstream of Last Chance Creek	Low
20-0368	WQG-20-0318	713		54.0	Klondike River	A	Hunker Creek	Hunker Creek upstream of Last Chance Creek	Low
20-0917	WQG-20-0308	768		86.0	Klondike River	A	Hunker Creek	Hunker Creek upstream of Last Chance Creek	Low
20-0366		492		21.0	Klondike River	Δ	Hunker Creek	Hunker Creek downstream of Goldbottom Creek	Low
20-0922	WQG-20-0922	554		20.0	Klondike River	Δ	Hunker Creek	Hunker Creek downstream of Goldbottom Creek	Low
20-0322		539		45.0	Klondike River	Δ	Hunker Creek	Hunker Creek upstream of Goldbottom Creek	Low
20-0924				19.0	Klondike River	Δ	Hunker Creek	Hunker Creek upstream of Goldbottom Creek	Low
20-0361	WQG-20-0361	387		4.0	Klondike River	Δ	Hunker Creek	Hunker Creek above all mining left fork	Low
20-0928	WQG-20-0928	393		4.0	Klondike River	Δ	Hunker Creek	Hunker Creek above all mining left fork	Low
20-0360		472		2.0	Klondike River	Α	Hunker Creek	Hunker Creek right fork	Low
20-0929		504		0.0	Klondike River	A	Hunker Creek	Hunker Creek right fork	Low
20-0362	WQG-20-0362	470		29.0	Klondike River	A	Hunker Creek	Hunker Creek above all mining and downstream of right and left fork	Low
20-0930		494		3.0	Klondike River	A	Hunker Creek	Hunker Creek above all mining and downstream of right and left fork	Low
20-0931		318		1.0	Klondike River	A	Hunker Creek	Hunker Creek above all mining (further upstream right fork)	Low
20-0367		548		102.0	Klondike River	A	Hunker Creek	near AHM site YPS-051	Low
20-0943		615		35.0	Klondike River	A	Hunker Creek	near AHM site YPS-051	Low
20-0363		547		31.0	Klondike River	A	Hunker Creek	near AHM site YPS-611	Low
20-0926	WQG-20-0926	555		17.0	Klondike River	A	Hunker Creek	near AHM site YPS-611	Low
20-0904	WQG-20-0904	669	7.8	0.0	Klondike River	A	Stampede Gulch	Stampede Gulch near confluence with Adams Creek	Low
20-0389	WQG-20-0389	209	7.8	0.0	Yukon River North	В	Swede Creek	Swede Creek mouth	Area of special consideration
20-0907	WQG-20-0907	263	8.0	0.0	Yukon River North	В	Swede Creek	Swede Creek mouth	Area of special consideration
20-0359	WQG-20-0359	699	7.5	6.0	Yukon River North	В	OK Creek	OK Creek mouth	Moderate-High
20-0908	WQG-20-0908	766	7.9	0.0	Yukon River North	В	OK Creek	OK Creek mouth	Moderate-High
AHM Stations									
20-0375		603		82.0	Klondike River	A	Hunker Creek	Hunker Creek downstream of Hester Creek inflow	Low
20-0919		640		50.0	Klondike River	A	Hunker Creek	Hunker Creek downstream of Hester Creek inflow	Low
20-0377	WQG-20-0377	480		15.0	Klondike River	A	Hunker Creek	Hunker Creek upstream of Ontario Creek	Low
20-0927		502		2.0	Klondike River	A	Hunker Creek	Hunker Creek upstream of Ontario Creek	Low
20-0378		536		38.0	Klondike River	A	Hunker Creek	Hunker Creek upstream of Gold Bottom Creek	Low
20-0925		567		27.0	Klondike River	A	Hunker Creek	Hunker Creek upstream of Gold Bottom Creek	Low
20-0379		489		31.0	Klondike River	A	Hunker Creek	Hunker Creek downstream of Gold Bottom Creek	Low
20-0372	WQG-20-0372			313.0	Klondike River	A	Hunker Creek	Hunker Creek	Moderate-Low
20-0380		539		28.0	Klondike River	А	Hunker Creek	Hunker Creek	Low
20-0373	WQG-20-0373	773		80.0	Klondike River	A	Hunker Creek	Hunker Creek	Low
20-0374		725		51.0	Klondike River	A	Hunker Creek	Hunker Creek	Low
20-0376		516		129.0	Klondike River	A	Hunker Creek	Hunker Creek	Moderate-Moderate
20-0921		576		25.0	Klondike River	A	Hunker Creek	Hunker Creek	Moderate-Moderate
20-0381		701		77.0	Klondike River	A	Hunker Creek	Hunker Creek	Low
20-0918	WQG-20-0918	758	7.7	68.0	Klondike River	1	Hunker Creek	Hunker Creek	Low

Appendix D.2 WQOM Data - 2020 In-Situ Measurements

LAB_NUMBER	SAMPLE_DATE	SITE_CODE	Water Temperature (°C)	Instantaneous DO (mg/L)	Instantaneous pH	Intaneous Specific Conductivity (uS
20-0909	2020-09-25	KL_AL01	2.4	14.3	9.5	297.0
20-0910	2020-09-25	KL AL02	1.8	18.1	7.3	256.0
20-0383	2020-07-30	KL_BO_AD01	3.5	10.8	7.8	436.0
20-0898	2020-09-23	KL BO AD01	2.2	14.2	7.8	533.0
20-0905	2020-09-23	KL BO AD01	5.2	13.9	7.8	572.0
20-0385	2020-07-30	KL BO AD02	4.2	10.5	7.8	441.2
20-0899	2020-09-23	KL_BO_AD02	2.4	15.3	7.7	534.0
20-0906	2020-09-23	KL BO AD02	5.0	13.2	7.7	569.0
20-0386	2020-07-30	KL_BO_AD03	4.1	10.5	7.5	387.5
20-0900	2020-09-23	KL_BO_AD03	1.9	14.3	7.7	464.0
20-0387	2020-07-30	KL_BO_AD04	5.2	10.3	7.7	359.1
20-0901	2020-09-23	KL_BO_AD04	1.9	15.8	7.7	431.0
20-0388	2020-07-30	KL_BO_AD05	4.3	10.3	7.7	202.9
20-0902	2020-09-23	KL_BO_AD05	1.7	14.5	7.5	218.0
20-0903	2020-09-23	KL_BO_AD06	1.5	12.7	7.2	213.0
20-0897	2020-09-22	ST_CL02	4.4	13.0	7.0	162.0
20-0364	2020-07-29	KL_HU_GO01	6.5	10.1	8.1	435.9
20-0923	2020-09-24	KL_HU_GO01	5.5	16.4	8.2	465.0
20-0371	2020-07-28	KL_HU01	10.6	8.5	7.9	766.0
20-0914	2020-09-24	KL_HU01	5.4	14.4	8.3	687.0
20-0370	2020-07-28	KL_HU02	10.6	8.5	8.1	759.0
20-0915	2020-09-24	KL_HU02	5.3	13.3	8.3	688.0
20-0369	2020-07-28	KL_HU03	9.6	8.7	7.8	712.0
20-0916	2020-09-24	KL_HU03	4.9	15.1	7.9	675.0
20-0368	2020-07-28	KL_HU04	8.7	9.4	7.7	663.0
20-0917	2020-09-24	KL_HU04	4.8	14.3	7.9	657.0
20-0366	2020-07-29	KL_HU05	7.1	9.8	8.1	454.6
20-0922	2020-09-24	KL_HU05	5.6	14.0	8.1	475.0
20-0365	2020-07-29	KL_HU06	8.8	9.0	8.1	501.4
20-0924	2020-09-24	KL_HU06	6.1	13.9	8.2	481.0
20-0361	2020-07-29	KL_HU07	5.0	9.5	7.2	363.4
20-0928	2020-09-24	KL_HU07	2.5	13.7	7.4	336.0
20-0360	2020-07-29	KL_HU08	4.3	10.4	7.8	435.3
20-0929	2020-09-24	KL_HU08	2.3	17.6	8.3	416.0
20-0362	2020-07-29	KL_HU09	7.1	9.5	7.3	438.3
20-0930	2020-09-24	KL_HU09	4.2	16.8	7.8	423.0
20-0931	2020-09-24	KL_HU10	2.3	13.1	7.6	271.0
20-0367	2020-07-28	KL_HU_KM10	8.4	9.0	7.4	547.3
20-0943	2020-09-24	KL_HU_KM10	4.8	13.5	8.0	527.0
20-0363	2020-07-29	KL_HU_KM20	9.6	9.0	7.6	503.3
20-0926	2020-09-24	KL_HU_KM20	5.6	13.6	8.0	477.0
20-0904	2020-09-23	KL_BO_AD_SG01	3.5	14.9	7.8	570.0
20-0389	2020-07-30	YN_SW01	8.9	9.8	7.4	200.7
20-0907	2020-09-23	YN_SW01	4.2	15.8	7.9	224.0
20-0359	2020-07-31	YN_OK01	6.8	9.4	7.8	648.6
20-0908	2020-09-23	YN_OK01	2.9	14.1	8.0	662.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0025	11-Jun-19	KL_HU_GO01	17.6	200.0	Below	0.0	592.0	7.4	8.0
19-0034	12-Jun-19	KL_HU_GO01	76.8	200.0	Below	0.0	608.0	7.7	19.0
19-0098	12-Jun-19	KL_HU_GO01	37.2	200.0	Below	0.0	606.0	8.3	6.0
19-0099	13-Jun-19	KL_HU_GO01	34.4	200.0	Below	0.0	615.0	8.2	6.0
19-0100	14-Jun-19	KL_HU_GO01	40.0	200.0	Below	0.0	622.0	8.2	8.0
19-0101	15-Jun-19	KL_HU_GO01	38.0	200.0	Below	0.0	624.0	8.2	19.0
19-0102	16-Jun-19	KL_HU_GO01	9.2	200.0	Below	0.0	647.0	8.2	7.0
19-0103	17-Jun-19	KL_HU_GO01	150.8	200.0	Below	0.4	467.0	8.3	106.0
19-0104	18-Jun-19	KL_HU_GO01	50.8	200.0	Below	0.1	450.0	8.3	37.0
19-0105	19-Jun-19	KL_HU_GO01	196.0	200.0	Below	0.5	400.0	8.3	186.0
19-0106	20-Jun-19	KL_HU_GO01	34.0	200.0	Below	0.1	502.0	8.2	38.0
19-0107	21-Jun-19	KL_HU_GO01	60.4	200.0	Below	0.1	548.0	8.2	97.0
19-0108	22-Jun-19	KL_HU_GO01	34.4	200.0	Below	0.0	598.0	8.2	51.0
19-0109	23-Jun-19	KL_HU_GO01	8.4	200.0	Below	0.0	665.0	8.1	6.0
19-0110	24-Jun-19	KL_HU_GO01	12.8	200.0	Below	0.0	663.0	8.1	7.0
19-0111	25-Jun-19	KL_HU_GO01	21.6	200.0	Below	0.1	657.0	8.1	16.0
19-0112	26-Jun-19	KL_HU_GO01	12.8	200.0	Below	0.1	671.0	8.1	17.0
19-0113	27-Jun-19	KL_HU_GO01	6.0	200.0	Below	0.0	661.0	8.1	12.0
19-0114	28-Jun-19	KL_HU_GO01	9.6	200.0	Below	0.0	664.0	8.1	10.0
19-0115	29-Jun-19	KL_HU_GO01	4.4	200.0	Below	0.0	659.0	8.1	8.0
19-0116	30-Jun-19	KL_HU_GO01	4.4	200.0	Below	0.0	691.0	8.1	5.0
19-0117	1-Jul-19	KL_HU_GO01	10.4	200.0	Below	0.1	690.0	8.1	15.0
19-0118	2-Jul-19	KL_HU_GO01	8.4	200.0	Below	0.0	691.0	8.1	9.0
19-0261	3-Jul-19	KL_HU_GO01	4.0	200.0	Below	0.0	694.0	7.9	18.0
19-0119	3-Jul-19	KL_HU_GO01	6.0	200.0	Below				
19-0767	4-Jul-19	KL_HU_GO01	6.0	200.0	Below	0.0	708.0	7.9	7.0
19-0768	5-Jul-19	KL_HU_GO01	12.4	200.0	Below	0.0	699.0	7.9	17.0
19-0769	6-Jul-19	KL_HU_GO01	6.4	200.0	Below	0.0	682.0	7.9	4.0
19-0770	7-Jul-19	KL_HU_GO01	10.0	200.0	Below	0.0	689.0	7.9	8.0
19-0771	8-Jul-19	KL_HU_GO01	4.0	200.0	Below	0.0	699.0	7.9	6.0
19-0772	9-Jul-19	KL_HU_GO01	6.0	200.0	Below	0.0	699.0	7.9	9.0
19-0773	10-Jul-19	KL_HU_GO01	4.8	200.0	Below	0.0	712.0	8.0	7.0
19-0774	11-Jul-19	KL_HU_GO01	4.4	200.0	Below	0.0	699.0	8.0	3.0
19-0775	12-Jul-19	KL_HU_GO01	74.0	200.0	Below	0.3	660.0	8.0	82.0
19-0776	13-Jul-19	KL_HU_GO01	14.0	200.0	Below	0.0	652.0	8.0	10.0
19-0777	14-Jul-19	KL_HU_GO01	30.4	200.0	Below	0.0	647.0	8.0	29.0
19-0778	15-Jul-19	KL_HU_GO01	13.2	200.0	Below	0.0	676.0	8.0	10.0
19-0779	16-Jul-19	KL_HU_GO01	327.6	200.0	Above	0.7	414.0	8.0	118.0
19-0780	17-Jul-19	KL_HU_GO01	163.2	200.0	Below	0.4	328.0	8.1	69.0
19-0781	18-Jul-19	KL_HU_GO01	32.4	200.0	Below	0.0	470.0	8.1	18.0
19-0782	19-Jul-19	KL_HU_GO01	50.8	200.0	Below	0.1	530.0	8.1	56.0
19-0783	20-Jul-19	KL_HU_GO01	54.0	200.0	Below	0.0	570.0	8.0	97.0
19-0784	21-Jul-19	KL_HU_GO01	11.6	200.0	Below	0.0	607.0	8.0	8.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0785	22-Jul-19	KL_HU_GO01	7.2	200.0	Below	0.0	657.0	8.0	4.0
19-0786	23-Jul-19	KL_HU_GO01	9.6	200.0	Below	0.0	667.0	8.0	8.0
19-0716	24-Jul-19	KL HU GO01	6.0	200.0	Below	0.0	653.0	7.8	13.0
19-0787	24-Jul-19	KL HU GO01	22.8	200.0	Below		662.0	8.0	27.0
19-0990	25-Jul-19	KL_HU_GO01	25.6	200.0	Below	0.0	667.0	7.2	19.0
19-0991	26-Jul-19	KL_HU_GO01	3.2	200.0	Below	0.0	635.0	7.1	6.0
19-0992	27-Jul-19	KL_HU_GO01	11.6	200.0	Below	0.0	645.0	7.0	13.0
19-0993	28-Jul-19	KL_HU_GO01	8.0	200.0	Below	0.0	634.0	7.1	11.0
19-0994	29-Jul-19	KL_HU_GO01	9.6	200.0	Below	0.0	629.0	7.1	15.0
19-0995	30-Jul-19	KL_HU_GO01	18.8	200.0	Below	0.0	637.0	7.1	29.0
19-0996	31-Jul-19	KL HU GO01	24.4	200.0	Below	0.0	655.0	7.2	15.0
19-0997	1-Aug-19	KL_HU_GO01	5.6	200.0	Below	0.0	654.0	7.3	6.0
19-0998	2-Aug-19	KL HU GO01	55.6	200.0	Below		646.0	7.3	78.0
19-0999	3-Aug-19	KL_HU_GO01	4.4	200.0	Below	0.0	670.0	7.2	5.0
19-1000	4-Aug-19	KL HU GO01	7.2	200.0	Below	0.0	671.0	7.3	5.0
19-1001	5-Aug-19	KL_HU_GO01	6.4	200.0	Below	0.0	683.0	7.3	6.0
19-1002	6-Aug-19	KL_HU_GO01	8.0	200.0	Below	0.0	661.0	7.3	10.0
19-1003	7-Aug-19	KL HU GO01	19.6	200.0	Below	0.0	681.0	7.3	24.0
19-1004	8-Aug-19	KL_HU_GO01	7.2	200.0	Below	0.0	696.0	7.3	6.0
19-1005	9-Aug-19	KL_HU_GO01	6.8	200.0	Below	0.0	665.0	7.3	9.0
19-1006	10-Aug-19	KL_HU_GO01	4.0	200.0	Below	0.0	679.0	7.3	5.0
19-1007	11-Aug-19	KL HU GO01	6.8	200.0	Below	0.0		7.4	6.0
19-1070	12-Aug-19	KL_HU_GO01	22.0	200.0	Below	0.0	674.0	7.7	44.0
19-1008	12-Aug-19	KL HU GO01	12.4	200.0	Below		671.0	7.4	11.0
19-1488	13-Aug-19	KL HU GO01	5.6	200.0	Below	0.0	681.0	7.6	681.0
19-1489	14-Aug-19	KL_HU_GO01	6.8	200.0	Below	0.0	677.0	7.6	677.0
19-1490	15-Aug-19	KL_HU_GO01	19.2	200.0	Below	0.0	678.0	7.6	678.0
19-1491	16-Aug-19	KL_HU_GO01	8.8	200.0	Below	0.0	662.0	7.6	662.0
19-1492	17-Aug-19	KL_HU_GO01	52.4	200.0	Below	0.0	632.0	7.5	632.0
19-1493	18-Aug-19	KL_HU_GO01	8.4	200.0	Below	0.0	622.0	7.5	622.0
19-1494	19-Aug-19	KL_HU_GO01	6.8	200.0	Below	0.0	615.0	7.6	615.0
19-1495	20-Aug-19	KL_HU_GO01	41.6	200.0	Below	0.0	627.0	7.6	627.0
19-1496	21-Aug-19	KL_HU_GO01	3.6	200.0	Below	0.0	646.0	7.6	646.0
19-1497	22-Aug-19	KL_HU_GO01	8.4	200.0	Below		671.0	7.6	671.0
19-1498	23-Aug-19	KL HU GO01	24.8	200.0	Below	0.0	666.0	7.6	666.0
19-1499	24-Aug-19	KL_HU_GO01	5.6	200.0	Below	0.0	681.0	7.6	681.0
19-1500	25-Aug-19	KL_HU_GO01	7.6	200.0	Below	0.0	684.0	7.6	14.0
19-1501	26-Aug-19	KL_HU_GO01	17.6	200.0	Below	0.0	675.0	7.6	29.0
19-1502	27-Aug-19	KL_HU_GO01	2.4	200.0	Below	0.0	679.0	7.6	10.0
19-1503	28-Aug-19	KL_HU_GO01	36.4	200.0	Below	0.0		7.6	52.0
19-1504	29-Aug-19	KL_HU_GO01	2.4	200.0	Below	0.0	681.0	7.6	11.0
19-1505	30-Aug-19	KL_HU_GO01	23.6	200.0	Below	0.0	671.0	7.6	31.0
19-1506	31-Aug-19	KL_HU_GO01	2.8	200.0	Below	0.0		7.6	5.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO3	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1507	1-Sep-19	KL_HU_GO01	1.6	200.0	Below	0.0	683.0	7.6	4.0
19-1508	2-Sep-19	KL HU GO01	8.4	200.0	Below	0.0	689.0	7.6	19.0
19-1509	3-Sep-19	KL HU GO01	22.0	200.0	Below	0.0	660.0	7.6	28.0
19-1439	4-Sep-19	KL HU GO01	34.4	200.0	Below	0.0	670.0	7.4	12.0
19-1510	4-Sep-19	KL HU GO01	7.6	200.0	Below		708.0	7.6	16.0
19-1631	5-Sep-19	 KL_HU_GO01	33.6	200.0	Below	0.0	684.0	7.7	38.0
19-1632	6-Sep-19	 KL_HU_GO01	10.0	200.0	Below	0.0	682.0	7.7	10.0
19-1633	7-Sep-19	KL_HU_GO01	47.2	200.0	Below	0.1	665.0	7.7	59.0
19-1634	8-Sep-19	KL_HU_GO01	13.2	200.0	Below	0.0	679.0	7.7	12.0
19-1635	9-Sep-19	KL_HU_GO01	36.4	200.0	Below	0.1	705.0	7.7	47.0
19-1636	10-Sep-19	KL_HU_GO01	12.4	200.0	Below	0.0	710.0	7.7	9.0
19-1637	11-Sep-19	KL_HU_GO01	29.6	200.0	Below	0.0	701.0	7.7	32.0
19-1638	12-Sep-19	KL_HU_GO01	7.2	200.0	Below	0.0	689.0	7.7	10.0
19-1639	13-Sep-19	KL_HU_GO01	8.0	200.0	Below	0.0	682.0	7.7	6.0
19-1640	14-Sep-19	KL_HU_GO01	19.2	200.0	Below	0.0	666.0	7.7	13.0
19-1515	23-Sep-19	KL_HU_GO01	132.0	200.0	Below	0.3	514.0	7.2	93.0
19-0050	13-Jun-19	KL_HU_KM10	28.0	200.0	Below	0.0	666.0	7.9	30.0
19-0146	14-Jun-19	KL_HU_KM10	15.6	200.0	Below	0.0	686.0	8.2	19.0
19-0147	15-Jun-19	KL_HU_KM10	8.8	200.0	Below	0.0	683.0	8.1	20.0
19-0148	16-Jun-19	KL_HU_KM10	16.4	200.0	Below	0.0	687.0	8.1	23.0
19-0149	17-Jun-19	KL_HU_KM10	86.0	200.0	Below	0.2	582.0	8.2	61.0
19-0150	18-Jun-19	KL_HU_KM10	39.2	200.0	Below	0.2	537.0	8.2	53.0
19-0151	19-Jun-19	KL_HU_KM10	78.4	200.0	Below	0.3	534.0	8.2	132.0
19-0152	20-Jun-19	KL_HU_KM10	43.6	200.0	Below	0.2	588.0	8.2	65.0
19-0153	21-Jun-19	KL_HU_KM10	19.6	200.0	Below	0.0	643.0	8.1	41.0
19-0154	22-Jun-19	KL_HU_KM10	16.4	200.0	Below	0.0	675.0	8.1	35.0
19-0155	23-Jun-19	KL_HU_KM10	9.2	200.0	Below	0.0	712.0	8.1	29.0
19-0156	24-Jun-19	KL_HU_KM10	6.8	200.0	Below	0.0	738.0	8.1	17.0
19-0157	25-Jun-19	KL_HU_KM10	7.6	200.0	Below	0.0	735.0	8.1	16.0
19-0158	26-Jun-19	KL_HU_KM10	5.6	200.0	Below	0.0	742.0	8.1	25.0
19-0159	27-Jun-19	KL_HU_KM10	15.6	200.0	Below	0.0	743.0	8.1	20.0
19-0160	28-Jun-19	KL_HU_KM10	12.0	200.0	Below	0.0	740.0	8.1	24.0
19-0161	29-Jun-19	KL_HU_KM10	8.0	200.0	Below	0.0	751.0	8.0	14.0
19-0162	30-Jun-19	KL_HU_KM10	8.0	200.0	Below	0.0	752.0	8.0	8.0
19-0163	1-Jul-19	KL_HU_KM10	11.6	200.0	Below	0.0		8.0	12.0
19-0256	2-Jul-19	KL_HU_KM10	132.0	200.0	Below	0.5	763.0	7.9	140.0
19-0164	2-Jul-19	KL_HU_KM10	14.8	200.0	Below			8.0	33.0
19-0610	3-Jul-19	KL_HU_KM10	44.8	200.0	Below	0.3	793.0	7.9	51.0
19-0611	4-Jul-19	KL_HU_KM10	46.0	200.0	Below	0.3		7.9	34.0
19-0612	5-Jul-19	KL_HU_KM10	50.0	200.0	Below	0.3		8.0	57.0
19-0613	6-Jul-19	KL_HU_KM10	42.0	200.0	Below	0.3	790.0	8.0	48.0
19-0614	7-Jul-19	KL_HU_KM10	30.4	200.0	Below	0.3	802.0	7.9	33.0
19-0615	8-Jul-19	KL_HU_KM10	61.6	200.0	Below	0.4	806.0	8.0	81.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0616	9-Jul-19	KL_HU_KM10	72.0	200.0	Below	0.4	818.0	7.9	90.0
19-0617	10-Jul-19	KL_HU_KM10	30.4	200.0	Below	0.3	841.0	7.9	35.0
19-0618	11-Jul-19	KL_HU_KM10	36.0	200.0	Below	0.3	806.0	7.9	40.0
19-0619	12-Jul-19	KL_HU_KM10	68.4	200.0	Below	0.3	759.0	8.0	61.0
19-0620	13-Jul-19	KL_HU_KM10	53.2	200.0	Below	0.3	727.0	8.0	71.0
19-0621	14-Jul-19	KL_HU_KM10	70.0	200.0	Below	0.4	737.0	8.0	87.0
19-0622	15-Jul-19	KL_HU_KM10	45.6	200.0	Below	0.3	749.0	8.0	55.0
19-0623	16-Jul-19	KL_HU_KM10	146.8	200.0	Below		667.0	8.0	153.0
19-0624	17-Jul-19	KL_HU_KM10	396.4	200.0	Above		455.0	8.1	274.0
19-0625	18-Jul-19	KL_HU_KM10	62.0	200.0	Below	0.3	604.0	8.0	74.0
19-0626	19-Jul-19	KL_HU_KM10	21.2	200.0	Below	0.2	673.0	7.9	22.0
19-0627	20-Jul-19	KL_HU_KM10	15.6	200.0	Below	0.2	701.0	7.9	23.0
19-0628	21-Jul-19	KL_HU_KM10	21.2	200.0	Below	0.2	732.0	7.9	25.0
19-0629	22-Jul-19	KL_HU_KM10	16.8	200.0	Below	0.2	759.0	7.9	22.0
19-0712	23-Jul-19	KL_HU_KM10	27.6	200.0	Below	0.0	747.0	7.8	43.0
19-0630	23-Jul-19	KL_HU_KM10	37.2	200.0	Below		749.0	7.9	41.0
19-1141	24-Jul-19	KL_HU_KM10	34.8	200.0	Below	0.0	782.0	7.9	41.0
19-1142	25-Jul-19	KL_HU_KM10	28.8	200.0	Below	0.0	748.0	8.0	35.0
19-1143	26-Jul-19	KL_HU_KM10	18.4	200.0	Below	0.0	754.0	8.0	23.0
19-1144	27-Jul-19	KL_HU_KM10	10.8	200.0	Below	0.0	761.0	7.9	17.0
19-1145	28-Jul-19	KL_HU_KM10	39.2	200.0	Below	0.0	742.0	8.0	48.0
19-1146	29-Jul-19	KL_HU_KM10	21.2	200.0	Below	0.0	748.0	8.0	30.0
19-1147	30-Jul-19	KL_HU_KM10	16.0	200.0	Below	0.0	755.0	7.9	17.0
19-1148	31-Jul-19	KL_HU_KM10	21.6	200.0	Below	0.0	761.0	7.9	31.0
19-1149	1-Aug-19	KL_HU_KM10	10.4	200.0	Below	0.0	761.0	7.9	13.0
19-1150	2-Aug-19	KL_HU_KM10	9.2	200.0	Below	0.0	769.0	7.9	10.0
19-1151	3-Aug-19	KL_HU_KM10	18.0	200.0	Below	0.0	759.0	7.9	23.0
19-1152	4-Aug-19	KL_HU_KM10	11.2	200.0	Below	0.0	779.0	7.9	17.0
19-1153	5-Aug-19	KL_HU_KM10	12.4	200.0	Below	0.0	767.0	7.9	20.0
19-1154	6-Aug-19	KL_HU_KM10	30.8	200.0	Below	0.1	798.0	7.9	42.0
19-1155	7-Aug-19	KL_HU_KM10	15.2	200.0	Below	0.0	769.0	7.9	15.0
19-1156	8-Aug-19	KL_HU_KM10	11.2	200.0	Below	0.0	807.0	7.9	16.0
19-1157	9-Aug-19	KL_HU_KM10	16.4	200.0	Below	0.0	805.0	7.9	31.0
19-1158	10-Aug-19	KL_HU_KM10	14.8	200.0	Below	0.0	789.0	7.9	18.0
19-1159	11-Aug-19	KL_HU_KM10	55.6	200.0	Below	0.1	801.0	7.8	66.0
19-1073	12-Aug-19	KL_HU_KM10	379.0	200.0	Above	0.4	871.0	7.6	524.0
19-1074	12-Aug-19	KL_HU_KM10	37.6	200.0	Below	0.0	802.0	7.6	49.0
19-1160	12-Aug-19	KL_HU_KM10	58.4	200.0	Below		806.0	7.8	74.0
19-1379	13-Aug-19	KL_HU_KM10	92.8	200.0	Below	0.3	851.0	7.4	128.0
19-1380	14-Aug-19	KL_HU_KM10	24.4	200.0	Below	0.0	820.0	7.4	42.0
19-1381	15-Aug-19	KL_HU_KM10	16.4	200.0	Below	0.0	788.0	7.4	26.0
19-1382	16-Aug-19	KL_HU_KM10	17.2	200.0	Below	0.0	769.0	7.4	23.0
19-1383	17-Aug-19	KL_HU_KM10	44.8	200.0	Below	0.1	725.0	7.5	26.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1384	18-Aug-19	KL_HU_KM10	20.0	200.0	Below	0.0	735.0	7.5	30.0
19-1385	19-Aug-19	KL_HU_KM10	54.8	200.0	Below	0.2	749.0	7.5	54.0
19-1386	20-Aug-19	KL HU KM10	10.8	200.0	Below	0.0	737.0	7.5	21.0
19-1387	21-Aug-19	KL HU KM10	20.4	200.0	Below	0.0	734.0	7.5	33.0
19-1388	22-Aug-19	KL_HU_KM10	44.0	200.0	Below		741.0	7.5	41.0
19-1389	23-Aug-19	KL_HU_KM10	11.2	200.0	Below	0.0	764.0	7.5	19.0
19-1390	24-Aug-19	KL_HU_KM10	10.8	200.0	Below	0.0	779.0	7.5	15.0
19-1391	25-Aug-19	KL_HU_KM10	10.8	200.0	Below		775.0	7.5	20.0
19-1392	26-Aug-19	KL_HU_KM10	11.6	200.0	Below	0.0	775.0	7.5	14.0
19-1393	27-Aug-19	KL_HU_KM10	22.0	200.0	Below	0.0	779.0	7.5	30.0
19-1394	28-Aug-19	KL HU KM10	10.0	200.0	Below	0.0	774.0	7.5	20.0
19-1395	29-Aug-19	KL_HU_KM10	18.8	200.0	Below	0.0	780.0	7.5	26.0
19-1396	30-Aug-19	KL HU KM10	22.0	200.0	Below	0.1	812.0	7.5	43.0
19-1397	31-Aug-19	KL_HU_KM10	10.0	200.0	Below			7.5	19.0
19-1398	1-Sep-19	KL_HU_KM10	32.4	200.0	Below			7.5	17.0
19-1399	2-Sep-19	KL_HU_KM10	16.4	200.0	Below	0.0	813.0	7.5	25.0
19-1433	3-Sep-19	KL HU KM10	20.4	200.0	Below	0.0	789.0	7.3	17.0
19-1400	3-Sep-19	KL HU KM10	6.0	200.0	Below	0.0	785.0	7.5	17.0
19-1679	4-Sep-19	KL_HU_KM10	10.0	200.0	Below	0.0	783.0	7.5	17.0
19-1680	5-Sep-19	KL HU KM10	18.4	200.0	Below		780.0	7.5	20.0
19-1681	6-Sep-19	KL HU KM10	14.4	200.0	Below			7.5	24.0
19-1682	7-Sep-19	KL_HU_KM10	64.8	200.0	Below	0.3		7.5	71.0
19-1683	8-Sep-19	KL_HU_KM10	24.8	200.0	Below			7.6	35.0
19-1684	9-Sep-19	KL_HU_KM10	10.4	200.0	Below		796.0	7.6	27.0
19-1685	10-Sep-19	KL_HU_KM10	20.0	200.0	Below		803.0	7.6	33.0
19-1686	11-Sep-19	KL_HU_KM10	26.8	200.0	Below		787.0	7.6	42.0
19-1687	12-Sep-19	KL_HU_KM10	28.4	200.0	Below	0.2	783.0	7.6	50.0
19-1688	13-Sep-19	KL_HU_KM10	35.2	200.0	Below		767.0	7.7	43.0
19-1689	14-Sep-19	KL_HU_KM10	32.4	200.0	Below		763.0	7.7	50.0
19-1690	15-Sep-19	KL_HU_KM10	33.2	200.0	Below	0.2	783.0	7.7	47.0
19-1691	16-Sep-19	KL_HU_KM10	7.6	200.0	Below		762.0	7.7	17.0
19-1692	17-Sep-19	KL_HU_KM10	7.6	200.0	Below	0.0	771.0	7.6	13.0
19-1693	18-Sep-19	KL_HU_KM10	12.0	200.0	Below	0.0	775.0	7.6	23.0
19-1694	19-Sep-19	KL_HU_KM10	20.8	200.0	Below	0.1	746.0	7.6	23.0
19-1695	20-Sep-19	KL_HU_KM10	36.8	200.0	Below	0.2	716.0	7.7	51.0
19-1696	21-Sep-19	KL_HU_KM10	80.4	200.0	Below		648.0	7.7	80.0
19-1697	22-Sep-19	KL_HU_KM10	130.4	200.0	Below		548.0	7.7	88.0
19-1698	23-Sep-19	KL_HU_KM10	59.6	200.0	Below			7.7	72.0
19-1522	24-Sep-19	KL_HU_KM10	18.8	200.0	Below	0.0		7.2	14.0
19-1699	24-Sep-19	KL_HU_KM10	30.8	200.0	Below			7.7	33.0
19-0052	13-Jun-19	KL_HU_KM20	12.0	200.0	Below	0.0	608.0	7.9	15.0
19-0259	3-Jul-19	KL_HU_KM20	10.0	200.0	Below			7.9	11.0
19-0537	4-Jul-19	KL_HU_KM20	16.0	200.0	Below			8.0	5.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0538	5-Jul-19	KL_HU_KM20	9.6	200.0	Below	0.0	639.0	8.0	8.0
19-0539	6-Jul-19	KL_HU_KM20	6.8	200.0	Below	0.0	637.0	8.0	10.0
19-0540	7-Jul-19	KL_HU_KM20	5.2	200.0	Below	0.0	641.0	8.0	6.0
19-0541	8-Jul-19	KL_HU_KM20	13.6	200.0	Below	0.0	642.0	8.0	0.0
19-0542	9-Jul-19	KL_HU_KM20	10.0	200.0	Below	0.0	652.0	8.0	5.0
19-0543	10-Jul-19	KL_HU_KM20	17.6	200.0	Below	0.0	648.0	8.0	30.0
19-0544	11-Jul-19	KL_HU_KM20	20.8	200.0	Below	0.1	646.0	8.0	38.0
19-0545	12-Jul-19	KL_HU_KM20	17.6	200.0	Below	0.0	632.0	8.0	19.0
19-0546	13-Jul-19	KL_HU_KM20	17.2	200.0	Below	0.0	634.0	8.0	19.0
19-0547	14-Jul-19	KL_HU_KM20	8.8	200.0	Below	0.0	627.0	8.0	25.0
19-0548	15-Jul-19	KL HU KM20	11.2	200.0	Below		627.0	8.0	16.0
19-0714	24-Jul-19	KL_HU_KM20	21.6	200.0	Below	0.1	590.0	7.9	32.0
19-1852	25-Jul-19	KL_HU_KM20	20.0	200.0	Below		620.0	7.8	30.0
19-1064	11-Aug-19	KL_HU_KM20	69.2	200.0	Below	0.2	645.0	7.7	22.0
19-1180	12-Aug-19	KL HU KM20	10.4	200.0	Below	0.0	651.0	7.8	12.0
19-1181	13-Aug-19	KL_HU_KM20	10.8	200.0	Below	0.0	649.0	7.8	14.0
19-1182	14-Aug-19	KL HU KM20	16.8	200.0	Below	0.0	643.0	7.8	23.0
19-1183	15-Aug-19	KL HU KM20	28.0	200.0	Below	0.0	645.0	7.8	30.0
19-1184	16-Aug-19	KL_HU_KM20	36.0	200.0	Below	0.1	644.0	7.9	41.0
19-1185	17-Aug-19	KL_HU_KM20	13.6	200.0	Below	0.0	632.0	7.9	13.0
19-1186	18-Aug-19	KL HU KM20	4.0	200.0	Below	0.0	642.0	7.9	12.0
19-1187	19-Aug-19	KL HU KM20	28.8	200.0	Below		637.0	7.8	28.0
19-1188	20-Aug-19	KL_HU_KM20	20.4	200.0	Below	0.0	637.0	7.9	17.0
19-1189	21-Aug-19	KL_HU_KM20	10.4	200.0	Below	0.0	643.0	7.9	11.0
19-1190	22-Aug-19	KL_HU_KM20	12.8	200.0	Below		642.0	7.9	19.0
19-1191	23-Aug-19	KL_HU_KM20	12.8	200.0	Below	0.0	639.0	7.9	6.0
19-1192	24-Aug-19	KL_HU_KM20	0.8	200.0	Below	0.0	645.0	7.9	6.0
19-1193	25-Aug-19	KL_HU_KM20	10.4	200.0	Below		640.0	8.0	16.0
19-1194	26-Aug-19	KL_HU_KM20	0.8	200.0	Below	0.0	646.0	8.0	5.0
19-1195	27-Aug-19	KL_HU_KM20	3.6	200.0	Below	0.0	646.0	7.9	6.0
19-1196	28-Aug-19	KL_HU_KM20	0.4	200.0	Below	0.0	655.0	7.9	8.0
19-1197	29-Aug-19	KL_HU_KM20	4.0	200.0	Below	0.0	646.0	7.9	6.0
19-1198	30-Aug-19	KL_HU_KM20	3.6	200.0	Below	0.0	644.0	7.9	5.0
19-1199	31-Aug-19	KL_HU_KM20	10.0	200.0	Below	0.0	649.0	8.0	9.0
19-1200	1-Sep-19	KL_HU_KM20	1.2	200.0	Below	0.0	664.0	8.0	6.0
19-1201	2-Sep-19	KL_HU_KM20	2.8	200.0	Below	0.0	651.0	8.0	7.0
19-1202	3-Sep-19	KL_HU_KM20	12.8	200.0	Below	0.0	655.0	8.0	5.0
19-1437	4-Sep-19	KL_HU_KM20	22.0	200.0	Below	0.0	646.0	7.3	19.0
19-1203	4-Sep-19	KL_HU_KM20	14.0	200.0	Below		650.0	8.0	10.0
19-1549	5-Sep-19	KL_HU_KM20	8.0	200.0	Below	0.0	649.0	7.6	2.0
19-1550	6-Sep-19	KL_HU_KM20	5.6	200.0	Below	0.0	653.0	7.6	6.0
19-1551	7-Sep-19	KL_HU_KM20	2.8	200.0	Below	0.0	656.0	7.6	14.0
19-1552	8-Sep-19	KL_HU_KM20	4.4	200.0	Below	0.0	653.0	7.6	7.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1553	9-Sep-19	KL_HU_KM20	4.8	200.0	Below	0.0	652.0	7.6	6.0
19-1554	10-Sep-19	KL_HU_KM20	4.0	200.0	Below	0.0	649.0	7.6	4.0
19-1555	11-Sep-19	KL HU KM20	3.6	200.0	Below	0.0	655.0	7.6	7.0
19-1556	12-Sep-19	KL HU KM20	6.4	200.0	Below	0.0	649.0	7.7	8.0
19-1557	13-Sep-19	KL_HU_KM20	6.8	200.0	Below	0.0	647.0	7.7	8.0
19-1558	14-Sep-19	KL HU KM20	7.2	200.0	Below	0.0	646.0	7.7	10.0
19-1559	15-Sep-19	KL_HU_KM20	6.0	200.0	Below	0.0	649.0	7.7	8.0
19-1560	16-Sep-19	KL_HU_KM20	5.2	200.0	Below	0.0	649.0	7.7	8.0
19-1561	17-Sep-19	KL_HU_KM20	4.8	200.0	Below	0.0	642.0	7.7	5.0
19-1562	18-Sep-19	KL_HU_KM20	5.2	200.0	Below	0.0	648.0	7.7	5.0
19-1563	19-Sep-19	KL HU KM20	6.8	200.0	Below	0.0	632.0	7.7	7.0
19-1564	20-Sep-19	KL_HU_KM20	5.6	200.0	Below	0.0	632.0	7.8	6.0
19-1565	21-Sep-19	KL HU KM20	6.8	200.0	Below	0.0	618.0	7.7	6.0
19-1566	22-Sep-19	KL_HU_KM20	14.0	200.0	Below		594.0	7.7	19.0
19-1513	23-Sep-19	KL HU KM20	4.8	200.0	Below	0.0	581.0	7.2	5.0
19-0021	10-Jun-19	KL HU01	9.2	80.0	Below	0.0	839.0	7.1	16.0
19-0362	11-Jun-19	KL HU01	36.8	80.0	Below	0.0	891.0	8.2	20.0
19-0028	12-Jun-19	KL HU01	32.0	80.0	Below	0.0	819.0	7.4	23.0
19-0363	12-Jun-19	KL HU01	19.6	80.0	Below	0.0	872.0	8.2	26.0
19-0364	13-Jun-19	KL HU01	18.4	80.0	Below	0.0	880.0	8.2	13.0
19-0365	14-Jun-19	KL HU01	11.2	80.0	Below	0.0	885.0	8.2	9.0
19-0366	15-Jun-19	KL HU01	13.2	80.0	Below	0.0	896.0	8.2	11.0
19-0367	16-Jun-19	KL_HU01	10.4	80.0	Below	0.0	888.0	8.2	15.0
19-0368	17-Jun-19	KL_HU01	21.2	80.0	Below	0.0	799.0	8.2	21.0
19-0369	18-Jun-19	KL_HU01	35.6	80.0	Below	0.1	691.0	8.2	30.0
19-0370	19-Jun-19	KL_HU01	38.0	80.0	Below	0.1	745.0	8.2	30.0
19-0371	20-Jun-19	KL_HU01	32.8	80.0	Below	0.0	765.0	8.2	11.0
19-0372	21-Jun-19	KL_HU01	16.0	80.0	Below	0.0	833.0	8.1	10.0
19-0373	22-Jun-19	KL_HU01	14.0	80.0	Below	0.0	858.0	8.1	17.0
19-0374	23-Jun-19	KL_HU01	10.4	80.0	Below	0.0	925.0	8.1	12.0
19-0375	24-Jun-19	KL_HU01	7.2	80.0	Below	0.0	964.0	8.1	11.0
19-0376	25-Jun-19	KL_HU01	9.2	80.0	Below	0.0	979.0	8.1	8.0
19-0377	26-Jun-19	KL_HU01	8.8	80.0	Below	0.0	989.0	8.1	7.0
19-0378	27-Jun-19	KL_HU01	10.8	80.0	Below	0.0	1015.0	8.2	9.0
19-0379	28-Jun-19	KL_HU01	14.4	80.0	Below	0.0	1004.0	8.1	10.0
19-0380	29-Jun-19	KL_HU01	8.8	80.0	Below	0.0	996.0	8.1	14.0
19-0381	30-Jun-19	KL_HU01	10.4	80.0	Below	0.0	987.0	8.1	9.0
19-0382	1-Jul-19	KL_HU01	9.6	80.0	Below	0.0	1025.0	8.1	7.0
19-0251	2-Jul-19	KL_HU01	6.0	80.0	Below	0.0	1064.0	8.0	8.0
19-0383	2-Jul-19	KL_HU01	9.6	80.0	Below		1021.0	8.0	10.0
19-0458	3-Jul-19	KL_HU01	30.4	80.0	Below	0.0	994.0	7.7	7.0
19-0459	4-Jul-19	KL_HU01	20.0	80.0	Below	0.0	1018.0	7.7	11.0
19-0460	5-Jul-19	KL_HU01	24.0	80.0	Below	0.0	1013.0	7.8	14.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO3	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0461	6-Jul-19	KL_HU01	20.0	80.0	Below	0.0	1060.0	7.8	11.0
19-0462	7-Jul-19	KL_HU01	9.6	80.0	Below	0.0	1057.0	7.8	10.0
19-0463	8-Jul-19	KL_HU01	36.4	80.0	Below	0.0	1063.0	7.8	22.0
19-0464	9-Jul-19	KL_HU01	24.8	80.0	Below	0.0	1070.0	7.8	19.0
19-0465	10-Jul-19	KL_HU01	18.8	80.0	Below	0.0	1063.0	7.8	22.0
19-0466	11-Jul-19	KL_HU01	14.0	80.0	Below	0.0	1087.0	7.9	18.0
19-0467	12-Jul-19	KL_HU01	44.0	80.0	Below	0.1	1016.0	7.9	26.0
19-0468	13-Jul-19	KL_HU01	36.0	80.0	Below	0.2	1004.0	7.9	48.0
19-0469	14-Jul-19	KL_HU01	24.8	80.0	Below	0.2	981.0	7.9	31.0
19-0470	15-Jul-19	KL_HU01	17.6	80.0	Below	0.1	1015.0	7.9	20.0
19-0471	16-Jul-19	KL_HU01	98.0	80.0	Above	0.3	897.0	7.9	54.0
19-0472	17-Jul-19	KL_HU01	190.4	80.0	Above	0.5	680.0	7.9	92.0
19-0473	18-Jul-19	KL_HU01	124.0	80.0	Above	0.9	804.0	8.0	142.0
19-0474	19-Jul-19	KL_HU01	46.8	80.0	Below	0.2	907.0	7.9	30.0
19-0475	20-Jul-19	KL_HU01	39.6	80.0	Below	0.3	982.0	7.8	47.0
19-0476	21-Jul-19	KL_HU01	59.2	80.0	Below	0.5	1005.0	7.8	69.0
19-0707	22-Jul-19	KL_HU01	24.4	80.0	Below	0.0	1019.0	7.9	38.0
19-0477	22-Jul-19	KL_HU01	55.6	80.0	Below		1018.0	7.9	85.0
19-1117	23-Jul-19	KL_HU01	27.2	80.0	Below	0.1	1024.0	7.8	36.0
19-1118	24-Jul-19	KL_HU01	34.0	80.0	Below	0.1	1035.0	7.8	36.0
19-1119	25-Jul-19	KL HU01	40.8	80.0	Below	0.1	1047.0	7.8	51.0
19-1120	26-Jul-19	KL HU01	42.4	80.0	Below	0.1	1006.0	7.8	53.0
19-1121	27-Jul-19	KL_HU01	26.8	80.0	Below	0.1	1054.0	7.9	41.0
19-1122	28-Jul-19	KL_HU01	38.8	80.0	Below	0.1	991.0	7.9	56.0
19-1123	29-Jul-19	KL_HU01	24.0	80.0	Below	0.1	1015.0	7.9	35.0
19-1124	30-Jul-19	KL_HU01	14.8	80.0	Below	0.0	1024.0	7.9	25.0
19-1125	31-Jul-19	KL_HU01	11.2	80.0	Below	0.0	1058.0	7.9	27.0
19-1126	1-Aug-19	KL_HU01	14.0	80.0	Below	0.0	1077.0	7.9	24.0
19-1127	2-Aug-19	KL_HU01	11.6	80.0	Below	0.0	1034.0	7.9	23.0
19-1128	3-Aug-19	KL_HU01	12.8	80.0	Below	0.0	1043.0	7.9	25.0
19-1129	4-Aug-19	KL_HU01	8.8	80.0	Below	0.0	1037.0	7.9	21.0
19-1130	5-Aug-19	KL_HU01	7.6	80.0	Below	0.0	1068.0	7.9	18.0
19-1131	6-Aug-19	KL_HU01	6.8	80.0	Below	0.0	1054.0	7.9	17.0
19-1132	7-Aug-19	KL_HU01	8.8	80.0	Below	0.0	1044.0	7.9	21.0
19-1133	8-Aug-19	KL_HU01	4.8	80.0	Below	0.0	1077.0	7.9	13.0
19-1134	9-Aug-19	KL_HU01	8.4	80.0	Below	0.0	1114.0	7.9	14.0
19-1135	10-Aug-19	KL_HU01	6.0	80.0	Below	0.0	1087.0	7.9	13.0
19-1066	11-Aug-19	KL_HU01	10.4	80.0	Below	0.0	1039.0	7.6	17.0
19-1136	11-Aug-19	KL_HU01	15.2	80.0	Below		1097.0	7.8	28.0
19-1525	12-Aug-19	KL_HU01	11.6	80.0		0.0	1057.0	7.4	14.0
19-1526	13-Aug-19	KL_HU01	10.0	80.0	Below	0.0	1055.0	7.4	17.0
19-1527	14-Aug-19	KL_HU01	13.6	80.0	Below	0.0	1056.0	7.4	20.0
19-1528	15-Aug-19	KL_HU01	15.6	80.0	Below	0.0	1069.0	7.4	19.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO3	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1529	16-Aug-19	KL_HU01	8.4	80.0	Below	0.0	1070.0	7.4	28.0
19-1530	17-Aug-19	KL_HU01	12.8	80.0	Below	0.0	1045.0	7.5	14.0
19-1531	18-Aug-19	KL HU01	11.2	80.0	Below	0.0	986.0	7.5	17.0
19-1532	19-Aug-19	KL HU01	10.8	80.0	Below	0.0	1014.0	7.5	14.0
19-1533	20-Aug-19	KL_HU01	10.8	80.0	Below	0.0	1014.0	7.5	16.0
19-1534	21-Aug-19	KL_HU01	10.8	80.0	Below	0.0	1040.0	7.5	15.0
19-1535	22-Aug-19	KL_HU01	8.0	80.0	Below	0.0	1046.0	7.5	12.0
19-1536	23-Aug-19	KL_HU01	9.2	80.0	Below	0.0	1051.0	7.5	6.0
19-1537	24-Aug-19	KL_HU01	4.8	80.0	Below	0.0	1083.0	7.5	7.0
19-1538	25-Aug-19	KL_HU01	4.4	80.0	Below	0.0	1096.0	7.5	8.0
19-1539	26-Aug-19	KL_HU01	3.6	80.0	Below	0.0	1111.0	7.5	5.0
19-1540	27-Aug-19	KL_HU01	7.2	80.0	Below	0.0	1103.0	7.5	9.0
19-1541	28-Aug-19	KL_HU01	2.8	80.0	Below	0.0	1119.0	7.5	7.0
19-1542	29-Aug-19	KL_HU01	10.4	80.0	Below	0.0	1140.0	7.6	10.0
19-1543	30-Aug-19	KL_HU01	3.2	80.0	Below	0.0	1130.0	7.5	8.0
19-1544	31-Aug-19	KL_HU01	19.6	80.0	Below	0.0	1054.0	7.5	27.0
19-1545	1-Sep-19	KL_HU01	4.4	80.0	Below	0.0	1100.0	7.5	18.0
19-1546	2-Sep-19	KL_HU01	5.6	80.0	Below	0.0	1106.0	7.5	9.0
19-1428	3-Sep-19	KL_HU01	12.0	200.0	Below	0.0	1124.0	7.4	9.0
19-1547	3-Sep-19	KL_HU01	10.8	80.0	Below		1094.0	7.5	21.0
19-1775	4-Sep-19	KL_HU01	8.4	80.0	Below	0.0	1032.0	7.8	10.0
19-1776	5-Sep-19	KL_HU01	14.4	80.0	Below	0.0	1006.0	7.8	12.0
19-1777	6-Sep-19	KL_HU01	10.4	80.0	Below	0.0	1022.0	7.9	11.0
19-1778	7-Sep-19	KL_HU01	24.4	80.0	Below	0.1	1003.0	7.9	33.0
19-1779	8-Sep-19	KL_HU01	7.6	80.0	Below	0.0	1019.0	7.8	13.0
19-1780	9-Sep-19	KL_HU01	6.4	80.0		0.0	1054.0	7.8	10.0
19-1781	10-Sep-19	KL_HU01	23.6	80.0	Below	0.0	1092.0	7.7	14.0
19-1782	11-Sep-19	KL_HU01	7.6	80.0	Below	0.0	1128.0	7.7	7.0
19-1783	12-Sep-19	KL_HU01	9.2	80.0	Below	0.0	1101.0	7.8	8.0
19-1784	13-Sep-19	KL_HU01	6.0	80.0		0.0	1114.0	7.8	6.0
19-1785	14-Sep-19	KL_HU01	6.4	80.0		0.0	1079.0	7.8	10.0
19-1786	15-Sep-19	KL_HU01	19.2	80.0		0.0	1060.0	7.8	19.0
19-1787	16-Sep-19	KL_HU01	8.0	80.0		0.0	1052.0	7.8	14.0
19-1788	17-Sep-19	KL_HU01	4.4	80.0		0.0	1056.0	7.8	10.0
19-1789	18-Sep-19	KL_HU01	11.6	80.0		0.0	1011.0	7.8	13.0
19-1790	19-Sep-19	KL_HU01	32.0	80.0		0.1	997.0	7.8	28.0
19-1791	20-Sep-19	KL_HU01	18.8	80.0		0.0	944.0	7.8	20.0
19-1792	21-Sep-19	KL_HU01	36.0	80.0		0.2	876.0	8.0	40.0
19-1793	22-Sep-19	KL_HU01	56.0	80.0		0.2		8.0	51.0
19-1794	23-Sep-19	KL_HU01	39.2	80.0		0.1	847.0	7.9	35.0
19-1518	24-Sep-19	KL_HU01	13.2	80.0		0.0	939.0	7.1	19.0
19-1795	24-Sep-19	KL_HU01	46.4	80.0	Below		837.0	7.9	40.0
19-0022	10-Jun-19	KL_HU03	70.0	200.0	Below	0.0	875.0	7.1	81.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0410	11-Jun-19	KL_HU03	50.4	200.0	Below	0.2	871.0	8.2	53.0
19-0029	12-Jun-19	KL_HU03	27.2	200.0	Below	0.0	766.0	7.4	21.0
19-0411	12-Jun-19	KL_HU03	81.2	200.0	Below	0.4	766.0	8.3	58.0
19-0412	13-Jun-19	KL_HU03	33.6	200.0	Below	0.2	821.0	8.3	25.0
19-0413	14-Jun-19	KL_HU03	32.4	200.0	Below	0.2	836.0	8.3	21.0
19-0414	15-Jun-19	KL_HU03	34.8	200.0	Below	0.2	824.0	8.3	22.0
19-0415	16-Jun-19	KL_HU03	30.0	200.0	Below	0.2	826.0	8.3	30.0
19-0416	17-Jun-19	KL_HU03	60.8	200.0	Below	0.4	708.0	8.3	55.0
19-0417	18-Jun-19	KL_HU03	66.4	200.0	Below	0.4	650.0	8.4	26.0
19-0418	19-Jun-19	KL_HU03	67.6	200.0	Below	0.4	686.0	8.4	53.0
19-0419	20-Jun-19	KL HU03	61.2	200.0	Below	0.4	732.0	8.3	77.0
19-0420	21-Jun-19	KL_HU03	44.0	200.0	Below	0.2	790.0	8.3	38.0
19-0421	22-Jun-19	KL_HU03	35.6	200.0	Below	0.2	833.0	8.3	35.0
19-0422	23-Jun-19	KL_HU03	29.2	200.0	Below	0.2	898.0	8.3	31.0
19-0423	24-Jun-19	KL HU03	28.8	200.0	Below	0.2	913.0	8.3	30.0
19-0424	25-Jun-19	 KL_HU03	26.0	200.0	Below	0.1	944.0	8.3	32.0
19-0425	26-Jun-19	KL HU03	38.4	200.0	Below	0.2	958.0	8.3	41.0
19-0426	27-Jun-19	KL HU03	24.4	200.0	Below	0.1	975.0	8.2	25.0
19-0427	28-Jun-19	KL HU03	18.8	200.0	Below	0.1	938.0	8.3	31.0
19-0428	29-Jun-19	KL HU03	5.6	200.0	Below	0.1	906.0	8.3	27.0
19-0429	30-Jun-19	KL HU03	46.8	200.0	Below	0.3	918.0	8.3	50.0
19-0430	1-Jul-19	KL HU03	14.0	200.0	Below	0.2	979.0	8.3	32.0
19-0253	2-Jul-19	KL_HU03	12.8	200.0	Below	0.0	1105.0	7.9	15.0
19-0431	2-Jul-19	KL_HU03	18.4	200.0	Below		1002.0	8.2	35.0
19-0682	3-Jul-19	KL HU03	24.4	200.0	Below	0.3	993.0	7.9	48.0
19-0683	4-Jul-19	KL_HU03	29.6	200.0	Below	0.2	1015.0	7.9	40.0
19-0684	5-Jul-19	KL_HU03	33.6	200.0	Below	0.3	1033.0	7.9	44.0
19-0685	6-Jul-19	KL_HU03	30.8	200.0	Below	0.2	1060.0	8.0	36.0
19-0686	7-Jul-19	KL_HU03	46.0	200.0	Below	0.3	1090.0	7.9	69.0
19-0687	8-Jul-19	KL_HU03	49.6	200.0	Below	0.3	1036.0	7.9	59.0
19-0688	9-Jul-19	KL_HU03	66.4	200.0	Below	0.3	1065.0	8.0	99.0
19-0689	10-Jul-19	KL_HU03	315.6	200.0	Above	0.8	1092.0	7.9	283.0
19-0690	11-Jul-19	KL_HU03	55.2	200.0	Below	0.2	1036.0	8.0	81.0
19-0691	12-Jul-19	KL_HU03	289.6	200.0	Above	0.3	974.0	8.0	252.0
19-0692	13-Jul-19	KL_HU03	54.4	200.0	Below	0.3	950.0	8.0	71.0
19-0693	14-Jul-19	 KL_HU03	52.8	200.0	Below	0.3		8.0	94.0
19-0694	15-Jul-19	 KL_HU03	48.4	200.0	Below	0.3	984.0	8.0	51.0
19-0695	16-Jul-19	 KL_HU03	280.4	200.0	Above	0.7	779.0	8.0	194.0
19-0696	17-Jul-19	KL_HU03	346.0	200.0	Above	1.0	618.0	8.1	204.0
19-0697	18-Jul-19	 KL_HU03	126.4	200.0	Below	0.5	759.0	8.0	155.0
19-0698	19-Jul-19	 KL_HU03	56.8	200.0	Below	0.3	973.0	8.0	61.0
19-0699	20-Jul-19	KL_HU03	87.2	200.0	Below	0.3	965.0	7.9	76.0
19-0700	21-Jul-19	 KL_HU03	154.4	200.0	Below	0.6	1004.0	7.9	163.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0701	22-Jul-19	KL_HU03	61.6	200.0	Below	0.3	998.0	7.9	101.0
19-0710	23-Jul-19	KL_HU03	21.2	200.0	Below	0.0	986.0	7.8	34.0
19-0702	23-Jul-19	KL_HU03	62.8	200.0	Below		950.0	7.9	77.0
19-1078	24-Jul-19	KL_HU03	79.2	200.0	Below	0.0	1053.0	7.7	98.0
19-1079	25-Jul-19	KL_HU03	82.0	200.0	Below	0.1	1031.0	7.8	124.0
19-1080	26-Jul-19	KL_HU03	62.4	200.0	Below	0.0	992.0	7.8	82.0
19-1081	27-Jul-19	KL_HU03	34.4	200.0	Below	0.0	1013.0	7.8	65.0
19-1082	28-Jul-19	KL_HU03	37.6	200.0	Below	0.1	970.0	7.8	64.0
19-1083	29-Jul-19	KL_HU03	28.8	200.0	Below	0.0	998.0	7.8	64.0
19-1084	30-Jul-19	KL_HU03	25.2	200.0	Below	0.0	1042.0	7.8	51.0
19-1085	31-Jul-19	KL_HU03	21.6	200.0	Below	0.0	1098.0	7.8	64.0
19-1086	1-Aug-19	KL_HU03	61.2	200.0	Below	0.1	1015.0	7.8	92.0
19-1087	2-Aug-19	KL_HU03	96.8	200.0	Below	0.2	1037.0	7.8	94.0
19-1088	3-Aug-19	KL_HU03	78.8	200.0	Below	0.2	980.0	7.9	88.0
19-1089	4-Aug-19	KL_HU03	40.8	200.0	Below	0.1	1076.0	7.9	82.0
19-1090	5-Aug-19	KL_HU03	27.2	200.0	Below	0.0	1003.0	7.8	41.0
19-1091	6-Aug-19	KL_HU03	88.8	200.0	Below	0.3	1021.0	7.8	113.0
19-1092	7-Aug-19	KL_HU03	18.4	200.0	Below	0.0	1055.0	7.8	45.0
19-1093	8-Aug-19	KL_HU03	17.2	200.0	Below	0.0	1094.0	7.8	38.0
19-1094	9-Aug-19	KL_HU03	21.2	200.0	Below	0.0	1104.0	7.8	41.0
19-1095	10-Aug-19	KL_HU03	34.8	200.0	Below	0.0	1097.0	7.8	53.0
19-1096	11-Aug-19	KL_HU03	94.8	200.0	Below	0.1	1029.0	7.8	89.0
19-1076	12-Aug-19	KL_HU03	39.2	200.0	Below	0.0	1080.0	7.6	64.0
19-1097	12-Aug-19	KL_HU03	50.4	200.0	Below		1064.0	7.8	80.0
19-1204	13-Aug-19	KL_HU03	41.2	200.0	Below	0.0	1050.0	7.8	57.0
19-1205	14-Aug-19	KL_HU03	116.8	200.0	Below	0.1	1051.0	7.8	166.0
19-1206	15-Aug-19	KL_HU03	67.6	200.0	Below	0.2	1105.0	7.8	63.0
19-1207	16-Aug-19	KL_HU03	37.2	200.0	Below	0.1	1051.0	7.8	57.0
19-1208	17-Aug-19	KL_HU03	26.4	200.0	Below	0.0	1004.0	7.8	32.0
19-1209	18-Aug-19	KL_HU03	24.0	200.0	Below	0.0	942.0	7.8	36.0
19-1210	19-Aug-19	KL_HU03	60.4	200.0	Below	0.3	1009.0	7.8	77.0
19-1211	20-Aug-19	KL_HU03	24.4	200.0	Below	0.1	1037.0	7.8	48.0
19-1212	21-Aug-19	KL_HU03	36.8	200.0		0.0	1038.0	7.8	52.0
19-1213	22-Aug-19	KL_HU03	48.4	200.0	Below	0.2	1022.0	7.8	32.0
19-1214	23-Aug-19	KL_HU03	45.6	200.0	Below	0.1	1084.0	7.7	42.0
19-1215	24-Aug-19	KL_HU03	28.4	200.0	Below	0.0		7.7	19.0
19-1216	25-Aug-19	KL_HU03	6.0	200.0		0.0		7.8	12.0
19-1217	26-Aug-19	KL_HU03	20.8	200.0		0.0	1139.0	7.7	27.0
19-1218	27-Aug-19	KL_HU03	9.6	200.0	Below	0.0	1128.0	7.7	25.0
19-1219	28-Aug-19	KL_HU03	22.8	200.0	Below	0.0	1153.0	7.7	27.0
19-1220	29-Aug-19	KL_HU03	11.2	200.0	Below	0.0	1131.0	7.7	20.0
19-1221	30-Aug-19	KL_HU03	54.4	200.0	Below	0.0	1084.0	7.7	41.0
19-1222	31-Aug-19	KL_HU03	30.0	200.0	Below	0.0	1101.0	7.7	37.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L) Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1223	1-Sep-19	KL_HU03	108.0	200.0	Below	0.2	1082.0	7.7	98.0
19-1224	2-Sep-19	KL HU03	21.6	200.0	Below	0.0	1076.0	7.7	36.0
19-1431	3-Sep-19	KL HU03	22.8	200.0	Below	0.0	1079.0	7.3	37.0
19-1225	3-Sep-19	KL HU03	26.0	200.0	Below		1067.0	7.7	39.0
19-1703	4-Sep-19	KL HU03	35.2	200.0	Below	0.1	1037.0	7.5	36.0
19-1704	5-Sep-19	KL HU03	12.0	200.0	Below	0.1	1034.0	7.5	27.0
19-1705	6-Sep-19	KL HU03	21.2	200.0	Below	0.1	1040.0	7.5	36.0
19-1706	7-Sep-19	 KL_HU03	348.4	200.0	Above	0.8	993.0	7.6	233.0
19-1707	8-Sep-19	KL HU03	43.2	200.0	Below	0.3	1013.0	7.6	60.0
19-1708	9-Sep-19	KL HU03	30.4	200.0	Below	0.1	1134.0	7.5	47.0
19-1709	10-Sep-19	KL HU03	45.6	200.0	Below	0.2	1117.0	7.5	77.0
19-1710	11-Sep-19	KL HU03	26.8	200.0	Below	0.1	1135.0	7.5	52.0
19-1711	12-Sep-19	KL HU03	25.2	200.0	Below	0.1	1111.0	7.5	40.0
19-1712	13-Sep-19	KL HU03	31.2	200.0	Below	0.2	1099.0	7.6	57.0
19-1713	14-Sep-19	KL HU03	28.4	200.0	Below	0.2	1020.0	7.6	43.0
19-1714	15-Sep-19	KL HU03	24.0	200.0	Below	0.2	1023.0	7.6	41.0
19-1715	16-Sep-19	KL HU03	31.2	200.0	Below	0.2	998.0	7.6	43.0
19-1716	17-Sep-19	KL HU03	43.2	200.0	Below	0.2	983.0	7.6	60.0
19-1717	18-Sep-19	KL HU03	16.8	200.0	Below	0.2	1065.0	7.6	34.0
19-1718	19-Sep-19	KL HU03	108.0	200.0	Below	0.3	955.0	7.6	75.0
19-1719	20-Sep-19	KL HU03	54.0	200.0	Below	0.2	899.0	7.6	58.0
19-1720	21-Sep-19	KL HU03	84.0	200.0	Below	0.3	803.0	7.7	78.0
19-1721	22-Sep-19	KL HU03	215.2	200.0	Above	0.4	705.0	7.7	110.0
19-1722	23-Sep-19	KL HU03	77.2	200.0	Below	0.3	801.0	7.8	56.0
19-1524	24-Sep-19	KL HU03	20.4	200.0	Below	0.0	907.0	7.1	31.0
19-1723	24-Sep-19	KL HU03	190.4	200.0	Below		856.0	7.7	192.0
19-0023	11-Jun-19	KL HU04	26.0	200.0	Below	0.0	838.0	7.2	31.0
19-0031	12-Jun-19	KL HU04	29.6	200.0	Below	0.0	759.0	7.7	16.0
19-0290	12-Jun-19	KL HU04	47.6	200.0	Below	0.4	763.0	8.2	62.0
19-0291	13-Jun-19	 KL_HU04	22.0	200.0	Below	0.2		8.2	33.0
19-0292	14-Jun-19	KL HU04	26.8	200.0	Below	0.1	820.0	8.2	17.0
19-0293	15-Jun-19	 KL HU04	20.8	200.0	Below	0.2	822.0	8.2	28.0
19-0294	16-Jun-19	KL HU04	27.2	200.0	Below	0.3		8.2	25.0
19-0295	17-Jun-19	KL HU04	87.6	200.0	Below	0.4		8.2	54.0
19-0296	18-Jun-19	KL HU04	44.4	200.0	Below	0.3	643.0	8.2	52.0
19-0297	19-Jun-19	KL HU04	34.4	200.0	Below	0.4	677.0	8.2	64.0
19-0298	20-Jun-19	KL HU04	56.0	200.0	Below	0.3	708.0	8.2	64.0
19-0299	21-Jun-19	KL HU04	21.6	200.0	Below	0.2	783.0	8.2	27.0
19-0300	22-Jun-19	KL HU04	20.8	200.0	Below	0.1		8.1	26.0
19-0301	23-Jun-19	KL HU04	24.8	200.0	Below	0.1		8.1	12.0
19-0302	24-Jun-19	KL HU04	15.2	200.0	Below	0.1		8.1	25.0
19-0303	25-Jun-19	KL HU04	23.2	200.0	Below	0.0	948.0	8.2	28.0
19-0304	26-Jun-19	KL HU04	40.0	200.0	Below	0.1		8.1	71.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0305	27-Jun-19	KL_HU04	22.8	200.0	Below	0.2	971.0	8.1	38.0
19-0306	28-Jun-19	KL_HU04	18.4	200.0	Below	0.1	941.0	8.1	27.0
19-0307	29-Jun-19	KL_HU04	19.6	200.0	Below	0.1	913.0	8.1	24.0
19-0308	30-Jun-19	KL_HU04	47.2	200.0	Below	0.1	921.0	8.1	35.0
19-0309	1-Jul-19	KL_HU04	17.2	200.0	Below	0.1	987.0	8.2	32.0
19-0255	2-Jul-19	KL_HU04	21.6	200.0	Below	0.1	1060.0	7.9	35.0
19-0310	2-Jul-19	KL_HU04	16.8	200.0	Below		992.0	8.1	32.0
19-0634	3-Jul-19	KL_HU04	36.8	200.0	Below	0.3	998.0	7.9	58.0
19-0635	4-Jul-19	KL_HU04	17.2	200.0	Below	0.1	1032.0	7.9	26.0
19-0636	5-Jul-19	KL_HU04	45.6	200.0	Below	0.3	1047.0	8.0	62.0
19-0637	6-Jul-19	KL_HU04	42.8	200.0	Below	0.3	1049.0	8.0	58.0
19-0638	7-Jul-19	KL_HU04	46.8	200.0	Below	0.3	1113.0	7.9	74.0
19-0639	8-Jul-19	KL_HU04	54.0	200.0	Below	0.3	1043.0	7.9	68.0
19-0640	9-Jul-19	KL_HU04	101.2	200.0	Below	0.4	1080.0	7.9	108.0
19-0641	10-Jul-19	KL_HU04	261.2	200.0	Above	0.8	1100.0	7.9	260.0
19-0642	11-Jul-19	KL_HU04	68.8	200.0	Below	0.3	1032.0	7.8	87.0
19-0643	12-Jul-19	KL_HU04	69.6	200.0	Below	0.3	986.0	7.8	93.0
19-0644	13-Jul-19	KL_HU04	59.2	200.0	Below	0.3	940.0	7.9	76.0
19-0645	14-Jul-19	KL_HU04	65.6	200.0	Below	0.4	959.0	7.9	96.0
19-0646	15-Jul-19	KL_HU04	53.6	200.0	Below	0.3	986.0	7.9	64.0
19-0647	16-Jul-19	KL_HU04	197.6	200.0	Below	0.6	781.0	8.0	173.0
19-0648	17-Jul-19	KL_HU04	309.2	200.0	Above	0.6	612.0	8.0	174.0
19-0649	18-Jul-19	KL_HU04	98.0	200.0	Below	0.5	762.0	8.0	148.0
19-0650	19-Jul-19	KL_HU04	33.2	200.0	Below	0.3	866.0	8.0	59.0
19-0651	20-Jul-19	KL_HU04	57.6	200.0	Below	0.3	967.0	7.9	72.0
19-0652	21-Jul-19	KL_HU04	127.6	200.0	Below	0.5	1012.0	7.9	133.0
19-0653	22-Jul-19	KL_HU04	76.4	200.0	Below	0.3	994.0	7.8	90.0
19-0711	23-Jul-19	KL_HU04	15.6	200.0	Below	0.1	984.0	7.8	36.0
19-0654	23-Jul-19	KL_HU04	46.4	200.0	Below		970.0	7.8	55.0
19-1014	24-Jul-19	KL_HU04	65.6	200.0	Below	0.1	1055.0	7.5	70.0
19-1015	25-Jul-19	KL_HU04	93.6	200.0	Below	0.2	1025.0	7.5	63.0
19-1016	26-Jul-19	KL_HU04	71.6	200.0	Below	0.2	991.0	7.5	69.0
19-1017	27-Jul-19	KL_HU04	38.8	200.0	Below	0.1	1015.0	7.5	50.0
19-1018	28-Jul-19	KL_HU04	32.4	200.0	Below	0.1	971.0	7.5	50.0
19-1019	29-Jul-19	KL_HU04	24.4	200.0	Below	0.1	999.0	7.5	44.0
19-1020	30-Jul-19	KL_HU04	21.2	200.0	Below	0.1	1041.0	7.5	38.0
19-1021	31-Jul-19	KL_HU04	37.2	200.0	Below	0.1	1099.0	7.5	53.0
19-1022	1-Aug-19	KL_HU04	94.0	200.0	Below	0.4	1008.0	7.6	111.0
19-1023	2-Aug-19	KL_HU04	81.2	200.0	Below	0.4	1039.0	7.6	76.0
19-1024	3-Aug-19	KL_HU04	68.8	200.0	Below	0.4	981.0	7.6	76.0
19-1025	4-Aug-19	KL_HU04	60.0	200.0	Below	0.4	1078.0	7.6	61.0
19-1026	5-Aug-19	KL_HU04	14.4	200.0	Below	0.1	1006.0	7.6	29.0
19-1027	6-Aug-19	KL_HU04	133.6	200.0	Below	0.4	1017.0	7.6	102.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1028	7-Aug-19	KL_HU04	20.0	200.0	Below	0.1	1047.0	7.6	24.0
19-1029	8-Aug-19	KL_HU04	19.2	200.0	Below	0.1	1095.0	7.6	29.0
19-1030	9-Aug-19	KL_HU04	15.6	200.0	Below	0.1	1098.0	7.6	39.0
19-1031	10-Aug-19	KL_HU04	27.6	200.0	Below	0.1	1101.0	7.6	36.0
19-1032	11-Aug-19	KL_HU04	98.4	200.0	Below	0.4	1029.0	7.7	99.0
19-1075	12-Aug-19	KL_HU04	38.8	200.0	Below	0.1	1073.0	7.6	55.0
19-1033	12-Aug-19	KL_HU04	62.4	200.0	Below		1028.0	7.6	85.0
19-1432	3-Sep-19	KL_HU04	23.2	200.0	Below	0.7	1085.0	7.3	5.0
19-1876	4-Sep-19	KL_HU04	30.0	200.0	Below		907.0	7.7	35.0
19-1877	4-Sep-19	KL_HU04	23.2	200.0	Below		953.0	7.7	28.0
19-1878	4-Sep-19	KL_HU04	30.0	200.0	Below		931.0	7.7	35.0
19-1879	4-Sep-19	KL_HU04	22.0	200.0	Below		959.0	7.7	27.0
19-1880	4-Sep-19	KL_HU04	14.4	200.0	Below		898.0	7.7	17.0
19-1881	4-Sep-19	KL_HU04	17.2	200.0	Below		897.0	7.7	32.0
19-1882	4-Sep-19	KL_HU04	29.6	200.0	Below		912.0	7.7	36.0
19-1883	4-Sep-19	KL_HU04	18.8	200.0	Below		924.0	7.8	29.0
19-1884	4-Sep-19	KL_HU04	12.0	200.0	Below		916.0	7.8	20.0
19-1885	4-Sep-19	KL_HU04	14.0	200.0	Below		972.0	7.8	27.0
19-1886	4-Sep-19	KL_HU04	22.4	200.0	Below		915.0	7.8	40.0
19-1887	4-Sep-19	KL_HU04	36.0	200.0	Below		913.0	7.8	46.0
19-1888	4-Sep-19	KL_HU04	1074.8	200.0	Above		910.0	7.8	537.0
19-1889	4-Sep-19	KL_HU04	175.2	200.0	Below		886.0	7.8	162.0
19-1890	4-Sep-19	KL_HU04	44.4	200.0	Below		891.0	7.8	50.0
19-1891	4-Sep-19	KL_HU04	117.6	200.0	Below		921.0	7.8	170.0
19-1892	4-Sep-19	KL_HU04	30.8	200.0	Below		909.0	7.8	40.0
19-1893	4-Sep-19	KL_HU04	41.6	200.0	Below		891.0	7.8	50.0
19-1894	4-Sep-19	KL_HU04	45.2	200.0	Below		919.0	7.8	54.0
19-1895	4-Sep-19	KL_HU04	19.2	200.0	Below		986.0	7.8	33.0
19-1896	4-Sep-19	KL_HU04	22.8	200.0	Below		933.0	7.8	20.0
19-1897	4-Sep-19	KL_HU04	9.6	200.0	Below		998.0	7.8	19.0
19-1898	4-Sep-19	KL_HU04	42.4	200.0	Below		986.0	7.8	42.0
19-1899	4-Sep-19	KL_HU04	26.0	200.0	Below		1025.0	7.8	31.0
19-1523	24-Sep-19	KL_HU04	22.4	200.0	Below	0.1	900.0	7.1	30.0
19-0024	11-Jun-19	KL_HU05	43.6	200.0	Below	0.0	566.0	7.3	25.0
19-0032	12-Jun-19	KL_HU05	18.8	200.0	Below	0.0	579.0	7.8	7.0
19-0214	12-Jun-19	KL_HU05	14.4	200.0	Below	0.0	580.0	8.2	14.0
19-0215	13-Jun-19	KL_HU05	35.2	200.0	Below	0.2	582.0	8.2	20.0
19-0216	14-Jun-19	KL_HU05	11.6	200.0	Below	0.1	588.0	8.2	40.0
19-0217	15-Jun-19	KL_HU05	88.8	200.0	Below	0.1	583.0	8.2	48.0
19-0218	16-Jun-19	KL_HU05	80.0	200.0	Below	0.1	587.0	8.2	54.0
19-0219	17-Jun-19	KL_HU05	52.8	200.0	Below	0.4	494.0	8.2	132.0
19-0220	18-Jun-19	KL_HU05	70.4	200.0	Below	0.3	456.0	8.2	98.0
19-0221	19-Jun-19	KL_HU05	52.4	200.0	Below	0.3	434.0	8.2	193.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0222	20-Jun-19	KL_HU05	60.4	200.0	Below	0.1	496.0	8.2	68.0
19-0223	21-Jun-19	KL_HU05	37.2	200.0	Below	0.0	541.0	8.2	64.0
19-0224	22-Jun-19	KL_HU05	37.2	200.0	Below	0.0	568.0	8.1	37.0
19-0225	23-Jun-19	KL_HU05	54.4	200.0	Below	0.2	597.0	8.1	85.0
19-0226	24-Jun-19	KL_HU05	43.2	200.0	Below	0.0	605.0	8.1	52.0
19-0227	25-Jun-19	KL_HU05	29.2	200.0	Below	0.0	608.0	8.1	49.0
19-0228	26-Jun-19	KL_HU05	45.6	200.0	Below	0.1	612.0	8.1	70.0
19-0229	27-Jun-19	KL_HU05	67.2	200.0	Below	0.2	615.0	8.1	98.0
19-0230	28-Jun-19	KL_HU05	45.2	200.0	Below	0.0	624.0	8.1	40.0
19-0231	29-Jun-19	KL_HU05	9.6	200.0	Below	0.0	620.0	8.1	23.0
19-0232	30-Jun-19	KL HU05	20.8	200.0	Below	0.0	631.0	8.1	14.0
19-0233	1-Jul-19	KL_HU05	30.4	200.0	Below	0.0	641.0	8.1	38.0
19-0234	2-Jul-19	KL_HU05	73.2	200.0	Below	0.2	643.0	8.1	100.0
19-0262	3-Jul-19	KL_HU05	152.8	200.0	Below	0.3	650.0	7.9	187.0
19-0235	3-Jul-19	KL HU05	84.0	200.0	Below		651.0	8.1	114.0
19-0719	4-Jul-19	 KL_HU05	85.6	200.0	Below	0.4	657.0	8.0	129.0
19-0720	5-Jul-19	KL HU05	92.8	200.0	Below	0.3	664.0	8.0	105.0
19-0721	6-Jul-19	KL HU05	36.0	200.0	Below	0.2	658.0	8.0	58.0
19-0722	7-Jul-19	KL HU05	46.4	200.0	Below	0.2	655.0	8.0	65.0
19-0723	8-Jul-19	KL HU05	93.6	200.0	Below	0.4	666.0	8.0	155.0
19-0724	9-Jul-19	KL HU05	718.8	200.0	Above	1.0	668.0	8.0	336.0
19-0725	10-Jul-19	KL HU05	63.6	200.0	Below	0.2	685.0	8.0	48.0
19-0726	11-Jul-19	KL_HU05	58.0	200.0	Below	0.3	662.0	8.0	76.0
19-0727	12-Jul-19	KL_HU05	105.6	200.0	Below	0.4	643.0	8.0	126.0
19-0728	13-Jul-19	KL_HU05	114.8	200.0	Below	0.4	632.0	8.0	149.0
19-0729	14-Jul-19	KL_HU05	87.6	200.0	Below	0.4	633.0	8.0	141.0
19-0730	15-Jul-19	KL_HU05	129.2	200.0	Below	0.6	647.0	8.0	193.0
19-0731	16-Jul-19	KL_HU05	255.6	200.0	Above	0.6	461.0	8.1	200.0
19-0732	17-Jul-19	KL_HU05	292.8	200.0	Above	0.7	389.0	8.1	228.0
19-0733	18-Jul-19	KL_HU05	76.0	200.0	Below	0.3	496.0	8.0	95.0
19-0734	19-Jul-19	KL_HU05	38.0	200.0	Below	0.2	548.0	8.0	53.0
19-0735	20-Jul-19	KL_HU05	21.2	200.0	Below	0.2	581.0	8.0	47.0
19-0736	21-Jul-19	KL_HU05	32.4	200.0	Below	0.2	598.0	8.0	35.0
19-0737	22-Jul-19	KL_HU05	30.8	200.0	Below	0.2	630.0	8.0	56.0
19-0738	23-Jul-19	KL_HU05	66.8	200.0	Below	0.3	633.0	8.0	87.0
19-0717	24-Jul-19	 KL_HU05	18.4	200.0	Below	0.0	637.0	7.8	30.0
19-0739	24-Jul-19	KL_HU05	24.0	200.0	Below		639.0	8.0	43.0
19-0791	25-Jul-19	KL_HU05	42.0	200.0	Below	0.1	621.0	8.2	45.0
19-0792	26-Jul-19	KL_HU05	32.8	200.0	Below	0.1	614.0	8.2	30.0
19-0793	27-Jul-19	 KL_HU05	38.4	200.0	Below	0.1	630.0	8.2	66.0
19-0794	28-Jul-19	 KL_HU05	35.2	200.0	Below	0.1	616.0	8.2	54.0
19-0795	29-Jul-19	KL_HU05	14.8	200.0	Below	0.0	621.0	8.2	15.0
19-0796	30-Jul-19	 KL_HU05	31.6	200.0	Below	0.0	627.0	8.2	38.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0797	31-Jul-19	KL_HU05	7.2	200.0	Below	0.0	635.0	8.2	8.0
19-0798	1-Aug-19	KL_HU05	9.6	200.0	Below	0.0	637.0	8.2	15.0
19-0799	2-Aug-19	KL_HU05	13.6	200.0	Below	0.0	641.0	8.2	12.0
19-0800	3-Aug-19	KL_HU05	13.2	200.0	Below	0.0	634.0	8.2	12.0
19-0801	4-Aug-19	KL_HU05	13.2	200.0	Below	0.0	648.0	8.2	10.0
19-0802	5-Aug-19	KL_HU05	40.8	200.0	Below	0.0	646.0	8.2	42.0
19-0803	6-Aug-19	KL_HU05	14.8	200.0	Below	0.0	645.0	8.2	22.0
19-0804	7-Aug-19	KL_HU05	9.6	200.0	Below	0.0	638.0	8.2	9.0
19-0805	8-Aug-19	KL_HU05	16.0	200.0	Below	0.0	661.0	8.2	18.0
19-0806	9-Aug-19	KL_HU05	18.8	200.0	Below	0.0	645.0	8.2	23.0
19-0807	10-Aug-19	KL_HU05	14.0	200.0	Below	0.0	646.0	8.2	16.0
19-0808	11-Aug-19	KL_HU05	212.0	200.0	Above	0.4	653.0	8.2	398.0
19-1071	12-Aug-19	KL_HU05	180.8	200.0	Below	0.3	664.0	7.7	197.0
19-0809	12-Aug-19	KL_HU05	110.0	200.0	Below		653.0	8.2	192.0
19-1403	13-Aug-19	KL_HU05	106.0	200.0	Below	0.0	656.0	7.5	109.0
19-1404	14-Aug-19	KL_HU05	59.6	200.0	Below	0.0	657.0	7.6	56.0
19-1406	16-Aug-19	KL_HU05	26.4	200.0	Below	0.0	646.0	7.6	30.0
19-1407	17-Aug-19	KL_HU05	73.2	200.0	Below	0.0	645.0	7.7	55.0
19-1408	18-Aug-19	KL_HU05	52.0	200.0	Below	0.0	625.0	7.6	51.0
19-1409	19-Aug-19	KL_HU05	42.8	200.0	Below	0.0	624.0	7.7	40.0
19-1410	20-Aug-19	KL_HU05	46.8	200.0	Below	0.0	629.0	7.7	64.0
19-1411	21-Aug-19	KL_HU05	61.2	200.0	Below	0.0	636.0	7.7	73.0
19-1412	22-Aug-19	KL_HU05	53.6	200.0	Below	0.0	653.0	7.6	51.0
19-1413	23-Aug-19	KL_HU05	32.0	200.0	Below	0.0	655.0	7.6	36.0
19-1414	24-Aug-19	KL_HU05	31.2	200.0	Below	0.0	667.0	7.6	33.0
19-1415	25-Aug-19	KL_HU05	24.4	200.0	Below	0.0	655.0	7.6	36.0
19-1416	26-Aug-19	KL_HU05	32.4	200.0	Below	0.0	654.0	7.6	38.0
19-1417	27-Aug-19	KL_HU05	42.8	200.0	Below	0.0	660.0	7.6	53.0
19-1418	28-Aug-19	KL_HU05	33.2	200.0	Below	0.0	656.0	7.6	59.0
19-1419	29-Aug-19	KL_HU05	95.2	200.0	Below	0.0	662.0	7.6	85.0
19-1420	30-Aug-19	KL_HU05	28.4	200.0	Below	0.0	658.0	7.6	31.0
19-1421	31-Aug-19	KL_HU05	22.8	200.0	Below	0.0	661.0	7.6	23.0
19-1422	1-Sep-19	KL_HU05	14.4	200.0	Below	0.0	661.0	7.6	19.0
19-1423	2-Sep-19	KL_HU05	30.4	200.0	Below	0.0	659.0	7.6	39.0
19-1435	3-Sep-19	KL_HU05	35.6	200.0	Below	0.0	659.0	7.4	15.0
19-1424	3-Sep-19	KL_HU05	12.8	200.0		0.0	655.0	7.6	17.0
19-1573	4-Sep-19	KL_HU05	20.4	200.0		0.0	673.0	7.7	16.0
19-1574	5-Sep-19	KL_HU05	19.2	200.0		0.0	671.0	7.7	15.0
19-1575	6-Sep-19	KL_HU05	40.0	200.0		0.0		7.7	16.0
19-1576	7-Sep-19	KL_HU05	36.0	200.0		0.1	661.0	7.7	47.0
19-1577	8-Sep-19	KL_HU05	44.8	200.0	Below	0.2	661.0	7.6	60.0
19-1578	9-Sep-19	KL_HU05	19.6	200.0		0.0	681.0	7.6	25.0
19-1579	10-Sep-19	KL_HU05	67.6	200.0	Below	0.3	677.0	7.6	95.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1580	11-Sep-19	KL_HU05	72.4	200.0	Below	0.3	678.0	7.6	103.0
19-1581	12-Sep-19	KL_HU05	90.4	200.0	Below	0.5	671.0	7.6	145.0
19-1582	13-Sep-19	KL_HU05	124.4	200.0	Below	0.7	663.0	7.5	199.0
19-1583	14-Sep-19	KL_HU05	98.8	200.0	Below	0.5	656.0	7.5	131.0
19-1584	15-Sep-19	KL_HU05	96.4	200.0	Below	0.4	669.0	7.4	117.0
19-1585	16-Sep-19	KL_HU05	17.2	200.0	Below	0.0	668.0	7.4	22.0
19-1586	17-Sep-19	KL_HU05	23.6	200.0	Below	0.1	664.0	7.4	37.0
19-1587	18-Sep-19	KL_HU05	36.8	200.0	Below	0.4	652.0	7.4	105.0
19-1588	19-Sep-19	KL_HU05	154.4	200.0	Below	0.4	653.0	7.3	104.0
19-1589	20-Sep-19	KL_HU05	134.8	200.0	Below	0.2	632.0	7.4	65.0
19-1590	21-Sep-19	KL_HU05	375.6	200.0	Above	0.6	546.0	7.4	141.0
19-1591	22-Sep-19	KL_HU05	319.6	200.0	Above	0.6	470.0	7.4	144.0
19-1516	23-Sep-19	KL_HU05	133.6	200.0	Below	0.4	545.0	7.2	67.0
19-1592	23-Sep-19	KL_HU05	87.6	200.0	Below		519.0	7.3	89.0
19-0026	11-Jun-19	KL_HU06	56.0	200.0	Below	0.0	531.0	7.4	39.0
19-0035	12-Jun-19	KL_HU06	26.0	200.0	Below	0.0	536.0	7.8	19.0
19-0122	12-Jun-19	KL_HU06	60.8	200.0	Below	0.2	541.0	8.3	33.0
19-0123	13-Jun-19	KL_HU06	146.0	200.0	Below	0.4	542.0	8.2	86.0
19-0124	14-Jun-19	KL_HU06	131.6	200.0	Below	0.3	550.0	8.2	71.0
19-0125	15-Jun-19	KL_HU06	164.8	200.0	Below	0.2	543.0	8.3	141.0
19-0126	16-Jun-19	KL_HU06	103.2	200.0	Below	0.2	551.0	8.2	72.0
19-0127	17-Jun-19	KL_HU06	278.4	200.0	Above	0.5	499.0	8.3	234.0
19-0128	18-Jun-19	KL_HU06	198.4	200.0	Below	0.4	465.0	8.3	131.0
19-0129	19-Jun-19	KL_HU06	275.6	200.0	Above	0.4	475.0	8.3	270.0
19-0130	20-Jun-19	KL_HU06	165.6	200.0	Below	0.3	504.0	8.2	156.0
19-0131	21-Jun-19	KL_HU06	107.2	200.0	Below	0.2	528.0	8.2	99.0
19-0132	22-Jun-19	KL_HU06	45.6	200.0	Below	0.0	541.0	8.2	36.0
19-0133	23-Jun-19	KL_HU06	149.6	200.0	Below	0.4	552.0	8.2	167.0
19-0134	24-Jun-19	KL_HU06	142.4	200.0	Below	0.2	554.0	8.0	143.0
19-0135	25-Jun-19	KL_HU06	95.2	200.0	Below	0.1	554.0	8.0	115.0
19-0136	26-Jun-19	KL_HU06	138.4	200.0	Below	0.1	561.0	8.1	196.0
19-0137	27-Jun-19	KL_HU06	166.4	200.0	Below	0.3	569.0	8.1	165.0
19-0138	28-Jun-19	KL_HU06	95.2	200.0	Below	0.2	584.0	8.1	62.0
19-0139	29-Jun-19	KL_HU06	35.6	200.0	Below	0.1	589.0	8.1	19.0
19-0140	30-Jun-19	KL_HU06	49.6	200.0	Below	0.1	592.0	8.1	28.0
19-0141	1-Jul-19	KL_HU06	105.6	200.0	Below	0.2	598.0	8.1	109.0
19-0142	2-Jul-19	KL_HU06	205.2	200.0	Above	0.2	609.0	8.1	298.0
19-0260	3-Jul-19	KL_HU06	424.4	200.0	Above	0.4	623.0	7.9	550.0
19-0143	3-Jul-19	KL_HU06	270.0	200.0	Above		616.0	8.0	338.0
19-0513	4-Jul-19	KL_HU06	110.8	200.0	Below	0.1	623.0	8.0	139.0
19-0514	5-Jul-19	KL_HU06	130.4	200.0	Below	0.3	626.0	8.0	202.0
19-0515	6-Jul-19	KL_HU06	140.8	200.0	Below	0.2	619.0	8.0	134.0
19-0516	7-Jul-19	KL_HU06	191.6	200.0	Below	0.5	617.0	8.0	240.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0517	8-Jul-19	KL_HU06	276.0	200.0	Above	0.4	620.0	8.0	287.0
19-0518	9-Jul-19	KL_HU06	262.4	200.0	Above	0.1	629.0	8.0	273.0
19-0519	10-Jul-19	KL_HU06	60.0	200.0	Below	0.1	629.0	8.0	59.0
19-0520	11-Jul-19	KL_HU06	114.4	200.0	Below	0.2	628.0	8.0	156.0
19-0521	12-Jul-19	KL_HU06	278.0	200.0	Above	0.2	606.0	8.0	328.0
19-0522	13-Jul-19	KL_HU06	194.0	200.0	Below	0.2	608.0	8.0	240.0
19-0523	14-Jul-19	KL_HU06	167.2	200.0	Below	0.2	605.0	8.0	223.0
19-0524	15-Jul-19	KL_HU06	231.2	200.0	Above	0.2	624.0	8.0	270.0
19-0525	16-Jul-19	KL_HU06	144.4	200.0	Below	0.2	550.0	8.0	195.0
19-0526	17-Jul-19	KL_HU06	377.2	200.0	Above	0.5	473.0	8.0	390.0
19-0527	18-Jul-19	KL_HU06	107.2	200.0	Below	0.1	538.0	8.0	161.0
19-0528	19-Jul-19	KL_HU06	24.4	200.0	Below	0.0	563.0	8.0	27.0
19-0529	20-Jul-19	KL_HU06	17.6	200.0	Below	0.0	583.0	7.9	13.0
19-0530	21-Jul-19	KL_HU06	45.6	200.0	Below	0.0	586.0	7.9	39.0
19-0531	22-Jul-19	KL_HU06	56.4	200.0	Below	0.0	601.0	7.9	80.0
19-0532	23-Jul-19	KL_HU06	217.6	200.0	Above	0.3	609.0	7.9	274.0
19-0715	24-Jul-19	KL_HU06	68.4	200.0	Below	0.0	609.0	7.8	115.0
19-0533	24-Jul-19	KL_HU06	36.8	200.0	Below		611.0	7.9	54.0
19-0863	25-Jul-19	KL_HU06	59.2	200.0	Below	0.1	609.0	8.2	63.0
19-0864	26-Jul-19	KL_HU06	65.6	200.0	Below	0.1	612.0	8.2	58.0
19-0865	27-Jul-19	KL_HU06	83.6	200.0	Below	0.3	625.0	8.2	144.0
19-0866	28-Jul-19	KL_HU06	52.4	200.0	Below	0.1	618.0	8.2	54.0
19-0867	29-Jul-19	KL_HU06	11.2	200.0	Below	0.0	616.0	8.2	14.0
19-0868	30-Jul-19	KL_HU06	23.2	200.0	Below	0.0	631.0	8.1	17.0
19-0869	31-Jul-19	KL_HU06	11.2	200.0	Below	0.0	628.0	8.2	13.0
19-0870	1-Aug-19	KL_HU06	11.6	200.0	Below	0.0	621.0	8.2	15.0
19-0871	2-Aug-19	KL_HU06	3.6	200.0	Below	0.0	622.0	8.1	11.0
19-0872	3-Aug-19	KL_HU06	26.0	200.0	Below	0.0	624.0	8.1	24.0
19-0873	4-Aug-19	KL_HU06	20.8	200.0	Below	0.0	628.0	8.1	19.0
19-0874	5-Aug-19	KL_HU06	74.8	200.0	Below	0.2	631.0	8.1	98.0
19-0875	6-Aug-19	KL_HU06	26.4	200.0	Below	0.0	630.0	8.1	26.0
19-0876	7-Aug-19	KL_HU06	10.4	200.0	Below	0.0	635.0	8.1	8.0
19-0877	8-Aug-19	KL_HU06	72.0	200.0	Below	0.1	630.0	8.1	90.0
19-0878	9-Aug-19	KL_HU06	34.4	200.0	Below	0.0	633.0	8.1	49.0
19-0879	10-Aug-19	KL_HU06	18.4	200.0	Below	0.0	641.0	8.1	21.0
19-0880	11-Aug-19	KL_HU06	966.0	200.0	Above	0.9	628.0	8.1	743.0
19-1069	12-Aug-19	KL_HU06	296.4	200.0	Above	0.2	642.0	7.7	361.0
19-0881	12-Aug-19	KL_HU06	328.0	200.0	Above		633.0	8.1	358.0
19-1331	13-Aug-19	KL_HU06	195.6	200.0	Below	0.3	639.0	7.4	244.0
19-1332	14-Aug-19	 KL_HU06	113.6	200.0	Below	0.2	642.0	7.4	121.0
19-1333	15-Aug-19	KL_HU06	108.4	200.0	Below	0.2	641.0	7.4	119.0
19-1334	16-Aug-19	KL_HU06	64.4	200.0	Below	0.1	633.0	7.4	52.0
19-1335	17-Aug-19	 KL_HU06	45.6	200.0	Below	0.1	625.0	7.4	32.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1336	18-Aug-19	KL_HU06	76.0	200.0	Below	0.2	632.0	7.5	80.0
19-1337	19-Aug-19	KL_HU06	141.6	200.0	Below	0.7	634.0	7.5	143.0
19-1338	20-Aug-19	KL_HU06	87.6	200.0	Below	0.3	627.0	7.5	98.0
19-1339	21-Aug-19	KL_HU06	127.6	200.0	Below	0.3	634.0	7.5	138.0
19-1340	22-Aug-19	KL_HU06	317.6	200.0	Above		632.0	7.5	236.0
19-1341	23-Aug-19	KL_HU06	72.0	200.0	Below	0.2	637.0	7.4	71.0
19-1342	24-Aug-19	KL_HU06	42.0	200.0	Below	0.1	636.0	7.4	44.0
19-1343	25-Aug-19	KL_HU06	87.6	200.0	Below	0.3	644.0	7.5	84.0
19-1344	26-Aug-19	KL_HU06	75.2	200.0	Below	0.3	642.0	7.5	91.0
19-1345	27-Aug-19	KL_HU06	106.0	200.0	Below	0.3	639.0	7.5	122.0
19-1346	28-Aug-19	KL_HU06	100.0	200.0	Below	0.3	650.0	7.5	115.0
19-1347	29-Aug-19	KL_HU06	126.8	200.0	Below	0.4	647.0	7.4	133.0
19-1348	30-Aug-19	KL_HU06	39.2	200.0	Below	0.1	646.0	7.4	40.0
19-1349	31-Aug-19	KL_HU06	47.2	200.0	Below	0.1	647.0	7.5	42.0
19-1350	1-Sep-19	KL_HU06	43.6	200.0	Below	0.1	649.0	7.4	40.0
19-1351	2-Sep-19	KL_HU06	40.0	200.0	Below	0.1	649.0	7.5	35.0
19-1352	3-Sep-19	KL_HU06	48.8	200.0	Below	0.2	643.0	7.5	49.0
19-1438	4-Sep-19	KL_HU06	12.0	200.0	Below	0.0	648.0	7.4	9.0
19-1353	4-Sep-19	KL_HU06	62.0	200.0	Below		640.0	7.5	36.0
19-1607	5-Sep-19	KL_HU06	24.4	200.0	Below	0.2	655.0	7.6	23.0
19-1608	6-Sep-19	KL_HU06	20.4	200.0	Below	0.1	642.0	7.6	15.0
19-1609	7-Sep-19	KL_HU06	71.6	200.0	Below	0.3	645.0	7.6	103.0
19-1610	8-Sep-19	KL_HU06	72.4	200.0	Below	0.3	636.0	7.6	92.0
19-1611	9-Sep-19	KL_HU06	68.4	200.0	Below	0.2	646.0	7.6	96.0
19-1612	10-Sep-19	KL_HU06	125.6	200.0	Below	0.4	646.0	7.6	196.0
19-1613	11-Sep-19	KL_HU06	135.2	200.0	Below	0.4	645.0	7.6	212.0
19-1614	12-Sep-19	KL_HU06	224.0	200.0	Above	0.5	627.0	7.6	336.0
19-1615	13-Sep-19	KL_HU06	245.2	200.0	Above	0.3	626.0	7.6	278.0
19-1616	14-Sep-19	KL_HU06	238.4	200.0	Above	0.3	626.0	7.6	349.0
19-1617	15-Sep-19	KL_HU06	210.4	200.0	Above	0.8	644.0	7.6	187.0
19-1618	16-Sep-19	KL_HU06	36.8	200.0	Below	0.0	644.0	7.6	37.0
19-1619	17-Sep-19	KL_HU06	68.8	200.0	Below	0.0	640.0	7.6	88.0
19-1620	18-Sep-19	KL_HU06	103.2	200.0	Below	0.2	639.0	7.6	87.0
19-1621	19-Sep-19	KL_HU06	89.2	200.0	Below	0.2	625.0	7.7	79.0
19-1622	20-Sep-19	KL_HU06	39.6	200.0	Below	0.0	629.0	7.7	32.0
19-1623	21-Sep-19	KL_HU06	95.2	200.0	Below	0.1	594.0	7.7	62.0
19-1624	22-Sep-19	KL_HU06	87.2	200.0	Below	0.1	557.0	7.7	53.0
19-1514	23-Sep-19	KL_HU06	18.4	200.0	Below	0.0	574.0	7.2	16.0
19-1625	23-Sep-19	KL_HU06	226.4	200.0	Above		600.0	7.7	150.0
19-0027	11-Jun-19	KL_HU09	7.2	200.0	Below	0.0	509.0	7.5	5.0
19-0036	12-Jun-19	KL_HU09	6.4	200.0	Below	0.0	596.0	7.7	16.0
19-0190	12-Jun-19	KL_HU09	14.4	200.0	Below	0.0	515.0	8.2	18.0
19-0191	13-Jun-19	KL_HU09	10.8	200.0	Below	0.0	515.0	8.1	4.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-0192	14-Jun-19	KL_HU09	40.0	200.0	Below	0.0	521.0	8.1	27.0
19-0193	15-Jun-19	KL_HU09	26.8	200.0	Below	0.0	518.0	8.1	16.0
19-0194	16-Jun-19	KL_HU09	32.4	200.0	Below	0.0	517.0	8.1	35.0
19-0195	17-Jun-19	KL_HU09	60.0	200.0	Below	0.1	356.0	8.2	35.0
19-0196	18-Jun-19	KL_HU09	18.0	200.0	Below	0.0	286.0	8.2	14.0
19-0197	19-Jun-19	KL_HU09	21.6	200.0	Below	0.0	377.0	8.2	17.0
19-0198	20-Jun-19	KL_HU09	78.7	200.0	Below	0.0	465.0	8.1	23.0
19-0199	21-Jun-19	KL_HU09	21.6	200.0	Below	0.0	500.0	8.1	25.0
19-0200	22-Jun-19	KL_HU09	18.4	200.0	Below	0.0	516.0	8.1	8.0
19-0201	23-Jun-19	KL_HU09	6.0	200.0	Below	0.0	528.0	8.1	9.0
19-0202	24-Jun-19	KL HU09	20.0	200.0	Below	0.0	535.0	8.1	9.0
19-0203	25-Jun-19	KL_HU09	8.4	200.0	Below	0.0	534.0	8.1	7.0
19-0204	26-Jun-19	KL_HU09	16.4	200.0	Below	0.0	547.0	8.1	9.0
19-0205	27-Jun-19	KL_HU09	10.8	200.0	Below	0.0	557.0	8.0	11.0
19-0206	28-Jun-19	KL_HU09	18.0	200.0	Below	0.0	565.0	8.0	9.0
19-0207	29-Jun-19	KL_HU09	10.4	200.0	Below	0.0	566.0	8.0	14.0
19-0208	30-Jun-19	KL HU09	16.0	200.0	Below	0.0	570.0	8.1	7.0
19-0209	1-Jul-19	KL HU09	8.0	200.0	Below	0.0	570.0	8.0	10.0
19-0210	2-Jul-19	KL HU09	16.4	200.0	Below	0.0	573.0	8.0	10.0
19-0258	3-Jul-19	KL HU09	3.2	200.0	Below	0.0	581.0	8.0	4.0
19-0211	3-Jul-19	KL HU09	11.2	200.0	Below		578.0	8.0	11.0
19-0743	4-Jul-19	KL HU09	6.4	200.0	Below	0.0	591.0	7.1	10.0
19-0744	5-Jul-19	KL_HU09	8.8	200.0	Below	0.0	580.0	7.0	12.0
19-0745	6-Jul-19	KL_HU09	8.0	200.0	Below	0.0	589.0	7.0	9.0
19-0746	7-Jul-19	KL_HU09	5.6	200.0	Below	0.0	592.0	7.0	6.0
19-0747	8-Jul-19	KL_HU09	8.8	200.0	Below	0.0	586.0	7.0	9.0
19-0748	9-Jul-19	KL_HU09	13.2	200.0	Below	0.0	593.0	7.0	14.0
19-0749	10-Jul-19	KL_HU09	3.2	200.0	Below	0.0	591.0	7.0	8.0
19-0750	11-Jul-19	KL_HU09	4.8	200.0	Below	0.0	586.0	7.1	3.0
19-0751	12-Jul-19	KL_HU09	6.8	200.0	Below	0.0	569.0	7.1	5.0
19-0752	13-Jul-19	KL_HU09	8.0	200.0	Below	0.0	569.0	7.2	13.0
19-0753	14-Jul-19	KL_HU09	5.6	200.0	Below	0.0	574.0	7.2	12.0
19-0754	15-Jul-19	KL_HU09	9.6	200.0	Below	0.0	582.0	7.2	14.0
19-0755	16-Jul-19	KL_HU09	461.2	200.0	Above	1.0	491.0	7.3	307.0
19-0756	17-Jul-19	KL_HU09	131.6	200.0	Below		427.0	7.4	108.0
19-0757	18-Jul-19	KL_HU09	18.8	200.0	Below	0.0	498.0	7.3	15.0
19-0758	19-Jul-19	KL_HU09	13.2	200.0	Below	0.0	533.0	7.3	14.0
19-0759	20-Jul-19	KL_HU09	6.4	200.0	Below	0.0	558.0	7.4	7.0
19-0760	21-Jul-19	KL_HU09	4.8	200.0	Below	0.0	567.0	7.4	4.0
19-0761	22-Jul-19	KL_HU09	6.0	200.0	Below	0.0	567.0	7.4	7.0
19-0713	23-Jul-19	KL_HU09	1.6	200.0	Below	0.0	578.0	7.9	6.0
19-0762	23-Jul-19	KL_HU09	10.8	200.0	Below		572.0	7.4	13.0
19-1038	24-Jul-19	KL_HU09	12.4	200.0	Below	0.0	574.0	7.9	25.0

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO3	Settable Solids (mL/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1039	25-Jul-19	KL_HU09	6.4	200.0	Below	0.0	566.0	7.9	19.0
19-1040	26-Jul-19	KL_HU09	12.4	200.0	Below	0.0	567.0	7.9	16.0
19-1041	27-Jul-19	KL_HU09	19.2	200.0	Below	0.0	567.0	7.9	17.0
19-1042	28-Jul-19	KL_HU09	16.8	200.0	Below	0.0	564.0	7.9	31.0
19-1043	29-Jul-19	KL_HU09	6.0	200.0	Below	0.0	568.0	7.9	6.0
19-1044	30-Jul-19	KL_HU09	3.6	200.0	Below	0.0	572.0	7.9	7.0
19-1045	31-Jul-19	KL_HU09	10.8	200.0	Below	0.0	564.0	7.9	17.0
19-1046	1-Aug-19	KL_HU09	5.2	200.0	Below	0.0	569.0	7.9	11.0
19-1047	2-Aug-19	KL_HU09	14.8	200.0	Below	0.0	570.0	7.9	13.0
19-1048	3-Aug-19	KL_HU09	4.8	200.0	Below	0.0	571.0	7.9	10.0
19-1049	4-Aug-19	KL_HU09	6.4	200.0	Below	0.0	572.0	7.9	5.0
19-1050	5-Aug-19	 KL_HU09	1.6	200.0	Below	0.0	575.0	7.9	7.0
19-1051	6-Aug-19	KL_HU09	10.8	200.0	Below	0.0	573.0	7.9	16.0
19-1052	7-Aug-19	KL_HU09	6.4	200.0	Below	0.0	576.0	7.9	11.0
19-1053	8-Aug-19	KL HU09	4.8	200.0	Below	0.0	578.0	7.9	7.0
19-1054	9-Aug-19	 KL_HU09	4.4	200.0	Below	0.0	577.0	7.9	8.0
19-1055	10-Aug-19	KL HU09	11.2	200.0	Below	0.0	576.0	7.9	18.0
19-1056	11-Aug-19	 KL_HU09	10.4	200.0	Below	0.0	575.0	7.9	27.0
19-1068	12-Aug-19	KL HU09	5.2	200.0	Below	0.0	581.0	7.8	6.0
19-1057	12-Aug-19	 KL_HU09	20.4	200.0	Below		574.0	7.9	32.0
19-1355	13-Aug-19	KL HU09	10.4	200.0	Below	0.0	581.0	7.5	15.0
19-1356	14-Aug-19	KL HU09	15.2	200.0	Below	0.0	579.0	7.5	27.0
19-1357	15-Aug-19	KL_HU09	17.6	200.0	Below	0.0	583.0	7.5	22.0
19-1358	16-Aug-19	KL_HU09	4.8	200.0	Below	0.0	576.0	7.5	14.0
19-1359	17-Aug-19	KL_HU09	5.2	200.0	Below	0.0	569.0	7.5	6.0
19-1360	18-Aug-19	KL_HU09	2.8	200.0	Below	0.0	577.0	7.5	3.0
19-1361	19-Aug-19	KL_HU09	8.0	200.0	Below		578.0	7.5	10.0
19-1362	20-Aug-19	KL_HU09	1.6	200.0	Below	0.0	578.0	7.5	2.0
19-1363	21-Aug-19	KL_HU09	4.4	200.0	Below	0.0	576.0	7.4	5.0
19-1364	22-Aug-19	KL_HU09	10.8	200.0	Below		579.0	7.4	7.0
19-1365	23-Aug-19	KL_HU09	0.8	200.0	Below	0.0	580.0	7.4	3.0
19-1366	24-Aug-19	KL_HU09	3.6	200.0	Below	0.0	578.0	7.4	3.0
19-1367	25-Aug-19	KL_HU09	2.0	200.0	Below	0.0	578.0	7.4	3.0
19-1368	26-Aug-19	KL_HU09	1.2	200.0	Below	0.0	579.0	7.4	2.0
19-1369	27-Aug-19	 KL_HU09	1.2	200.0	Below	0.0	579.0	7.4	0.0
19-1370	28-Aug-19	 KL_HU09	4.8	200.0	Below	0.0	580.0	7.4	7.0
19-1371	29-Aug-19	 KL_HU09	2.0	200.0	Below	0.0	579.0	7.4	0.0
19-1372	30-Aug-19	 KL_HU09	2.4	200.0	Below	0.0	581.0	7.4	3.0
19-1373	31-Aug-19	KL_HU09	0.8	200.0	Below	0.0	582.0	7.4	3.0
19-1374	1-Sep-19	 KL_HU09	0.8	200.0	Below	0.0		7.4	3.0
19-1375	2-Sep-19	 KL_HU09	1.6	200.0	Below	0.0	582.0	7.4	2.0
19-1376	3-Sep-19	KL_HU09	3.6	200.0	Below	0.0	581.0	7.4	7.0
19-1436	4-Sep-19	 KL_HU09	2.0	200.0	Below	0.0	582.0	7.4	5.0

Appendix D.3 WQOM Data - 2019 Analytical Results

Lab ID	Sample Date	Site ID	TSS (mg/L)	WQO (TSS in mg/L)	Above or Below WQO	?Settable Solids (mL/L) Conductivity (uS/cm)	рН	Turbidity (NTU)
19-1377	4-Sep-19	KL_HU09	3.6	200.0	Below		584.0	7.4	5.0
19-1828	5-Sep-19	KL_HU09	2.0	200.0	Below	0.0	578.0	7.6	5.0
19-1829	6-Sep-19	KL_HU09	2.8	200.0	Below	0.0	579.0	7.6	4.0
19-1830	7-Sep-19	KL_HU09	1.2	200.0	Below	0.0	578.0	7.6	3.0
19-1831	8-Sep-19	KL_HU09	1.2	200.0	Below	0.0	579.0	7.7	2.0
19-1832	9-Sep-19	KL_HU09	1.2	200.0	Below	0.0	578.0	7.7	4.0
19-1833	10-Sep-19	KL_HU09	1.6	200.0	Below	0.0	578.0	7.7	5.0
19-1834	11-Sep-19	KL_HU09	0.8	200.0	Below	0.0	578.0	7.7	3.0
19-1835	12-Sep-19	KL_HU09	1.6	200.0	Below	0.0	578.0	7.7	5.0
19-1836	13-Sep-19	KL_HU09	2.4	200.0	Below	0.0	578.0	7.7	5.0
19-1837	14-Sep-19	KL_HU09	3.6	200.0	Below	0.0	578.0	7.7	4.0
19-1838	15-Sep-19	KL_HU09	0.8	200.0	Below	0.0	580.0	7.7	4.0
19-1839	16-Sep-19	KL_HU09	2.0	200.0	Below	0.0	582.0	7.7	3.0
19-1840	17-Sep-19	KL_HU09	2.4	200.0	Below	0.0	578.0	7.7	4.0
19-1841	18-Sep-19	KL_HU09	3.2	200.0	Below	0.0	572.0	7.7	9.0
19-1842	19-Sep-19	KL_HU09	4.4	200.0	Below	0.0	556.0	7.7	17.0
19-1843	20-Sep-19	KL_HU09	4.0	200.0	Below	0.0	561.0	7.8	7.0
19-1844	21-Sep-19	KL_HU09	42.4	200.0	Below	0.4	502.0	7.8	95.0
19-1845	22-Sep-19	KL_HU09	6.4	200.0	Below	0.0	468.0	7.8	16.0
19-1512	23-Sep-19	KL_HU09	6.8	200.0	Below	0.0	511.0	7.2	8.0
19-1846	23-Sep-19	KL_HU09	14.8	200.0	Below		494.0	7.8	32.0

APPENDIX E Detailed Benthic Invertebrate Data

Site:	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
Sample:		YPS-612 rep1	YPS-612 rep2	2020 YPS-612 rep3	YPS-613	YPS-051	YPS-614	YPS-078	YPS-079	YPS-080	YPS-611	YPS-621
Sample Collection Date:	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20		28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20
CC#:	CC210204	CC210205	CC210206	CC210207		CC210209	CC210210	CC210211	CC210212	CC210213	CC210214	CC210215
Richness Measures												
Species Richness	23	17	21	24	24	41	29	34	24	27	25	27
EPT Richness	2	4	4	6	3		8	12	7	9		
Ephemeroptera Richness	1	2	2	3			3			4		4
Plecoptera Richness		1	1		1		1	5	3	2	3	3
Trichoptera Richness	1	1	1	1		3	4	2	2	3	3	3
Chironomidae Richness	8	9	8	10	10	14	9	9	12	10	7	7
Oligochaeta Richness	1	2	2	2	3	3	1	1	1	1	1	1
Non-Chiro. Non-Olig. Richness												
Abundance Measures												
Corrected Abundance	198	1050	916	1364	381	219	220	384	484	315	1955	1044
EPT Abundance	198	21		68								
	2	21	34	68	6	35	44	2/3	27	/1	600	248
Dominance Measures												
1st Dominant Taxon	Orthocladius complex	Baetis	Orthocladius complex	Orthocladius complex	Orthocladius complex	Orthocladius complex						
1st Dominant Abundance	129	752	619	891	294	86	73	107	180	140	601	455
2nd Dominant Taxon	Micropsectra	Eukiefferiella	Eukiefferiella	Diamesa	Pagastia	Eukiefferiella	Lumbriculidae	Baetis bicaudatus	Eukiefferiella	Diamesa	Eukiefferiella	Baetis
2nd Dominant Abundance	28	119	119	111	18	22	31	88	144	42	501	138
3rd Dominant Taxon	Enchytraeus	Diamesa	Diamesa	Eukiefferiella	Micropsectra	Baetis	Eukiefferiella	Cinygmula	Diamesa	Eukiefferiella	Baetis	Eukiefferiella
3rd Dominant Abundance	10	81	72	111	12	19	28	26	101	31	206	86
% 1 Dominant Taxon	65.00%	71.60%	67.54%	65.34%	77.10%	39.31%	33.09%	27.77%	37.21%	44.55%	30.75%	43.56%
% 2 Dominant Taxon	14.13%	11.37%	12.99%	8.13%	4.84%	9.95%	14.09%	23.01%	29.82%	13.37%	25.64%	13.22%
% 3 Dominant Taxon	5.05%	7.73%	7.91%	8.13%	3.22%	8.68%	12.76%	6.82%	20.94%	9.90%	10.54%	8.21%
Percent Dominance	84.19%	90.71%	88.43%	81.60%	85.15%	57.93%	59.95%	57.60%	87.97%	67.82%	66.93%	64.99%
Community Composition												
% Ephemeroptera	0.51%	1.43%	2.62%	3.23%	1.31%	13.24%	15.00%	61.72%	4.13%	9.21%	20.46%	19.16%
% Plecoptera	0.01/0	0.29%	0.22%	0.88%	0.26%	1.37%	0.45%	7.55%	0.62%	0.63%	4.25%	2.01%
% Trichoptera	0.51%	0.29%	0.87%	0.88%	0.2070	1.37%	4.55%	1.82%	0.83%	12.70%	5.98%	2.59%
% EPT	1.01%	2.00%	3.71%	4.99%	1.57%	15.98%		71.09%		22.54%		23.75%
% Diptera	87.37%	96.00%	92.58%	92.96%	95.01%	78.54%		24.74%		75.87%	66.29%	66.67%
% Oligochaeta	5.05%	2.00%	2.73%	1.76%	2.62%	2.74%	14.09%	1.30%	0.21%	0.63%	0.31%	7.28%
% Baetidae	0.51%	1.43%	2.62%	2.93%	1.31%	12.79%	13.18%	50.78%	4.13%	6.35%	19.54%	18.58%
% Chironomidae	85.35%	95.43%	91.70%	90.03%	91.60%	72.15%	59.09%	13.42%	93.39%	71.75%	60.26%	61.49%
% Odonata		55.1070			51.00/0	, 2.13/0		10.12/0		, 1, 5, 6		
Functional Group Composition % Predators	6.06%	0.57%	1.42%	2.35%	3.94%	6.39%	5.45%	9.44%	1.45%	14.29%	12.33%	9.34%
% Predators % Shredder-Herbivores	6.06%	0.57%	1.42%	2.35%	3.94%	6.39%		9.44%	1.45%	0.96%	4.57%	9.34%
% Shredder-Herbivores % Collector-Gatherers	90.22%	87.19%	84.28%		93.11%	0.91%	1.82%	61.02%	1.81%	68.17%	4.57%	79.43%
	90.22%	87.19%	84.28%	85.99% 0.29%	93.11%	78.59%	3.64%	61.02%	.43%	5.71%		0.57%
% Scrapers % Macrophyte-Herbivore	2.02%			0.29%		1.37%	3.64%	11.88%		5.71%	0.61%	0.57%
% Collector-Filterer	1.70%	0.29%		0.60%	0.27%	0.95%		2.50%			2.40%	0.2370
% Omnivore	1.70%	11.66%	13.86%	9.01%	2.42%	10.86%	14.13%	7.35%	30.31%	10.55%	25.64%	9.65%
% Parasite		11.00%	13.00%	9.01%	2.4270	10.00%	14.13%	/.35%	50.31%	10.35%	23.04%	5.05%
% Piercer-Herbivore	+											
% Gatherer	+											
% Unclassified		0.29%	0.44%	0.29%		0.91%	0.47%	0.26%		0.32%		0.43%
	1	0.29%	0.44%	0.29%		0.91%	0.47%	0.26%		0.32%	ļ	0.43%

Site:	2020	202	0	2020	2020	2020		2020		2020	2020		2020		2020		2020		2020
Sample: Y		YPS-612 rep1	YPS-612 rep2	YPS-612 rep3	2020 YPS-613	2020	YPS-051		5-614			YPS-079	2020	YPS-080		YPS-611		S-621	
Sample Collection Date: 1		28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20		28-Jul-20		Jul-20			29-Jul-20		29-Jul-20		29-Jul-20		-Jul-20	
	CC210204	CC210205	CC210206	CC210207	CC21020		CC210209		210210		C210211	CC210212		CC210213		CC210214		210215	
	CC210204	CC210205	CC210200	CC210207	CC210200	5	CC210209		210210		.0210211	CC210212		CC210213		CC210214		210213	
Functional Group Richness																			
Predators Richness		9	2	5	5	7	,	٥		7	8		5		6		Q		10
Shredder-Herbivores Richness			2	5	2	1		2		4			6		3		4		10
Collector-Gatherers Richness	1:	1 1	1	12	12	14		20		12	13		11		10		9		10
Scrapers Richness		2	.1	12	1	14	,	20		3	2		11		10		1		2
MH Richness	· · · · · · · · · · · · · · · · · · ·	2						5			3				4		1		1
CF Richness		1	1		1	1		2			2						2		
OM Richness			2	2	2	1		2		2	2		2		3		1		
PA Richness			2	2		1	•	3			2		2		3		1		Z
Piercer-Herbivore Richness			-																
Gatherer Richness																			
			1	2	1			2		- 1	1				1				1
Unclassified			-	2							1				1				1
EBA Eurotional Group Composition			+																
EPA Functional Group Composition																			
% Predators										-+									
% Parasite																			
% Collector-Gatherers																			
% Collector-Filterer																			
% Macrophyte-Herbivore																			
% Xylophage																			
% Scraper										_									
% Shredder																			
% Piercer		-																	
% Omnivore		-																	
% Unclassified																			
EPA Functional Group Richness		-	_																
Predators			_																
Parasite																			
Collector-Gatherers										\rightarrow									
Collector-Filterer		-																	
Macrophyte-Herbivore																			
Xylophage										-+									
Scraper																			
Shredder		-																	
Piercer			+																
Omnivore																			
Unclassified			+																
SAFIT Functional Group Composition																			
% Predators																			
% Parasite																			
% Collector-Gatherers																			
% Collector-Filterer																			
% Macrophyte-Herbivore							ļ												
% Periphyton-Herbivore							ļ												
% Scraper							ļ												
% Shredder							ļ			-+									
% Omnivore			_							-+									
% Unclassified							ļ												

Site:	2020	2020	2020	20	20 2020		2020	2020	2020	2020	2020	2020		2020
Sample:		YPS-612 rep1	YPS-612 rep2	YPS-612 rep3	YPS-613	YPS-051	YPS-614		/PS-078	YPS-079	YPS-080	YPS-611	YPS-621	
Sample Collection Date:	28-Jul-20		28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20		29-Jul-20	29-Jul-20		29-Jul-20	29-Jul-20	
· · · · · ·	CC210204	CC210205	CC210206	CC210207	CC210208	CC210209	CC210210		CC210211	CC210212	CC210213	CC210214	CC210215	
SAFIT Functional Group Richness	0021020	00210200	00210200	00210207	00210200	00210203	00210210				00210210		00210210	
Predators														
Parasite														
Collector-Gatherers														
Collector-Filterer														
Macrophyte-Herbivore														
Periphyton-Herbivore														
Scraper														
Shredder														
Omnivore														
Unclassified														
EPA Habitat Composition														
% Clinger													1	
% Climber													1	
% Sprawler														
% Burrower														
% Swimmer														
% Diver														
% Skater														
EPA Habitat Richness														
Clinger														
Climber														
Sprawler														
Burrower														
Swimmer														
Diver														
Skater														
Voltinism Composition														
% Univoltine		0.29%	0.22%	0.59	9% 1.05%	0	.91% 0).45%	3.40%	0.41%	0.63%	0.97%		1.15%
% Semivoltine									5.73%		0.32%	1.32%		
% Multivoltine		0.86%	2.18%	2.44	0.79%	9	.13% 5	5.91%	28.88%	3.58%	4.76%	12.02%		13.22%
Voltinism Richness														
Univoltine		1	1		1 2		1	1	3	2	1	2		2
Semivoltine									1		1	1		
Multivoltine		1	1		1 1		2	1	2	1	1	2		1
Diversity/Evenness Measures														
Shannon-Weiner H' (log 10)	0.63		0.55					1.01	1.09					0.92
Shannon-Weiner H' (log 2)	2.10		1.84					3.35	3.61					3.06
Shannon-Weiner H' (log e)	1.45		1.28					2.32	2.50					2.12
Simpson's Index (D)	0.44		0.48					0.16	0.15					0.23
Simpson's Index of Diversity (1 - D)	0.56		0.52					0.84	0.85					0.77
Simpson's Reciprocal Index (1/D)	2.25	1.88	2.08	2.	26 1.67		5.55	6.23	6.86	3.68	4.24	5.44		4.43
Biotic Indices														
Hilsenhoff Biotic Index	6.40	6.10	6.14	5.	88 5.93		5.59	5.75	4.39	6.21	4.90	5.63		5.61

Site:	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
Sample:	YPS-A1 rep1	YPS-A1 rep2		YPS-A2	YPS-A3	YPS-A4	YPS-A5 rep1	YPS-A5 rep2	YPS-A5 rep3	YPS-386
Sample Collection Date:	30-Jul-20	30-Jul-20		30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20
	CC210216	CC210217		CC210219	CC210220	CC210221	CC210222	CC210223	CC210224	CC210225
Richness Measures										
Species Richness	31	27	21	29	23	30	31	17	30	33
EPT Richness	8	8		10			8			17
Ephemeroptera Richness	4	4	4	5	3	3	4	4	4	7
Plecoptera Richness	4	4	6	5	3	5	3	4	4	7
Trichoptera Richness						1	1		1	3
Chironomidae Richness	10	8	5	10	8	7	8	4	7	8
Oligochaeta Richness	2	1		2	1	1	1		1	2
Non-Chiro. Non-Olig. Richness										
Abundance Measures										
Corrected Abundance	537	387	262	282	896	1640	2000	1356	1884	2136
EPT Abundance	101	70	46	91	51	110	140	94	184	1175
Dominance Measures										
1st Dominant Taxon	Diamesa	Diamesa	Diamesa	Diamesa	Diamesa	Diamesa	Diamesa	Diamesa	Diamesa	Simulium
1st Dominant Abundance	194	196	106	64	401	529	920	557	639	438
2nd Dominant Taxon	Lappodiamesa	Orthocladius complex	Lappodiamesa	Chironomidae	Gymnopais	Lumbriculidae	Eukiefferiella	Gymnopais	Gymnopais	Cinygmula
2nd Dominant Abundance	64	23	24	39	92	275	305	287	364	322
3rd Dominant Taxon	Orthocladius complex	Heptageniidae	Orthocladius complex	Cinygmula	Prosimulium/Helodon	Eukiefferiella	Gymnopais	Eukiefferiella	Eukiefferiella	Acentrella
3rd Dominant Abundance	58	21	24	32	86	256	290	223	255	300
% 1 Dominant Taxon	36.21%	50.67%	40.53%	22.82%	44.75%	32.28%	45.99%	41.05%		20.51%
% 2 Dominant Taxon	11.99%	5.94%	9.31%	13.91%	10.23%	16.77%	15.24%	21.14%	19.30%	15.06%
% 3 Dominant Taxon	10.74%	5.43%	9.31%	11.37%	9.58%	15.62%	14.50%	16.45%	13.51%	14.04%
Percent Dominance	58.94%	62.04%	59.15%	48.10%	64.55%	64.67%	75.72%	78.64%	66.73%	49.61%
Community Composition										
% Ephemeroptera	9.87%	11.11%	10.31%	19.86%	2.68%	2.13%	4.45%	3.32%	4.46%	43.63%
% Plecoptera	8.94%	6.98%	7.25%	12.41%	3.01%	4.27%	2.00%	3.61%	4.14%	8.47%
% Trichoptera						0.30%	0.55%		1.17%	2.90%
% EPT	18.81%	18.09%	17.56%	32.27%	5.69%	6.71%	7.00%	6.93%	9.77%	55.01%
% Diptera	78.77%	80.62%	82.06%	63.12%	92.75%	72.26%	89.00%	92.77%		43.02%
% Oligochaeta	1.30%	0.26%		2.13%	0.56%	16.77%	0.30%		0.32%	1.12%
% Baetidae	3.54%	4.65%	2.67%	5.67%	0.89%	1.83%	3.35%	2.73%	2.07%	15.22%
% Chironomidae	71.68%	73.39%	66.27%	51.71%	66.74%	57.62%	69.50%	68.22%	62.58%	15.82%
% Odonata										
										⁻
Functional Group Composition	4.070/	0.04%	10.000/		E 000/	0.050	0.050/	0.000	0.000/	
% Predators	1.87%	2.84%	10.39%	4.63%	5.80%	3.05%	2.25%	0.29%		13.11%
% Shredder-Herbivores	9.12%	6.98%	6.11%	12.41%	3.35%	4.27%	2.85%	3.61%	4.46%	5.24%
% Collector-Gatherers	69.40%	71.56%	63.46%	44.52%	60.19%	61.82%	59.86%	54.49%	55.92%	35.33%
% Scrapers	11.49%	10.32%	13.41%	19.83%	11.46%	7.66%	15.05%	21.73%	19.62%	20.79%
% Macrophyte-Herbivore	0.20%	0.20%	0.770(0.420/	0.070/	E 450/	2.50%	2.420/	4.220/	20 5400
% Collector-Filterer	0.26%	0.28%	0.77%	0.42%	9.97%	5.15%	2.50%	3.42%		20.51%
% Omnivore	7.49%	6.99%	5.48%	2.50%	9.23%	15.62%	15.79%	16.45%	14.12%	4.75%
% Parasite										l
% Piercer-Herbivore										
% Gatherer										
% Unclassified	0.37%	1.03%	0.38%	15.68%		2.44%	1.70%		0.64%	0.28%

Site:	2020	2020	20	202	0 2020	2020	2020	2020	2020	202
	YPS-A1 rep1	YPS-A1 rep2	YPS-A1 rep3	YPS-A2	YPS-A3	YPS-A4	YPS-A5 rep1	YPS-A5 rep2	YPS-A5 rep3	YPS-386
Sample Collection Date:		30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20
	CC210216	CC210217	CC210218	CC210219	CC210220	CC210221	CC210222	CC210223	CC210224	CC210225
	CC210210	CC210217	CC210218	CC210213	00210220			CC210225	CC210224	CC210225
Functional Group Richness										
Predators Richness	4		2	5	2 2	2 6	4	1	2	
Shredder-Herbivores Richness	5			-	5 4			4	-	
Collector-Gatherers Richness	14			6 1	-				14	
Scrapers Richness	3				3 3			2	2	
MH Richness		· · · · · ·		5	5 S		<u>د</u>	J	2	
CF Richness	1		1	1	1 2	2 3	3	2	3	
OM Richness	2			-	2 2	-		-		
PA Richness	2	· · · · · · · · · · · · · · · · · · ·		1	2 2	J	. 2	1	2	
Piercer-Herbivore Richness										
Gatherer Richness				4			2			
Unclassified	2	4	+	1	3	2	2		2	
EDA Functional Crown Comparities										
EPA Functional Group Composition										
% Predators			+							
% Parasite										
% Collector-Gatherers										
% Collector-Filterer										
% Macrophyte-Herbivore										
% Xylophage										
% Scraper										
% Shredder										
% Piercer										
% Omnivore										
% Unclassified										
EPA Functional Group Richness										
Predators										
Parasite										
Collector-Gatherers										
Collector-Filterer										
Macrophyte-Herbivore										
Xylophage										
Scraper										
Shredder				_						
Piercer										
Omnivore										
Unclassified				_						
SAFIT Functional Group Composition										
% Predators										
% Parasite										
% Collector-Gatherers										
% Collector-Filterer										
% Macrophyte-Herbivore										
% Periphyton-Herbivore										
% Scraper										
% Shredder										
% Omnivore										
% Unclassified										
	1		1					İ		

Site		2020	2020		2020	2020	2020	2020	2020	2020	2020		2020
	YPS-A1 rep1	YPS-A1 rep2		YPS-A1 rep3			YPS-A3	YPS-A4		YPS-A5 rep2	YPS-A5 rep3	YPS-386	
Sample Collection Date:		30-Jul-20		30-Jul-20			30-Jul-20	30-Jul-20		30-Jul-20	30-Jul-20	30-Jul-20	
	CC210216	CC210217		CC210218			CC210220	CC210221		CC210223	CC210224	CC210225	
SAFIT Functional Group Richness													
Predators													
Parasite													
Collector-Gatherers													
Collector-Filterer													
Macrophyte-Herbivore													
Periphyton-Herbivore													
Scraper													
Shredder													
Omnivore													
Unclassified													
EPA Habitat Composition													
% Clinger													
% Climber													
% Sprawler													
% Burrower													
% Swimmer													
% Diver													
% Skater													
EPA Habitat Richness													
Clinger													
Climber													
Sprawler													
Burrower													
Swimmer													
Diver													
Skater													
Voltinism Composition													
% Univoltine		.37%	0.78%		.39%	1.06%	0.89%	0.91%	1.10%		2.68%		l.17%
% Semivoltine		.42%			53%	4.26%			0.30%).56%
% Multivoltine	3	.33%	3.72%	1	53%	1.89%	1.23%	1.52%	2.63%	2.40%	1.49%	21	L.40%
Voltinism Richness													
Univoltine		1	1		1		1	2	2		2		1
Semivoltine		1			1			-	1				1
Multivoltine		2	1		1	1	2	2 2	2	1	1		2
Diversity/Evenness Measures		1.02	0.00		0.05	4 4 7	0.00		0.05	0.70	0.00		1.17
Shannon-Weiner H' (log 10)		1.02 3.40	0.90 2.98		0.95 3.15	1.17	0.88		0.85	0.76			
Shannon-Weiner H' (log 2)		2.36	2.98		2.19		2.91						3.88 2.69
Shannon-Weiner H' (log e)		0.17	0.27		0.20		0.24						
Simpson's Index (D) Simpson's Index of Diversity (1 - D)		0.17	0.27		0.20	0.10	0.24						0.10
Simpson's Reciprocal Index (1/D)		5.90	0.73 3.66		0.80 5.09		4.24		0.74				0.90 9.68
		5.50	5.00		3.09	10.04	4.24	5.99	3.83	4.00	5.27		9.00
Biotic Indices													
Hilsenhoff Biotic Index	+	4.01	4.48	L	3.63	3.98	4.25	5.12	4.47	4.37	4.18		4.08
		4.01	4.40		5.05	5.96	4.23	5.12	4.4/	4.57	4.10		4.00

APPENDIX F Stream Flow Measurements

APPENDIX F Stream Flow Measurements

Cite ID	Dete	Channel Width (m) Channel Depth (m)	Channel Velocity (m/s)	Discharge (m3/s)		
Site ID	Date	Wetted	Mean	Mean	Run		
KL_AL01	25/09/2020	1.4	0.2	0.5	0.7		
KL_AL02	25/09/2020	0.6	0.2	0.3	0.2		
KL_BO_AD_SG01	23/09/2020	0.2	0.1	0.2	0.0		
KL_BO_AD01 (YPS-622)	30/07/2020	4.0	0.2	0.5	0.2		
KL_BO_AD01 (YPS-622)	23/09/2020	0.4	0.1	0.2	0.1		
KL_BO_AD02 (YPS-623)	30/07/2020	2.5	0.2	0.5	0.2		
KL_BO_AD02 (YPS-623)	23/09/2020	0.4	0.1	0.6	0.2		
KL_BO_AD03 (YPS-624)	30/07/2020	3.8	0.1	0.4	0.2		
KL_BO_AD03 (YPS-624)	23/09/2020	0.7	0.1	0.3	0.1		
KL_BO_AD04 (YPS-625)	30/07/2020	3.2	0.1	0.3	0.1		
KL_BO_AD04 (YPS-625)	23/09/2020	0.5	0.1	0.2	0.1		
KL_BO_AD05 (YPS-626)	30/07/2020	2.3	0.2	0.1	0.1		
KL_BO_AD05 (YPS-626)	23/09/2020	0.5	0.1	0.3	0.1		
KL_BO_AD06	23/09/2020	0.3	0.1	0.3	0.1		
KL HU KM10	24/09/2020	1.2	0.1	0.5	0.4		
KL_HU_KM20 (YPS-611)	24/09/2020	0.5	0.2	0.3	0.2		
KL HU01	24/09/2020		Too deep to safe	ly collect measurement			
KL HU02	24/09/2020	1.4	0.1	0.7	0.7		
KL HU03	24/09/2020	1.3	0.2	0.4	0.4		
KL_HU04	24/09/2020	1.4	0.2	0.5	0.6		
KL HU05	24/09/2020	0.5	0.1	0.4	0.2		
KL HU06	24/09/2020	0.9	0.1	0.4	0.2		
KL HU07	24/09/2020	0.2	0.1	0.3	0.0		
KL HU08	24/09/2020	0.3	0.1	0.4	0.1		
KL HU09	24/09/2020	0.5	0.1	0.4	0.1		
KL HU10	24/09/2020	0.2	0.0	0.1	0.0		
ST CL02	22/09/2020	2.2	0.4	0.8	4.0		
YN_SW01 (YPS-386)	30/07/2020	22.5	0.4	0.8	5.9		
YN_SW01 (YPS-386)	23/09/2020	2.2	0.4	0.5	2.8		
YPS-051	29/07/2020	7.7	0.2	0.4	0.4		
YPS-051	24/09/2020	1.5	0.1	0.6	0.7		
YPS-078	29/07/2020	2.9	0.1	0.2	0.1		
YPS-078	24/09/2020	0.7	0.1	0.4	0.1		
YPS-079	29/07/2020	4.2	0.1	0.5	0.2		
YPS-079	24/09/2020	0.8	0.1	0.5	0.2		
YPS-080	29/07/2020	4.2	0.3	0.3	0.3		
YPS-544	29/07/2020	6.1	0.3	0.4	0.6		
YPS-611	29/07/2020	3.1	0.1	0.4	0.2		
YPS-612	29/07/2020	7.8	0.2	0.5	0.6		
YPS-613	29/07/2020	8.0	0.2	0.4	0.4		
YPS-614	29/07/2020	5.2	0.2	0.4	0.4		
YPS-614	24/09/2020	0.8	0.2	0.5	0.4		
YPS-621	29/07/2020	8.0	0.2	0.3	0.4		
YPS-621	24/09/2020	1.1	0.1	0.7	0.5		

APPENDIX G CABIN Exports

Study Name	Yukon Territory - AHM
Site	YPS-625
Sampling Date	Jul 30 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	63.92786 N, 139.37286 W
Altitude	512
Local Basin Name	Adams Creek
	Klondike River
Stream Order	3

Across Reach

Down Stream

Substrate Up Stream (No image found)

Metrics

Name	YPS-625	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of	Individuals	
% Chironomidae	60.4	
% Ephemeroptera	2.2	
% EPT Individuals	6.4	
% Plecoptera	3.8	
% Tricoptera	0.3	
Total Abundance	1595.0	
Rich	iness	
Simpson's Diversity	0.6	
Simpson's Evenness	0.2	
Total No. of Taxa	12.0	

Yukon Territory - AHM
YPS-626
Jul 30 2020
Klondike
Yukon Territories
Boreal Cordillera EcoZone
Klondike Plateau EcoRegion
63.92561 N, 139.40014 W
569
Adams Creek
Klondike River
3

Down Stream

Up Stream

Metrics		
Name	YPS-626	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of	Individuals	
% Chironomidae	72.0	
% Ephemeroptera	4.6	
% EPT Individuals	7.2	
% Plecoptera	2.0	
% Tricoptera	0.6	
Total Abundance	659.3	
Rich	iness	
Simpson's Diversity	0.4	
Simpson's Evenness	0.2	
Total No. of Taxa	12.0	

Yukon Territory - AHM
YPS-626 [Q2]
Jul 30 2020
Klondike
Yukon Territories
Boreal Cordillera EcoZone
Klondike Plateau EcoRegion
63.92561 N, 139.40014 W
569
Adams Creek
Klondike River
3

Down Stream

Up Stream

Metrics			
Name	YPS-626	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	68.3		
% Ephemeroptera	3.4		
% EPT Individuals	7.1		
% Plecoptera	3.7		
% Tricoptera	0.0		
Total Abundance	452.8		
Richness			
Simpson's Diversity	0.5		
Simpson's Evenness	0.3		
Total No. of Taxa	6.0		

Yukon Territory - AHM
YPS-626 [Q3]
Jul 30 2020
Klondike
Yukon Territories
Boreal Cordillera EcoZone
Klondike Plateau EcoRegion
63.92561 N, 139.40014 W
569
Adams Creek
Klondike River
3

Across Reach

Down Stream

Up Stream

Metrics			
Name	YPS-626	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	64.4		
% Ephemeroptera	4.6		
% EPT Individuals	9.4		
% Plecoptera	3.6		
% Tricoptera	1.2		
Total Abundance	620.4		
Richness			
Simpson's Diversity	0.5		
Simpson's Evenness	0.2		
Total No. of Taxa	10.0		

One Description		
Study Name	Yukon Territory - AHM	
Site	YPS-051	
Sampling Date	Jul 28 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.99178 N, 139.03414 W	
Altitude	0	
Local Basin Name	Hunker Creek downstream of Hester Creek inflow	
	Klondike River	
Stream Order	4	

Down Stream

Up Stream

Metrics			
Name	YPS-051	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	73.8		
% Ephemeroptera	13.6		
% EPT Individuals	16.4		
% Plecoptera	1.4		
% Tricoptera	1.4		
Total Abundance	219.0		
Richness			
Simpson's Diversity	0.4		
Simpson's Evenness	0.1		
Total No. of Taxa	19.0		

Study Name	Yukon Territory - AHM	
Site	YPS-078	
Sampling Date	Jul 29 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.92239 N, 138.88406 W	
Altitude	588	
Local Basin Name	Hunker Creek upstream of Ontario Cr.	
	Klondike River	
Stream Order	3	

Down Stream

Up Stream

Metrics			
Name	YPS-078	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	13.7		
% Ephemeroptera	63.7		
% EPT Individuals	73.4		
% Plecoptera	7.8		
% Tricoptera	1.9		
Total Abundance	384.0		
Richness			
Simpson's Diversity	0.7		
Simpson's Evenness	0.2		
Total No. of Taxa	13.0		

one bescription		
Study Name	Yukon Territory - AHM	
Site	YPS-079	
Sampling Date	Jul 29 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.96169 N, 138.95608 W	
Altitude	470	
Local Basin Name	Hunker Creek upstream of Gold Bottom Cr.	
	Klondike River	
Stream Order	3	

Down Stream

Up Stream

Name	YPS-079	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	93.8		
% Ephemeroptera	4.1		
% EPT Individuals	5.6		
% Plecoptera	0.6		
% Tricoptera	0.8		
Total Abundance	484.0		
Richness			
Simpson's Diversity	0.1		
Simpson's Evenness	0.1		
Total No. of Taxa	8.0		

Study Name	Yukon Territory - AHM	
Site	YPS-080	
Sampling Date	Jul 29 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.96833 N, 138.98242 W	
Altitude	474	
Local Basin Name	Hunker Creek downstream of Gold Bottom Cr.	
	Klondike River	
Stream Order	4	

Across Reach

Down Stream

Up Stream

Mictilica			
Name	YPS-080	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number O	f Individuals		
% Chironomidae	72.0		
% Ephemeroptera	9.2		
% EPT Individuals	22.6		
% Plecoptera	0.6		
% Tricoptera	12.7		
Total Abundance	315.0		
Richness			
Simpson's Diversity	0.5		
Simpson's Evenness	0.1		
Total No. of Taxa	13.0		

Study Name	Yukon Territory - AHM	
Site	YPS-386	
Sampling Date	Jul 30 2020	
Know Your Watershed Basin	Central Yukon	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	64.02528 N, 139.57403 W	
Altitude	383	
Local Basin Name	Swede Creek	
	Yukon River North	
Stream Order	4	

Down Stream

Up Stream

Name	YPS-386	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of Individuals		
% Chironomidae	15.9	
% Ephemeroptera	44.0	
% EPT Individuals	55.5	
% Plecoptera	8.6	
% Tricoptera	2.9	
Total Abundance	2137.5	
Richness		
Simpson's Diversity	0.9	
Simpson's Evenness	0.5	
Total No. of Taxa	14.0	

Study Name	Yukon Territory - AHM
Site	YPS-544
Sampling Date	Jul 28 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	64.02911 N, 139.17797 W
Altitude	364
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Down Stream

Up Stream

Metrics		
Name	YPS-544	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of Individuals		
% Chironomidae	87.6	
% Ephemeroptera	0.5	
% EPT Individuals	1.0	
% Plecoptera	0.0	
% Tricoptera	0.5	
Total Abundance	198.0	
Richness		
Simpson's Diversity	0.2	
Simpson's Evenness	0.1	
Total No. of Taxa	11.0	

Study Name	Yukon Territory - AHM
Site	YPS-611
Sampling Date	Jul 29 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	63.94950 N, 138.90628 W
Altitude	530
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	3

Down Stream

Up Stream

Metrics		
Name	YPS-611	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of Individuals		
% Chironomidae	60.2	
% Ephemeroptera	20.5	
% EPT Individuals	30.7	
% Plecoptera	4.2	
% Tricoptera	6.0	
Total Abundance	1952.9	
Richness		
Simpson's Diversity	0.6	
Simpson's Evenness	0.2	
Total No. of Taxa	12.0	

Study Name	Yukon Territory - AHM
Site	YPS-612
Sampling Date	Jul 28 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	64.01369 N, 139.09247 W
Altitude	375
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Down Stream

Up Stream

Metrics		
Name	YPS-612	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of Individuals		
% Chironomidae	95.7	
% Ephemeroptera	1.4	
% EPT Individuals	1.7	
% Plecoptera	0.0	
% Tricoptera	0.3	
Total Abundance	350.5	
Richness		
Simpson's Diversity	0.1	
Simpson's Evenness	0.2	
Total No. of Taxa	7.0	

one beschption	
Study Name	Yukon Territory - AHM
Site	YPS-612 [Q2]
Sampling Date	Jul 28 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	64.01369 N, 139.09247 W
Altitude	375
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Down Stream

Up Stream

Metrics			
Name	YPS-612	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	91.8		
% Ephemeroptera	2.7		
% EPT Individuals	3.6		
% Plecoptera	0.0		
% Tricoptera	0.8		
Total Abundance	306.7		
Richness			
Simpson's Diversity	0.2		
Simpson's Evenness	0.1		
Total No. of Taxa	10.0		

Study Name	Yukon Territory - AHM
Site	YPS-612 [Q3]
Sampling Date	Jul 28 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	64.01369 N, 139.09247 W
Altitude	375
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Across Reach

Down Stream



Up Stream

Metrics		
Name	YPS-612	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of	Individuals	
% Chironomidae	90.0	
% Ephemeroptera	3.2	
% EPT Individuals	5.0	
% Plecoptera	0.9	
% Tricoptera	0.9	
Total Abundance	454.7	
Richness		
Simpson's Diversity	0.2	
Simpson's Evenness	0.1	
Total No. of Taxa	13.0	

Study Name	Yukon Territory - AHM
Site	YPS-613
Sampling Date	Jul 28 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	64.01153 N, 139.08914 W
Altitude	394
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Down Stream

Up Stream

Name	YPS-613	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	92.1		
% Ephemeroptera	1.3		
% EPT Individuals	1.6		
% Plecoptera	0.3		
% Tricoptera	0.0		
Total Abundance	381.0		
Richness			
Simpson's Diversity	0.2		
Simpson's Evenness	0.1		
Total No. of Taxa	11.0		

Study Name	Yukon Territory - AHM
Site	YPS-614
Sampling Date	Jul 28 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	63.98244 N, 139.01711 W
Altitude	430
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Down Stream

Up Stream

Metrics		
Name	YPS-614	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of	Individuals	
% Chironomidae	59.9	
% Ephemeroptera	15.2	
% EPT Individuals	20.3	
% Plecoptera	0.5	
% Tricoptera	4.6	
Total Abundance	220.0	
Richness		
Simpson's Diversity	0.6	
Simpson's Evenness	0.2	
Total No. of Taxa	16.0	

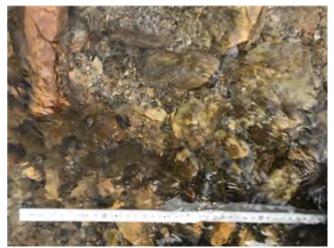
Study Name	Yukon Territory - AHM
Site	YPS-621
Sampling Date	Jul 29 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	64.00867 N, 139.07967 W
Altitude	404
Local Basin Name	Hunker Creek
	Klondike River
Stream Order	4

Across Reach

Down Stream

Up Stream

Metrics			
Name	YPS-621	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of	Individuals		
% Chironomidae	61.8		
% Ephemeroptera	19.3		
% EPT Individuals	23.8		
% Plecoptera	2.0		
% Tricoptera	2.5		
Total Abundance	1041.2		
Richness			
Simpson's Diversity	0.6		
Simpson's Evenness	0.2		
Total No. of Taxa	14.0		

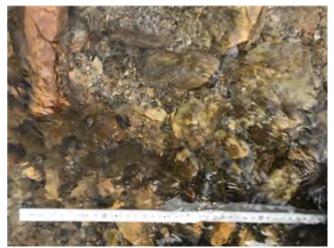

Study Name	Yukon Territory - AHM
Site	YPS-622
Sampling Date	Jul 30 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	63.93389 N, 139.33192 W
Altitude	503
Local Basin Name	Adams Creek
	Klondike River
Stream Order	3

Across Reach

Down Stream

Up Stream

Metrics		
Name	YPS-622	Predicted Group Reference Mean ±SD
Bray-Curtis Distance		
Number Of	Individuals	
% Chironomidae	73.0	
% Ephemeroptera	10.1	
% EPT Individuals	19.2	
% Plecoptera	9.1	
% Tricoptera	0.0	
Total Abundance	177.3	
Richness		
Simpson's Diversity	0.5	
Simpson's Evenness	0.2	
Total No. of Taxa	10.0	

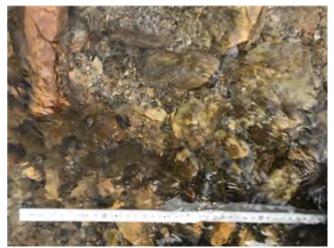

Study Name	Yukon Territory - AHM
Site	YPS-622 [Q2]
Sampling Date	Jul 30 2020
Know Your Watershed Basin	Klondike
Province / Territory	Yukon Territories
Terrestrial Ecological Classification	Boreal Cordillera EcoZone
	Klondike Plateau EcoRegion
Coordinates (decimal degrees)	63.93389 N, 139.33192 W
Altitude	503
Local Basin Name	Adams Creek
	Klondike River
Stream Order	3

Across Reach

Down Stream

Up Stream

Metrics			
Name	YPS-622	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of Individuals			
% Chironomidae	74.2		
% Ephemeroptera	11.2		
% EPT Individuals	18.3		
% Plecoptera	7.0		
% Tricoptera	0.0		
Total Abundance	129.0		
Richness			
Simpson's Diversity	0.4		
Simpson's Evenness	0.2		
Total No. of Taxa	10.0		

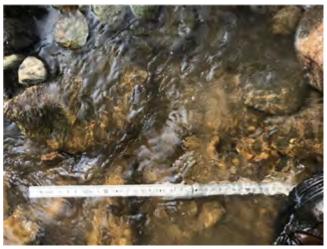

Study Name	Yukon Territory - AHM	
Site	YPS-622 [Q3]	
Sampling Date	Jul 30 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.93389 N, 139.33192 W	
Altitude	503	
Local Basin Name	Adams Creek	
	Klondike River	
Stream Order	3	

Across Reach

Down Stream

Up Stream

Metrics			
Name	YPS-622	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of Individuals			
% Chironomidae	66.4		
% Ephemeroptera	10.4		
% EPT Individuals	17.8		
% Plecoptera	7.3		
% Tricoptera	0.0		
Total Abundance	87.3		
Richness			
Simpson's Diversity	0.5		
Simpson's Evenness	0.2		
Total No. of Taxa	11.0		


Site Description		
Study Name	Yukon Territory - AHM	
Site	YPS-623	
Sampling Date	Jul 30 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.93300 N, 139.33442 W	
Altitude	476	
Local Basin Name	Adams Creek	
	Klondike River	
Stream Order	3	

Across Reach

Down Stream

Up Stream

Metrics			
Name	YPS-623	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of Individuals			
% Chironomidae	52.9		
% Ephemeroptera	20.4		
% EPT Individuals	33.2		
% Plecoptera	12.8		
% Tricoptera	0.0		
Total Abundance	282.0		
Richness			
Simpson's Diversity	0.7		
Simpson's Evenness	0.3		
Total No. of Taxa	11.0		

Study Name	Yukon Territory - AHM	
Site	YPS-624	
Sampling Date	Jul 30 2020	
Know Your Watershed Basin	Klondike	
Province / Territory	Yukon Territories	
Terrestrial Ecological Classification	Boreal Cordillera EcoZone	
	Klondike Plateau EcoRegion	
Coordinates (decimal degrees)	63.92958 N, 139.35997 W	
Altitude	493	
Local Basin Name	Adams Creek	
	Klondike River	
Stream Order	3	

Across Reach

Down Stream

Up Stream

Metrics			
Name	YPS-624	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance			
Number Of Individuals			
% Chironomidae	67.4		
% Ephemeroptera	2.7		
% EPT Individuals	5.8		
% Plecoptera	3.0		
% Tricoptera	0.0		
Total Abundance	891.9		
Richness			
Simpson's Diversity	0.5		
Simpson's Evenness	0.2		
Total No. of Taxa	10.0		