Sä Dena Hes Mine

Volume 3: Aquatic Ecological Risk Assessment

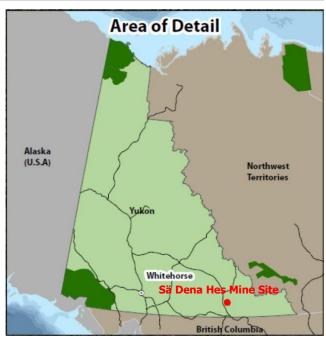
Prepared for:

Teck Resources Limited.

Bag 2000 Kimberley BC V1A 3E1

November 2015

Azimuth Consulting Group Partnership


218-2902 West Broadway Vancouver, BC V6K 2G8

Project No. TC-15-02

EXECUTIVE SUMMARY

Project History and Objectives

Azimuth Consulting Group Partnership (Azimuth) was commissioned by Teck Resources Limited (Teck) to conduct a Human Health Risk Assessment (HHRA) and terrestrial and aquatic Ecological Risk Assessments (ERA) for the Sä Dena Hes Mine (the Site) near Watson Lake, Yukon Territory (YT). The Site was a zinc-lead mine that operated for 16 months between August 1991 and December 1992. The Site has a number of mine-related Areas of Environmental Concern (AECs) described in detail in site assessment documents (Golder 2015a). The Site was kept in a state of temporary closure until January 2013 when Teck began implementing the Detailed Decommissioning and Reclamation Plan (DDRP) in support of permanent closure. As one

of the early steps in the ERA process, Azimuth prepared a Draft Problem Formulation (PF) for the Site (Azimuth 2013), and since then has submitted several risk assessment reports. The ERA for the Site is organized into three main Volumes:

- Volume 1: Updated PF
- Volume 2: Terrestrial Ecological Risk Assessment (TERA)
- Volume 3: Aquatic Ecological Risk Assessment (AERA) (this report)

The primary objective of the AERA (Volume 3) was to assess potential risks to ecological receptors (i.e., aquatic plants, aquatic invertebrates, fish, and amphibians) from exposure to mine-related contaminants/stressors in the aquatic environment. Potential risks to amphibians from contaminants in the terrestrial environment are also assessed in this report. Unlike the TERA, which was a significant driver for closure planning and regulatory approvals with respect to the terrestrial environment, the AERA had a lower profile role; the main driver for decisions about post-closure aquatic monitoring fell within the purview of the Yukon Territory water licence process.


Aquatic Environment

False Canyon Creek is the main catchment for the Site, receiving drainage from two near-field receiving environments: the Camp Creek drainage (including Portal Creek and Access Creek) and the Tributary E drainage (including North Creek and Burnick Creek). Camp Creek drains the area east and south of Mt. Hundere, including the Jewelbox Hill, Main Zone, 1250 Portal, and 1380 Gully (AECs 1 and 9), the Mill

Site (AEC 3), portions of the Tailings Management Facility (TMF; AEC 8), as well as large tracts of undisturbed forest to the south of Access Creek. As laid out in the DDRP, the upper reach of Camp Creek underwent significant modification. Camp Creek was realigned to its original flow path following the dewatering and decommissioning of the Reclaim and South Tailings dams.

The main catchment for the northern portion of the Site is Tributary E. Burnick Creek and North Creek drain the area south of the North Hill, as well as the North Tailings area of the Tailings Management Facility. North Creek merges with the East Fork of Tributary E and flows northeast, joining with the West Fork of Tributary E, the catchment for surface water and groundwater flowing east from the Burnick Zone and 1300 Portal areas. Tributary E was not initially considered a receiving environment in the Updated PF (Azimuth 2014d; SRK 2014d). After the Updated PF was issued, a decision was made to include Tributary E in the formal risk assessment for completeness and transparency.

Approach

The AERA evaluated risks to aquatic receptors separately for (1) near-field Camp Creek, (2) near-field Tributary E¹ and (3) far-field False Canyon Creek environments. Somewhat less emphasis was placed on evaluating Tributary E because loading assessments (SRK Engineering, 2014d) indicate that metals

iii

¹ The AERA focused on the upstream receiving environment in North Creek.

originating from both the Burnick Zone and North Tailings seepage are unlikely to affect water quality in in this drainage. Under Water License monitoring, there was a large water quality monitoring dataset available for most aquatic receiving environments dating back to 1999. Similarly, other types of data were available for False Canyon Creek, specifically, sediment quality, benthic invertebrate community, and fish information every two years since 1992. By comparison, the only information on biological communities in the near-field receiving environments prior to 2014 was collected in support of the baseline Initial Environmental Evaluation (IEE; SRK 1990). The data gaps in near-field sediment chemistry and biological community measures were identified in the PF (Azimuth 2013). Therefore, in 2014 a field program was conducted to assess the presence and health of aquatic receptors in receiving environments immediately downstream from the Site.

Using all of this information, the AERA evaluated risks and associated uncertainties for each receptor group by receiving environment using a weight of evidence (WOE) approach. Individual lines of evidence (LOEs – i.e., analytical tools and information) are collectively assessed to form an overall risk characterization rating. Individual LOEs are evaluated for relevance to the receptor, effect size (or degree of contamination), causal linkage to contamination, and uncertainty in the assessment. In general, risk ratings were based on the following effect size categories and examination of causal linkages:

- Negligible concentrations are below standards, no adverse effects are observed/predicted in toxicity tests, and/or no differences in receptor community metrics are observed between reference and exposure areas.
- Low concentrations are 1-3 times above standards, low-level (e.g., 10-20%) sublethal effects in toxicity tests are observed/predicted, and/or low-level (i.e., 10-20%) changes in key receptor community metrics in exposure areas relative to reference.
- Moderate concentrations are 3-10 times above standards, moderate-level (e.g., 20-50%) sublethal effects are observed/predicted in toxicity tests, and/or moderate-level (i.e., 20-50%) changes in key receptor community metrics in exposure areas relative to reference.
- High concentrations are more than 10 times above standards, high-level (>50%) effects are
 observed/predicted in toxicity tests, and/or high-level (>50%) changes in key receptor
 community metrics in exposure areas relative to reference.

Uncertainty in risk conclusions are rated as low, moderate or high and consider several factors including sensitivity and specificity of the tool to contaminants, confounding variables such as habitat, level of resolution of the tool, data quality, spatial and temporal representativeness of the data, and natural variability.

Risk estimates are based on current conditions because monitoring shows long-term consistency in water quality data. In addition, an adaptive management plan is being developed under the Water Licence to monitor water quality and other parameters into the future.

Receptors of Concern and Lines of Evidence

The AERA for the Sä Dena Hes Mine evaluated potential risks to plants, invertebrates, fish and amphibians from metals in the waters of Camp Creek, Tributary E, and False Canyon Creek (and terrestrial environments for some amphibians). A generalized conceptual exposure model is shown below, followed by a description of each receptor group and LOEs evaluated in the AERA:

 Aquatic Plants – This receptor group is comprised of rooted aquatic plants (known as macrophytes), and periphyton [a complex assemblage of algae (unicellular, colonial, or

filamentous), heterotrophic microbes, cyanobacteria, and detritus found attached to submerged substrates]. Macrophytes and periphyton communities are an important source of food and habitat for aquatic invertebrates, amphibians, and some fish species, and can be exposed to contaminants in the surface water and sediment. Risks to aquatic plant communities were evaluated at the community level by examining the available water and sediment chemistry data, water-

based toxicity testing results on a freshwater algal species, and a qualitative survey of macrophyte presence/absence.

• Aquatic Invertebrates – The aquatic invertebrate community in stream environments is typically

dominated by species that live in/on the bottom substrate, known as benthic invertebrates. These organisms can be exposed to contaminants in the surface water, sediment, and, for contaminants that bioaccumulate, their food. This receptor group was evaluated at the community level by assessing the structure and ecological function of the aquatic invertebrate community as food for higher trophic level consumers (e.g., fish). Risks to aquatic invertebrates were evaluated by examining metal concentrations in surface water and sediment, acute and chronic toxicity tests on a freshwater aquatic invertebrate, and information on the abundance and richness of various taxa from available benthic invertebrate

community field surveys.

• Fish – The AERA assessed the presence and viability of fish communities downstream from the

Site. An evaluation of available information on fish presence / absence and habitat data (e.g., presence of fish barriers, available cover, etc.) indicated that the near field environments (Camp Creek and North Creek) were unlikely to support viable fish populations, due to their headwater nature and the presence of fish barriers. This was supported by the absence of fish detected in these creeks in the 2014 electrofishing survey. These environments were

conservatively included in the AERA for fish, should fish presence change in the future. Bi-annual fish population monitoring under the Water Licence was conducted at three stations in False Canyon Creek. These data showed that slimy sculpin is the most abundant and widely distributed species in False Canyon Creek. Other species, including Arctic grayling, burbot, whitefish, and char have also been reported, but their presence in upstream False Canyon Creek is limited. Risks to fish from exposure to metals were evaluated by examining metal concentrations in surface water and sediment, quarterly acute toxicity test results for rainbow trout exposed to water from the Reclaim Pond, tissue chemistry results (where available), and the presence of a functional aquatic plant and invertebrate community.

Amphibians – Two species of amphibian were identified as receptors: the wood frog (common species, so need to protect local populations), which prefers aquatic habitats and the western toad (listed species², protect individual frogs), which prefers terrestrial habitats (Azimuth 2013). Risks to amphibians preferring aquatic habitats were evaluated by comparing water chemistry to available amphibian toxicity thresholds, sediment chemistry relative to available guidelines, and the presence of a functional aquatic invertebrate community.

The western toad prefers terrestrial habitat. Risks were evaluated under post-closure conditions within the boundaries of AECs defined in the. Two LOEs were used: the presence of a functional soil invertebrate community as food, and soil chemistry compared to available effects thresholds for amphibians.

Key Findings of the AERA

Key findings of the AERA are presented below for receptors in each of the drainages downstream from the Site.

νi

² Species At Risk Act Status: Schedule 1, Special Concern (<u>Link</u> to Species at Risk Public Registry)

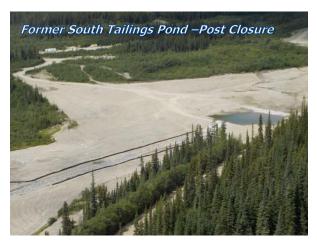
Camp Creek

The highest concentrations of metals (less than 10 times the standards) in surface water and sediment samples downstream from the Site are found in Camp Creek, particularly in the lower portion of Camp Creek downstream from the former Reclaim Pond. Risks to aquatic receptors in Camp Creek were found to be:

- Aquatic Plants
 - o Lower Camp Creek Moderate with high uncertainty,
 - Upper Camp Creek Low with low uncertainty
- Low for aquatic invertebrates (with moderate uncertainty),
- Negligible for fish (with low uncertainty), and
- Low-to-moderate for amphibians (with high uncertainty).

The moderate risk rating for aquatic plants in lower Camp Creek is based primarily on toxicity tests, which showed adverse effects to algal growth at the 95th percentile concentration of zinc at one downstream Camp Creek station. The highest risk ratings were predicted for the winter months when metals concentrations are highest in lower Camp Creek; however, after freshet in June, the predicted risks range from negligible-to-moderate during the spring, summer, and fall months. Farther upstream, near the headwaters of Camp Creek, the toxicity test results indicated negligible-to-low risks to algal cell growth. Low effects to species richness and chlorophyll-*a* production were predicted for lower Camp Creek when comparing the 95th percentile site-specific water quality data to literature-based toxicity thresholds for periphyton. However, the diverse and relatively abundant benthic invertebrate community along the length of Camp Creek suggests that there is a functionally intact primary producer community in Camp Creek. Aquatic macrophytes were not observed during the field survey, and based on the habitat characteristics of Camp Creek, were not expected to be present. Uncertainty is considered high, because there is high likelihood that additional data (e.g., quantitative periphyton survey) could change the overall risk rating for aquatic plants.

The benthic invertebrate community in Camp Creek appears healthy based on the presence of several sensitive taxa, primarily mayflies, stoneflies, and caddisflies (taxa known to be sensitive). Some reduced total abundance was observed at two stations immediately downstream of the former Reclaim Dam in the 2014 survey, but similar proportions of sensitive taxa compared to the reference area suggests the lower abundance is not likely due to contaminants. Toxicity testing on a freshwater invertebrate indicates that upper limit (95th percentile) zinc concentrations in lower Camp Creek *may* have the potential to cause effects to reproduction, and possibly survival. Overall, the field survey was given more weight than the toxicity testing LOE, because the field survey provided direct evidence of the health of the Camp Creek benthic invertebrate community (i.e., presence of sensitive taxa).


No fish were captured at any of the sampling locations along Camp Creek in 2014, consistent with findings from the baseline work done in 1989, prior to mine development. Poor habitat quality in the form

of limited cover, absence of deep pools for overwintering, and numerous downstream barriers to fish migration, are the primarily factors impeding fish colonization in Camp Creek. Even if fish migrate into Camp Creek in the future, risks are considered negligible (with low uncertainty), in part, because no adverse effects have been reported in any of the quarterly Water Licence toxicity tests measuring rainbow trout mortality exposed to water from the Reclaim Dam.

Wood frogs were previously observed in two marshy areas within the Tailings Management Facility in 2012, but with dewatering of the Tailings Ponds in 2013/4, ponded amphibian habitat on-Site is now limited to a small area upstream of the Camp Creek realignment in the area of the former South Tailings Pond. If amphibians are present on-Site and/or in Camp Creek, they likely occur in low abundance. Risks to amphibians were considered low to moderate (with high uncertainty) based on water and sediment concentrations exceeding generic guidelines at some Camp Creek stations. A comparison of surface water metals concentrations with water-based amphibian thresholds indicate effects to amphibians in Camp Creek are unlikely, with the exception of lower Camp Creek where effects were considered possible for lead.

False Canyon Creek

The risk of contaminant-related effects to receptors in False Canyon Creek was considered:

- Negligible for aquatic plants (with low uncertainty)
- Low for aquatic invertebrates (with moderate uncertainty),
- Low for fish (with moderate uncertainty), and
- Low for amphibians (with moderate uncertainty).

The negligible risk rating for aquatic plants was driven primarily by the results of the toxicity tests on algae where the effects concentrations in the test were higher than the upper 95th percentile of metals concentrations measured in False Canyon Creek dating back to 2004. The presence of a relatively stable and abundant benthic invertebrate community provided secondary support that the lower trophic level is functionally intact.

The long-term benthic invertebrate community data shows some variability in the abundance and richness metrics between sampling periods, but no apparent temporal trends indicating adverse effects. There are lower numbers of sensitive taxa upstream in False Canyon Creek relative to downstream, but

variability in the upstream benthic data and the water and sediment concentrations compared to guidelines suggest contaminants are not the cause. Multiple years of data, combined with knowledge of the habitat conditions (i.e., stream characteristics at the upstream station are highly variable), strongly suggest that any reduction in the number of sensitive taxa upstream compared to downstream are habitat-related.

Several years of fish community data provide good evidence to support the conclusion that habitat is the

primary determinant of fish distribution in False
Canyon Creek. The most prevalent fish species within
the study area is slimy sculpin, and they are
distributed along the length of False Canyon Creek
(up to where Camp Creek merges with False Canyon
Creek) and the reference tributary MH-30. Arctic
grayling are recorded in False Canyon Creek dating
back to 1992, but only as far as Station MH-16 located
approximately 22 km downstream from the Site.
Numerous barriers to fish migration are thought to
impede upstream migration of most species.

Risks to fish in False Canyon Creek were considered low (with moderate uncertainty) primarily based on the long-term fish community dataset that shows relatively consistent species presence at the Water Licence monitoring locations. Some differences in abundance have been noted between years, but the overall distribution of species along the length of False Canyon Creek has remained consistent since 1992. A comparison of the long-term surface water chemistry in False Canyon Creek to the rainbow trout toxicity testing monitoring location implies there is negligible risk of effects to fish. Whole-body slimy sculpin collected in 2014 at the Confluence of Camp Creek and False Canyon Creek show elevated concentrations of some metals (e.g., lead) relative to slimy sculpin captured 22 km downstream at

Station MH-16. While this indicates elevated exposure for fish living closer to the Site, it is unknown if there are associated adverse effects to the slimy sculpin population in this upstream area of False Canyon Creek. The elevated tissue concentrations for some metals resulted in the moderate uncertainty rating, but overall the risk to fish in False Canyon Creek is considered low in light of the other LOEs.

No amphibian surveys have been completed in False Canyon Creek, but comparing surface water chemistry to available effects thresholds for amphibians suggests there is negligible risk for this receptor group.

Tributary E

As previously noted, Tributary E was a lower priority in the AERA and there are fewer data available for assessing the health of aquatic receptors. One sentinel biological monitoring station was sampled in the 2014 field survey for assessing the health of aquatic receptors in Tributary E. Other locations have been monitored for water quality; however, with the exception of Burnick Creek, sampling is limited to 2013 and 2014.

The WOE evaluation resulted in risk ratings of:

- Low for aquatic plants (with low uncertainty),
- Low for aquatic invertebrates (with moderate uncertainty),
- Negligible for fish (with low uncertainty), and
- Low for amphibians (with high uncertainty).

No aquatic macrophytes were present in the vicinity of North Creek in the 2014 survey, consistent with the riffle habitat along this stretch of North Creek, but lower reaches of Tributary E likely support macrophyte colonization in areas of suitable habitat (e.g., ponded wetlands with stagnant flow). Upstream in North Creek, periphyton growth was visible on cobble and large gravel, and the presence of an abundant and diverse benthic invertebrate community implies little, if any, effects to primary producers at this location. Results of the algal toxicity tests showed potentially low-level effects to growth (10-20%) at zinc concentrations corresponding to the upper 95th percentile in Burnick Creek water. Farther downstream in North Creek, the risk of effects to aquatic plants was considered negligible.

The benthic invertebrate survey showed some reduction in the number of sensitive species and the proportion of individuals from sensitive species relative to the reference area (Access Creek) in 2014. However, the total invertebrate abundance at this location was highest among all the near-field stations sampled in 2014 because of a large number of midge larvae (dipterans). Water quality data from Burnick Creek and North Creek compared to the toxicity testing benchmarks in invertebrate toxicity tests indicate negligible-to-low risks for aquatic invertebrates in this drainage, and substantiate the conclusion that the overall risk to aquatic invertebrates in Tributary E are low.

No fish were captured in the vicinity of the North Creek sampling station during the 2014 survey. Premine development, fish were documented in lower portions of Tributary E (SRK 1990), but the habitat

farther upstream in North Creek is not considered suitable for supporting fish communities. Regardless of the habitat suitability, risks to fish *potentially* residing in North Creek under future conditions are negligible when comparing the long-term water chemistry data in North Creek against the available rainbow trout toxicity testing results from exposure to water from the Reclaim Pond.

Amphibian surveys have not been completed in North Creek and Tributary E, but comparing surface water chemistry to available effects thresholds for amphibians suggests there is negligible risk for this receptor group.

Terrestrial Amphibians

Potential risks to amphibians in most AECs were considered negligible or low (with high uncertainty), risks to terrestrial amphibians in Jewelbox/Main Zone were considered high with high uncertainty, based on toxicity-based soil screening thresholds from the literature. This risk finding for the Jewelbox/Main Zone AEC is unlikely to change risk management decisions for the terrestrial environment, as amphibian risk rating results are similar to those obtained for some species of birds and mammals in the TERA (readers are referred to Azimuth 2015b for further information).

Summary of Findings

Teck undertook this AERA for due diligence purposes by building on years of water quality data and existing aquatic environmental effects studies. Augmented with some 2014 on-site data, this information was used to describe any aquatic risks and, if elevated risks with reliable certainty were identified, to consider options for managing those risks.

The data and assumptions the risk conclusions are based upon are clearly stated in the report. The table below summarizes the high-level findings for risks to aquatic receptors from exposures to metals expected to be similar to future conditions.

Pocontor	Camp Creek		False Can	yon Creek	Tributary E		
Receptor	Risk	(Uncertainty)	Risk	(Uncertainty)	Risk	(Uncertainty)	
Aquatic plants	Upper Camp Creek: Low	(Low)	Nogligible	(Low)	Low	(Low)	
Aquatic plants	Lower Camp Creek: Moderate	(High)	Negligible	(Low)	Low		
Aquatic invertebrates	Low	(Moderate)	Low	(Moderate)	Low	(Moderate)	
Fish Negligible (Lo		(Low)	Low (Moderate)		Negligible	(Low)	
Amphibians (aquatic)	I I OWI-TO-MODERATE I (HIDD)		Low	(Moderate)	Low	(High)	

Through the Yukon Water Board, an adaptive management plan will monitor post-reclamation surface water and groundwater quality. In that Plan, thresholds triggering responses (e.g., risk management) are linked to trend analysis and comparison with water quality limits specified in the Water Licence. Ultimately, the findings of this risk assessment will be evaluated/verified through ongoing monitoring.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
TABLE OF CONTENTS	XII
LIST OF TABLES	XI\
LIST OF FIGURES	X\
LIST OF APPENDICES	XV
ACKNOWLEDGEMENTS	XVI
NOTICE TO READERS	
USE & LIMITATIONS OF THIS REPORT	
ACRONYMS	
ACRONYMS	
1. INTRODUCTION	
1.1. Background	
1.2. Environmental Setting for the Aquatic Environment	
1.2.1. Camp Creek (Near-field)	
1.2.2. False Canyon Creek (Far-field)	
1.3. Objectives	
1.4. Document Organization	
2. APPROACH & ASSUMPTIONS	
2.1. General Approach	
2.2. Site-specific Strategy	
2.3. Receptors, Endpoints and Lines of Evidence (LOEs)	
3. RISK CHARACTERIZATION AND UNCERTAINTY ASSESSMENT.	3-1
3.1. Risk Predictions and Uncertainties	3-1
3.1.1. Aquatic Plant Communities	3
3.1.2. Aquatic Invertebrates	3-4
3.1.3. Fish	3
3.1.4. Amphibians	3-10
3.2. General Considerations in the ERA	3-15
4. IMPLICATIONS FOR RISK MANAGEMENT	4-1
5. REFERENCES	5-1

LIST OF TABLES

Table 1-1.	Overall site closure process for the Sä Dena Hes mine, Yukon Territory wit emphasis on environmental requirements and human health and ecological	
	assessment (HHERA) process.	
Table 2-1.	Receiving environment monitoring stations and lines of evidence (LOE) us	
	the aquatic ERA	2-6
Table 3-1.	WOE risk characterization summary for Sä Dena Hes aquatic ERA	3-16
Table 3–2.	WOE risk characterization summary for amphibians in the terrestrial	3-1

LIST OF FIGURES

Figure 1–1.	Watershed boundaries and flow direction, Sä Dena Hes Mine Site, Yukon
	Territory1-1
Figure 1–2.	Near-field monitoring locations for the aquatic ERA at Sä Dena Hes Mine, Yukon
	Territory1-2
Figure 1–3.	Far-field monitoring locations at Sä Dena Hes Mine Site, Yukon Territory 1-3

LIST OF APPENDICES

Appendix A	Risk Analysis by Lines of Evidence (LOEs) for the Sä Dena Hes AERA
Appendix B	Photos and Habitat Descriptions for the AERA
Appendix C	ALS Laboratory Reports
Appendix D	Camp Creek Benthic Invertebrates: Raw Data and Laboratory Methods, 2014
Appendix E	False Canyon Creek Environmental Monitoring Report (Laberge 2015)
Appendix F	Nautilus Toxicity Testing Laboratory Reports

ACKNOWLEDGEMENTS

This report was authored by Cheryl Mackintosh, Eric Franz, Laura Bekar, and Randy Baker with contributions and technical peer-review from Alena Fikart and Beth Power (Azimuth Consulting Group Partnership, "Azimuth"). Project management was provided by Randy Baker and Beth Power (Azimuth). Eric Franz, Randy Baker, and Andrew MacPhail (Access Consulting Group) conducted field sampling with assistance from Liard First Nation (LFN) field assistants. Water data were provided by SRK Consulting (SRK). Sediment and biological data from routine monitoring programs in False Canyon Creek were provided by Laberge. Maps and GIS inputs were provided by Jason Shaw of Caslys Consulting.

This report was prepared for Michelle Unger and Bruce Donald of Teck Resources Limited, who provided substantial input closure plans and scenarios for the Site.

We recognize the input that the LFN has made to this work. From providing field support to learning from elders about the site and its history - this work has benefited from their insights. In particular, Sarah Newton and Shelia Caesar are recognized for organizing inputs from LFN community members.

NOTICE TO READERS

The ecological risk assessment (ERA) for the Sä Dena Hes Mine, Yukon Territory is reported in the following volumes:

- Volume 1 Problem Formulation for the Ecological Risk Assessment (PF): An Updated PF was prepared in September 2014 (Azimuth 2014d), which replaced the Draft PF prepared in June 2013. As part of 2015 ERA deliverables for the Site, an Addendum to the PF (Azimuth 2015a) has been issued, which updates the September 2014 Updated PF with site conditions and data collected in 2014. The Addendum to the PF (Volume 1A [Azimuth 2015a]) is considered a companion document to the September 2014 Updated PF which contains supporting information and data that was collected after Volume 1 was issued.
- Volume 2 Ecological Risk Assessment for the Terrestrial Environment (TERA): A Draft TERA was prepared in September 2014 (Azimuth 2014e), which relies on food chain model results presented in an Interim ERA (Azimuth, 2014c). Additionally, a TERA Addendum has been issued (Azimuth 2015b), which updates risk conclusions for terrestrial receptors based on site conditions and data collected in 2014. The Draft TERA and Interim ERA contain supporting information and are considered companion documents to the TERA Addendum.
- Volume 3 Ecological Risk Assessment for the Aquatic Environment (AERA): This document
 (Azimuth 2015c) provides risk assessment results for aquatic receptors and relies on studies
 conducted in aquatic receiving environments in 2014 and historical monitoring data collected and
 reported in compliance with the Water Licence between 1992 and 2014.

Readers are referred to these documents for information on each topic.

USE & LIMITATIONS OF THIS REPORT

This report has been prepared by Azimuth Consulting Group Partnership (Azimuth) for the use of Teck Resources Limited (Teck; the Client), the Liard First Nation, and the Yukon Government (Departments of Energy Mines and Resources (EMR) and Environment Yukon (EY)) and reviewers under contract to EMR. This report is intended to provide information to Teck to assist with making decisions regarding management options with respect to closure of the Sä Dena Hes Mine. The Client has been party to the development of the scope of work for the subject project and understands its limitations.

In providing this report and performing the services in preparation of this report Azimuth accepts no responsibility in respect of the Site described in this report or for any business decisions relating to the Site, including decisions in respect of the management, purchase, sale or investment in the Site.

This report and the assessments and recommendations contained in it are intended for the sole and exclusive use of the Client, the Liard First Nation, and the Yukon Government (EMR and EY), and reviewers under contract to EMR.

Any use of, reliance on, or decision made by a third party based on this report, or the services performed by Azimuth in preparation of this report is expressly prohibited, without prior written authorization from Azimuth. Without such prior written authorization, Azimuth accepts no liability or responsibility for any loss, damage, or liability of any kind that may be suffered or incurred by any third party as a result of that third party's use of, reliance on, or any decision made based on this report or the services performed by Azimuth in preparation of this report.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth has assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

In addition, the conclusions and recommendations of this report are based upon applicable legislation existing at the time the report was drafted. Changes to legislation, such as an alteration in acceptable limits of contamination, may alter conclusions and recommendations.

This report is time-sensitive and pertains to a specific site and a specific scope of work. It is not applicable to any other site, development or remediation other than that to which it specifically refers. Any change in the Site, remediation or proposed development may necessitate a supplementary investigation and assessment.

This report is subject to copyright. Reproduction or publication of this report, in whole or in part, without Teck and Azimuth's prior written authorization, is not permitted.

ACRONYMS

AEC Area of environmental concern

AEL Acceptable effect level

AERA Aquatic ecological risk assessment

AMP Adaptive management plan

APEC Area of potential environmental concern
CABIN Canadian Aquatic Biomonitoring Network

CCME Canadian Council of Ministers of the Environment

COPC Contaminants of potential concern
CRR Concentration response relationship

CSR Contaminated sites regulations

DDRP Detailed decommissioning and reclamation plan

DL Detection limit
DW Dry weight

ECxx Effects concentration

EMR Yukon Government Department of Energy Mines and Resources

EPT Ephemeroptera, plecoptera, and trichoptera (benthic invertebrate taxa orders)

ERA Ecological risk assessment

ESA Environmental site assessment

EY Yukon Government Ministry of Environment (i.e., Environment Yukon)

FCSAP Federal Contaminated Sites Action Plan

HHRA Human health risk assessment

ICxx Inhibitory concentration

IEE Initial Environmental Evaluation (for the Mt. Hundere Joint Venture)

LCxx Lethal concentration
LFN Liard First Nation
LOE Line of evidence

NOAEL No observed adverse effect level

PEL Probable effect level (CCME sediment screening criteria)

PF Problem formulation

QA/QC Quality assurance/quality control

ROC Receptor of concern
SD Standard deviation

SDHOC Sä Dena Hes Operating Corporation

SQG Sediment quality guideline

SSWQO Site specific water quality objectives
TERA Terrestrial ecological risk assessment

TMF Tailings Management Facility
WER Water effect ratio (toxicity test)

WOE Weight of evidence

WQG Water quality guidelines

WW Wet weight

XRF X-ray fluorescence YT Yukon Territory

1. INTRODUCTION

1.1. Background

Azimuth Consulting Group Partnership (Azimuth) was commissioned by Teck Resources Limited (Teck) to conduct a Human Health Risk Assessment (HHRA) and Ecological Risk Assessment (ERA) for the Sä Dena Hes Mine (the Site) near Watson Lake, Yukon Territory (YT). Sä Dena Hes was operated by Curragh Resources Incorporated as a zinc-lead mine for 16 months between August 1991 and December 1992. Mining operations were suspended in December 1992 in response to low metals prices, at which point the Site was put into a state of care and maintenance and has not operated since. In April 1994, the Site was purchased by the Sä Dena Hes Operating Corporation (SDHOC), a Joint Venture between Teck Resources Limited (25% ownership), Teck Metals Limited (25% ownership) and Korea Zinc (50% ownership), continuing in a state of care and maintenance due to the continued low market demand for zinc. In 2013, Teck reorganized some of its assets and this resulted in the joint venture being owned 50% by Korea Zinc and 50% by Teck Resources Limited. Finally, due to a limited resource and low market demand for metals, a formal decision was made to temporary close the mine in 2000 and a formal decision to permanently close the mine was made in 2012.

The Sä Dena Hes Mine is permitted under a Yukon Quartz Mining Production Licence (QML-0004) regulated by Yukon Energy Mines and Resources "EMR" and a Type A Water Use Licence (QZ99-045)³ regulated by the Yukon Water Board, both of which expire at the end of 2015. Teck submitted a Detailed Decommissioning and Reclamation Plan (DDRP) in 2000 and updated versions have been submitted as required between then and August 2015 when the final version was delivered (Teck 2015). Teck completed closure activities at the end of 2015 and, as part of a separate and parallel permitting process, they are renewing the Type A Water Licence, for January 2016. Teck and the LFN have cooperatively developed an ongoing engagement process to involve the LFN in mine closure.

Implementation of the DDRP involved the following reclamation/management actions: sealing portals; grading steep slopes; draining, covering and re-vegetating the Tailings Management Facility (TMF); covering discrete areas of the Mill Site, Borrow Areas, and Jewelbox; risk managing hydrocarbon contaminated areas; removing contaminated soils from discrete areas (e.g., settling ponds) and in some cases, depositing contaminated soils in mine shafts; diverting Camp Creek back to its previous location (through the Reclaim Pond); and removing mine site buildings. Closure activities were initiated in 2013 when draining of the ponds was started and building demolition began. The bulk of the physical work was conducted in 2014, with reclamation being the focus of 2015. DDRP activities are discussed further in the Updated PF (Volume 1, Section 2.3).

Environmental investigations have been ongoing at the Site since the 1990s. SRK Inc. (SRK) conducted initial environmental evaluations for the Mt. Hundere Joint Venture in 1989. From the time when the

1-1

³ Referred to throughout the document as "the Water Licence."

SDHOC acquired the Site in 1994, Teck has been conducting water monitoring on Site in compliance with the Water Licence. Water, sediment, and biological monitoring has been also been conducted every two years dating back to 1992 in the downstream environment as per the Water Licence (see Laberge 2012 and 2015). Golder Associates Ltd. (Golder) and Access Consulting Group (Access) have conducted environmental site assessment work (ESA) (Golder 2013, 2014a; Access 2012) and hydrogeological assessment work (Golder 2014b). During preparation of the DDRP and with review of groundwater monitoring results by EMR and Environment Yukon (EY), Teck made a decision to risk manage hydrocarbons *in situ* and areas of stockpiled contaminated soils were backfilled in September 2013 (Access 2013).

ERA studies and related work are described in more detail below and are shown, along with the overall risk assessment process, in **Table 1–1**.

1.2. Environmental Setting for the Aquatic Environment

The Site straddles a drainage divide between the False Canyon Creek and Tom Creek catchments, both of which ultimately drain into the Liard River (**Figure 1–1**). False Canyon Creek is the main catchment for the Site, which drains an area of 492 km². False Canyon Creek flows into the Frances River which ultimately flows into the Liard River, 55 km downstream from the confluence with False Canyon Creek. Tom Creek receives water from the southern portion of the Site away from any potential contamination sources and ultimately drains into the Liard River (SRK 1990). There is no surface water connection between False Canyon Creek and the Stuart River drainage to the east.

The AERA evaluates risks to aquatic receptors in near-field Camp Creek and North Creek⁴ and far-field False Canyon Creek environments separately. A general description of each of the receiving environments is provided in the following sections.

1.2.1. Camp Creek (Near-field)

A detailed description of the Camp Creek monitoring stations was provided in Volume 1 (Azimuth 2014d). A general discussion of the water course and associated stations is provided below.

Camp Creek originates from two groundwater springs in close proximity to each other just above (CC-1) and just below (PH-1) one of the mine access roads (**Figure 1–2**). Area CC-1 drains a small valley on the southern flank of Mt. Hundere that has not been disturbed or affected by mine activity. PH-1 (originating from a large spring where an old pumphouse was situated) also gathers water from near Mt. Hundere but lies below land on the north flank of the Jewelbox and Main Zone pits. The area upgradient/

1-2

⁴ North Creek was previously determined to be unimpacted by contamination from the Site in the PF (see Section 6.2.2.2 in Azimuth 2014d) based on information in the draft version of SRK (2014d) issued in May 2014. The decision to include Tributary E as a downstream receiving environment was made because of the potential loading from MH-02 to North Creek. SRK did conclude that the load from MH-02 is "so small that it does not affect downgradient surface water quality" (SRK 2014d), but in absence of definitive evidence that the load is attenuated *before* reaching North Creek, the Tributary E drainage was kept in the AERA.

southwest of PH-1 is known as the 1380 Gully (see red outlined AEC upgradient/southwest of MW-13-13 on Figure 1–2 or Figure 2-1 in the PF Addendum [Volume 1A]). There is no surface water connection between the gully and the origin of the spring at PH-1. Upgradient of the road near MH13-01 on Figure 1–2 for at least 300 – 400 m the landscape consists of intact forest moss and lichen with no evidence of surface water flow. While metals from the Jewelbox and Main Zone mine workings are presumed to travel via groundwater to PH-1, SRK has documented attenuation of metals by marbled waste rock and native soil and there is currently no evidence that water quality at PH-1 has been adversely affected. Recent groundwater monitoring has not identified any influence on metals concentrations at PH-1 (Golder 2015a). Nevertheless, given that PH-1 is downgradient of mine source areas, and there is some uncertainty about the mine influence on this spring water, PH-1 cannot technically be designated as a background station for water quality or sediment. The two springs (CC-1 and PH-1) drain adjacent, but different watersheds and the chemical characteristics differ slightly from each other. Both streams meet within 100 m of their origin and flow downstream, past the Tailings Management Facility (TMF) and Mill Site.

Station MH-04 is the furthest upstream, long-term water quality monitoring station on Camp Creek. Because PH-1 and MH-04 are downgradient from disturbed lands (the 1380 adit and waste rock pile), MH-04 has been classified as an "exposure" station (Golder 2015a). However, given the absence of upgradient influence of metals at this station, it is considered an "upstream comparator" station, to compare against water quality and other data from Camp Creek stations further downstream that collect water drainage across the entire Mine Site.

As Camp Creek moves downstream it gathers surface water from local runoff, especially during freshet and snowmelt in May through early July, contributions from discrete sources (e.g., seeps, streams [Access and Portal creeks] and groundwater. Portal Creek receives intermittent, ephemeral surface runoff from the east slope of Jewelbox during freshet and joins with Camp Creek approximately 250 m downstream from the Reclaim Pond. Access Creek, which is located south of the Mine Site, drains an area west of the ERA reference station FF-Ref-2 (near MW13-04 on Figure 1–2; see also Figure 2-7 in the PF Addendum [Volume 1A]). MH-29 was established in 2013 on Access Creek, just upstream of the confluence with Camp Creek. Access Creek is not considered to be under mine influence, and for the purpose of the AERA was regarded as a reference creek in the 2014 sampling program.

The last point of long-term water quality monitoring in Camp Creek before joining with False Canyon Creek is MH-11, located approximately 3 km downstream from the Reclaim Pond. As part of the AERA sampling program in 2014, a sampling station was established at the confluence of Camp Creek and False Canyon Creek (CC-Confl). This location represents the total of the source loading and background contributions to water quality within the Camp Creek catchment area.

1.2.2. False Canyon Creek (Far-field)

There are three downstream monitoring locations on the main stem of False Canyon Creek for monitoring sediment quality, benthic invertebrate communities, and fish populations: MH-13, MH-16, and MH-20. MH-13 is approximately 10 km downstream of the Reclaim Pond and is the first station that has been

monitored for sediment composition, benthic community and fish presence by Laberge and Can-Nic-A-Nick (2012). MH-14 was the original monitoring location stated in the Water Licence, but its location in a beaver/wetland complex caused flooding of the original site in 1996, and necessitated the relocation of the monitoring location 2 km downstream to MH-16. The area around MH-14 is no longer flooded, but in the pursuit of data consistency between years, sediment, benthic invertebrate and fish monitoring has continued at MH-16. Quarterly water quality sampling is, however, still undertaken at MH-14. The furthest sediment, benthic invertebrate, and fish monitoring location on False Canyon Creek is MH-20, located approximately 33 km downstream from the Reclaim Pond. **Figure 1–3** shows the locations of the water quality, sediment quality, benthic invertebrate, and fish monitoring locations downstream from the Mine Site.

1.2.3. Tributary E

Tributary E is the main catchment for water originating from the northern portion of the Mine Site, specifically the Burnick Zone and North Dam of the TMF. Water leaving the Burnick Zone goes to ground in close proximity to the discharge point. According to SRK (2014d) the general flow direction for water from the Burnick Zone is east-northeast towards the West Fork of Tributary E. Three water quality monitoring stations are located along the length of the West Fork: TRIBEWF01, TRIBEWF02, and MH-15. As described in the Initial Environmental Evaluation (IEE), the West Fork of Tributary E is characterized by a series of long slow glides with old beaver dams. The stream gradient was low with few riffle areas, and the substrate was noted as predominately comprised of fine sediment, with occasional patches of heavily silted cobble (SRK 1990).

Seepage / runoff from the North Dam enters a wetland area to the north and is inferred to travel as groundwater toward North Creek, which eventually merges with the north-flowing East Fork of Tributary E. Another small creek (Burnick Creek) drains the south facing slope of the North Hill area before merging with North Creek northwest of TMF. There are two long-term water quality monitoring locations for the East Fork of Tributary E drainage: MH-08 on Burnick Creek and MH-12 on North Creek. The baseline IEE reported that much of the Eastern Fork of Tributary E was a small glide-like channel approximately 1 to 2 m across flowing through a drowned marsh (SRK 1990). The survey of North Creek completed in 2014 as part of the near-field sampling program confirmed that much of the lower reach of North Creek near MH-12 still exists as a drown marsh.

1.3. Objectives

In general, ERA is a process that evaluates the likelihood and magnitude of adverse effects to ecological resources (e.g., plants, invertebrates, fish, and wildlife), as a result of exposure to one or more stressors (i.e., usually chemicals but may also include physical stressors). The ultimate goal of this AERA is to support risk management decision-making for the Sä Dena Hes site. With this in mind, specific objectives of this report are to:

- 1. Assess potential risks to ecological receptors (i.e., aquatic plants, aquatic invertebrates, fish, and amphibians) from exposure to mine-related contaminants/stressors in the aquatic environment and the terrestrial environment for some amphibians.
- 2. Support risk management planning by identifying any remaining gaps for the AERA and options for additional study or risk management to reduce uncertainty and/or risks from contaminants in the aquatic environment, if warranted.

Importantly we note that the PF and ERA have been advanced alongside site investigation work and mine closure activities. While this can result in additional uncertainty in the process, there was a need to compress timelines for site evaluation and regulatory approvals.

1.4. Document Organization

The AERA (**Volume 3**, this report) presents aquatic risk predictions, the rationale behind those predictions and implications for risk management. This Draft AERA is organized as follows:

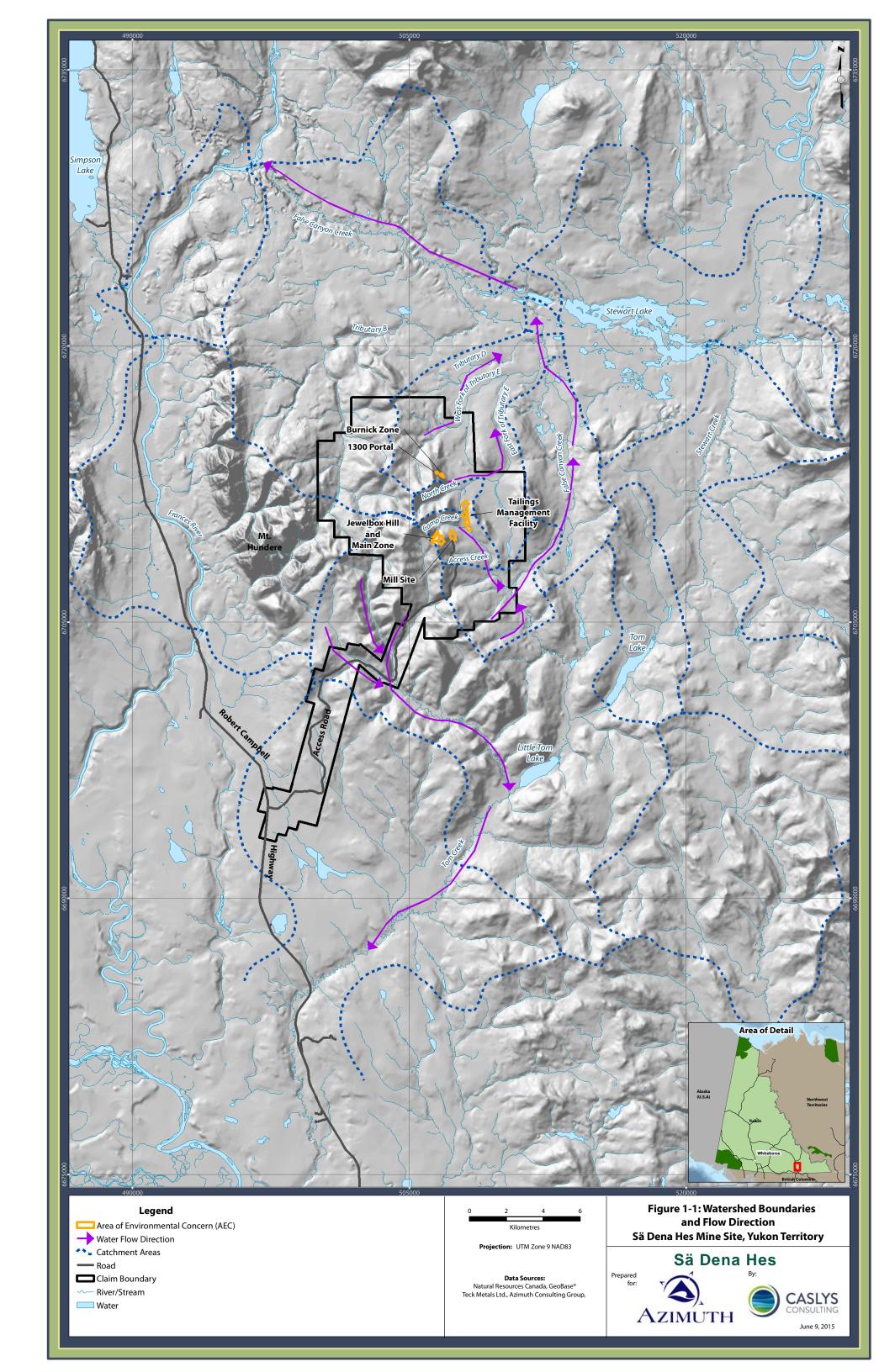
Section 1: Introduction

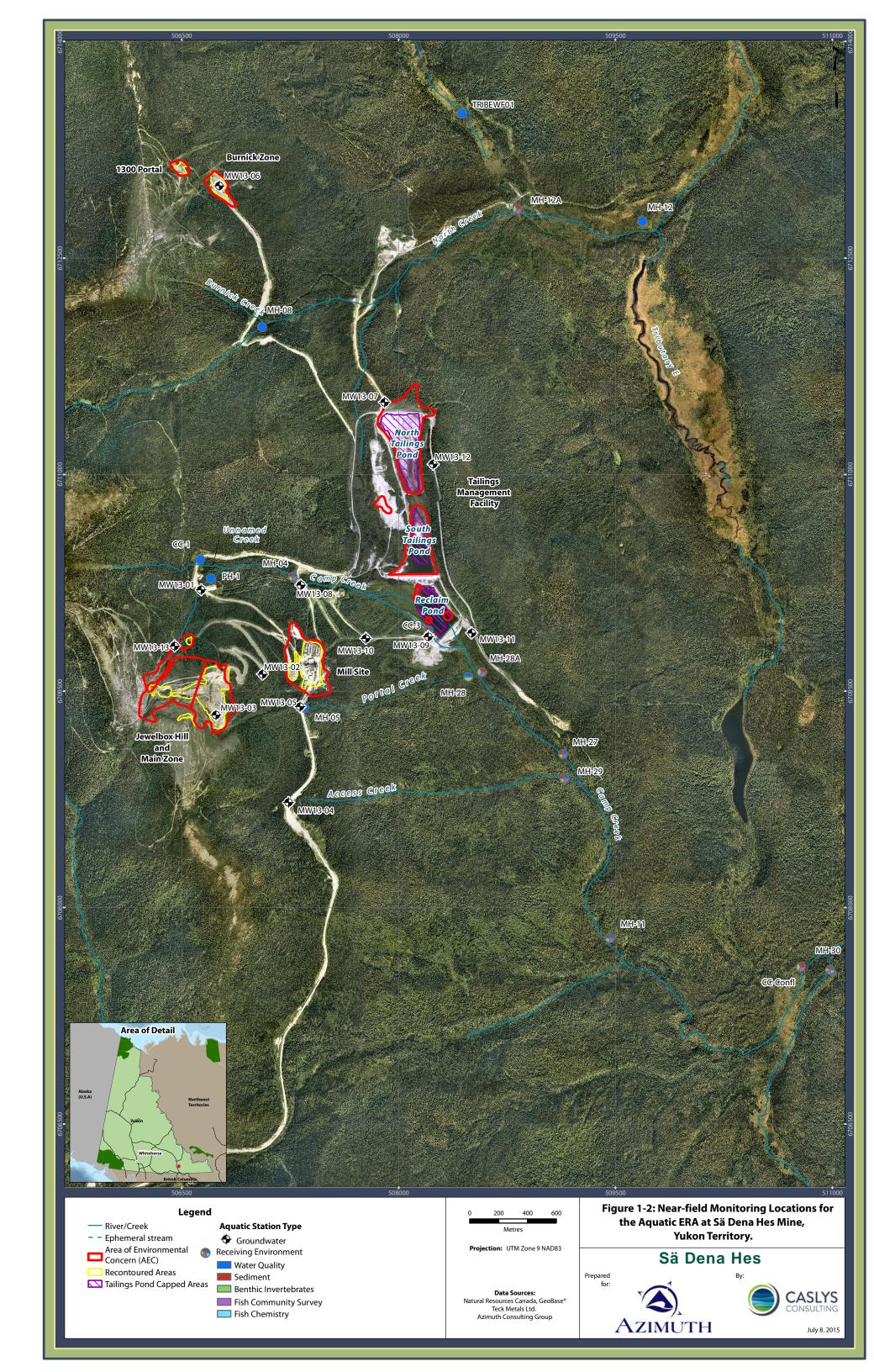
Provides background, objectives and the general approach for the Updated PF and AERA.

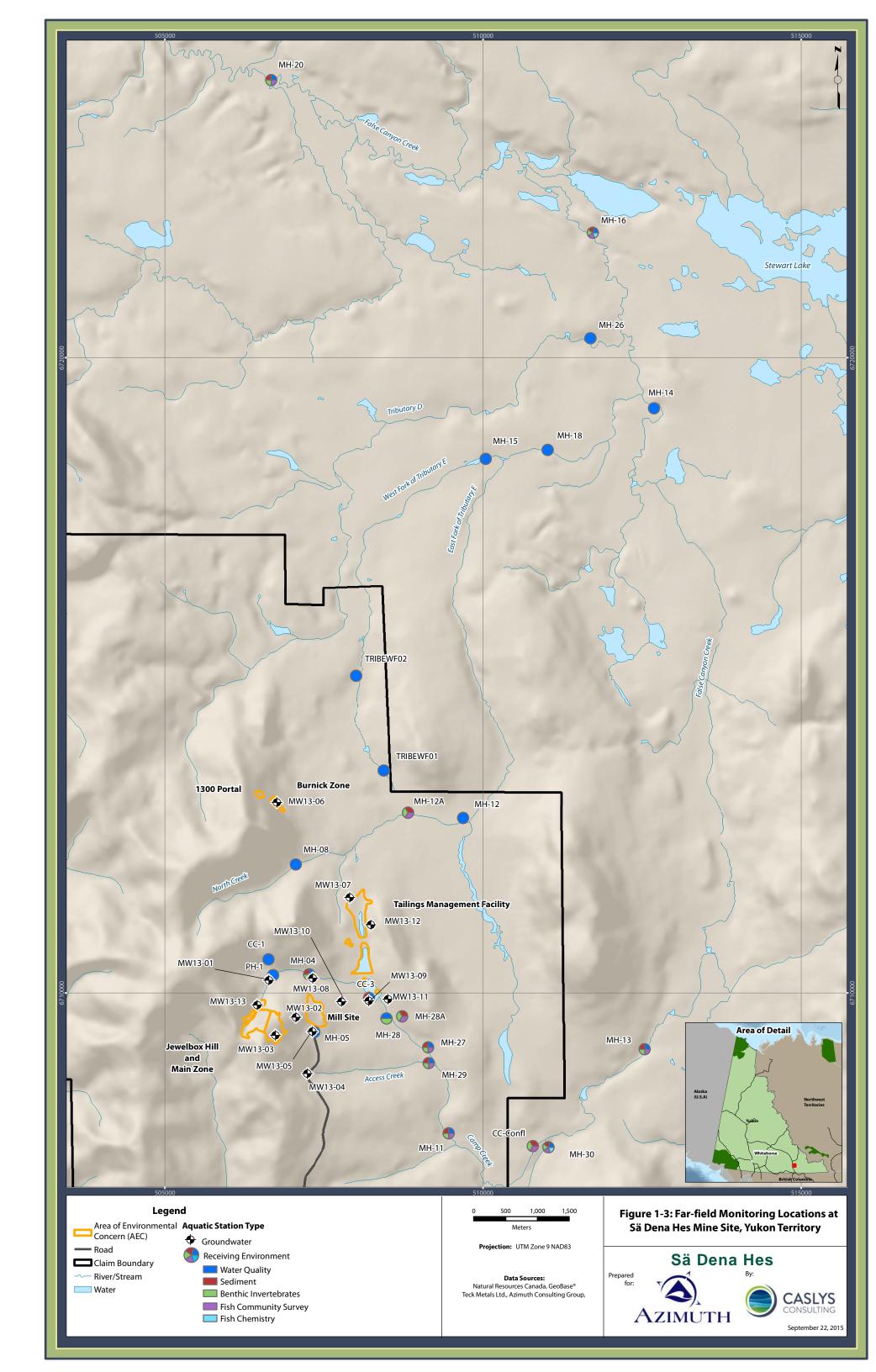
Section 2: Approach and Assumptions

 Summarizes the ERA approach and assumptions that are important for understanding the ERA process and findings.

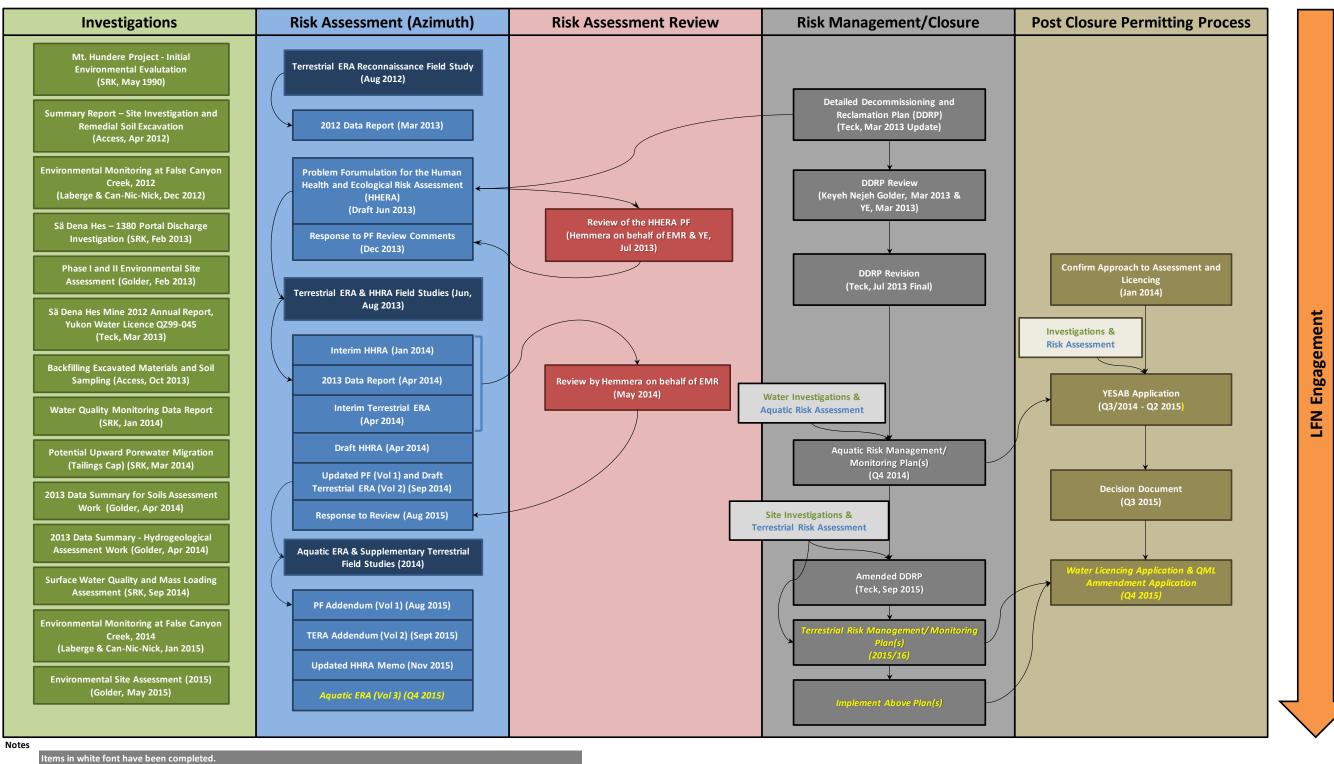
Section 3: Risk Characterization for the AERA


• Documents risks by AEC and by receptor group for aquatic plants/macrophytes, aquatic invertebrates, fish, and amphibians. Birds and mammals as receptor groups were addressed in Volume 2 and are not included in the AERA. Qualitative risk ratings (negligible, low, moderate, high) and associated uncertainty are provided based on a WOE assessment of the LOEs evaluated for each ROC group. An LOE technical appendix (Appendix A) documents the derivation of risk and uncertainty ratings.


Section 4: Implications for Risk Management


Discusses role of the AERA relative to the Water Licence.

As described in the Notice to Readers, readers are referred to the Volume 1 PF (Azimuth 2014d) PF Addendum (Azimuth 2015a), Volume 2 TERA (Azimuth 2014e), and TERA Addendum (Azimuth 2015b) for further information on the Site, ERA history, and risks to terrestrial ecological receptors.



Overall site closure process for the Sä Dena Hes mine, Yukon Territory with emphasis on environmental requirements and human health and ecological risk assessment (HHERA) process. **Table 1–1.**

Azimuth, November 19, 2015

Dashed arrows represent anticipated items, but need to be determined pending current work.

2. APPROACH & ASSUMPTIONS

This section provides a summary of the approach and assumptions that are important for understanding the ERA process and findings.

2.1. General Approach

The approach taken for this Draft AERA relies on a formal risk assessment framework consistent with guidance from EY (2011), Environment Canada (EC 2012), and the Canadian Council of Ministers of the Environment (CCME 1996, 1997). In addition, guidance from other jurisdictions (i.e., British Columbia [SAB, 2008, 2010], and the US [USEPA 1998, 2007]), and from the scientific literature is relied upon where appropriate.

An Addendum to the PF, with supporting information, is reported as Volume 1A (Azimuth 2015a), and lays out the general approach for the AERA. The site-specific strategy and ERA components are described in **Section 2.2**. A key step of the ERA involved the detailed analysis of each LOE using the attributes and WOE criteria identified in Tables 5-2, and 5-3 of Volume 1, respectively (Azimuth 2014d). The methods, analyses, and results of all LOEs are provided in **Appendix A** of this document. The LOE results are then compiled into a summary table to help visualize findings by ROC and receiving environment in **Table 3–1** and **Table 3–2** for amphibians in terrestrial environments).

The main components for the ERA are shown below:

Subject	Location
LOE technical analysis	Appendix A
WOE risk characterization – Camp Creek, False Canyon Creek, and Tributary E	Table 3–1
WOE risk characterization – Terrestrial Environment for Amphibians	Table 3-2

Formal protection goals for the ERA were not identified *a priori*. Rather, the ERA attempts to characterize risks with all judgments of acceptability being made as part of a consultative process after the ERA is completed (as per EC 2012). That said, our risk predictions often implicitly consider protection goals typically associated for the receptors assessed herein (i.e., acceptable effect level [AEL] of 20% for common aquatic receptors and 10% for listed receptors). Our objective is to provide a thorough description of risk predictions and their uncertainties to support the risk management decision-making process.

2.2. Site-specific Strategy

In this section, we describe the strategy used for the AERA at Sä Dena Hes. The absence of near-field aquatic monitoring data, particularly for Camp Creek, was identified as a data gap in the Draft PF (Azimuth 2013). To address this data gap, the 2014 program was designed primarily to provide information on the spatial distribution of metals concentrations in sediment, the abundance and diversity

of the benthic invertebrate community, and the presence of fish in near-field Camp Creek and North Creek, and augment historical information further downstream in False Canyon Creek. As well, a survey on amphibians was conducted but did not detect their presence. The AERA made use of existing data from various monitoring programs to the extent possible.

The general strategy for the AERA was:

- 1. Conduct a field program in 2014 to collect sediment, benthic invertebrate community samples, perform an aquatic habitat survey, determine fish presence/absence and collect fish tissue (if present) from various near-field Camp Creek water quality monitoring locations. Near-field Camp Creek stations were sampled by Azimuth personnel on June 24th 25th, 2014. Water samples were also collected during this field program for use in toxicity tests with aquatic invertebrates and algae. A second field program was completed by Laberge in late August to gather data from lower Camp Creek, the headwaters of False Canyon Creek, and an additional reference location (see below for information on the stations).
- 2. Incorporate data on water and sediment chemistry, benthic invertebrate community, and fish community (1992 2014) from False Canyon Creek into the AERA.
- 3. Assess information from the individual studies/LOEs based on field surveys, chemistry data, toxicity testing and other tools to assess potential effects and causal relationships (Appendix A).
- 4. Characterize risks by receptor group/assessment endpoint. Risk conclusions are derived for Camp Creek, North Creek/Tributary E, and False Canyon Creek receiving environments.
 - The locations of each station, downstream to False Canyon Creek are shown in **Figure 1–2** (near-field) and **Figure 1–3** (overview/far-field). **Table 2–1** presents the list of stations included in the AERA, a short description of the station, and the LOEs assessed at each location. A more detailed description of the physical habitat, including photographs from the stations sampled in 2014 is provided in **Appendix B**:
 - Reference Areas: MH-29 (Access Creek); MH-30 (unnamed reference tributary), CC-1 (reference stream on Mt Hundere); MH-26 (Tributary D)
 - Camp Creek & Portal Creek:
 - <u>Camp Creek: PH-1, MH-04</u>, CC-3, MH-28A, MH-27, MH-11, and the confluence of Camp Creek and False Canyon Creek (i.e., CC-Confl)
 - Portal Creek: MH-05, MH-28
 - North Creek & Tributary E: MH-12, MH-12A, TRIBEWF01, TRIBEWF02,
 - Far-field False Canyon Creek: MH-13, MH-14, MH-16, MH-20

- Terrestrial Areas of Environmental Concern (AECs): For amphibians specifically, risks are evaluated for aquatic environments (above), but also for terrestrial portions of the Site⁵ including: Burnick/1300 Portal (AEC 2), Jewelbox/Main Zone/1380 Gully/1250 portal (AEC 1/9), Mill Site (AEC 3) and Tailings Management Facility (AEC 8). Readers are referred to Azimuth 2015a and 2015b for further information on the terrestrial environment.
- 5. Risks to aquatic receptors are assessed under current conditions based on the assumption that current water quality, which has been fairly consistent over many years of monitoring, is likely representative of future conditions in the downstream receiving environment (Section 6.9, in the PF [Azimuth 2014d]); long-term monitoring will be in place under the Water Licence to detect any changes in the future.

2.3. Receptors, Endpoints and Lines of Evidence (LOEs)

Assessment endpoints for the AERA remain unchanged from the Updated PF, and include\ the following for each receptor group:

- Aquatic Plants: Structure and ecological function (i.e., food and habitat for invertebrates, fish and wildlife) of vegetation communities are assessed by considering presence, percent cover and growth. The entity is assumed to be represented by the entire creek for Camp Creek, North Creek, and False Canyon Creek.
- Aquatic Invertebrates: Structure and ecological function (i.e., food for fish and wildlife) of
 invertebrate communities are assessed by considering abundance, richness, and biomass of
 aquatic invertebrate communities. The entity is assumed to be represented by the entire creek
 for Camp Creek, North Creek, and False Canyon Creek.
- Fish: Viability⁶ of local fish populations⁷ (for common species). The entity is assumed to be represented by the entire creek for Camp Creek, North Creek, and False Canyon Creek.
- Amphibians: Viability of local amphibian populations (for common species), and survival, reproduction, growth, and deformities of individual organisms⁸ (for listed species).

2-3

⁵ Note that amphibians may be exposed to contamination in both aquatic and terrestrial environments; results for all amphibian LOEs are reported in this document.

⁶ We define viability as the ability of a population to sustain itself over the long term. We assume that assessing organism level attributes will be protective of population attributes.

⁷ The assessment population consists of a group of conspecific organisms occupying a defined area that has been selected to serve as an assessment endpoint entity for the ERA (Barnthouse et al. 2008). The assessment population is operationally defined in the ERA as the local population, which consists of all organisms exposed to, or indirectly affected by, contaminants at the Site.

⁸ The measurement endpoint is based on an average individual within a test population.

Below is a list of the LOEs for the AERA that were updated in Volume 1A (Azimuth 2015a, Table 3-4) to reflect changes that were made after the Updated PF was issued (Azimuth 2014d). Refer to **Appendix A** for analysis of LOEs that were included in the ERA for the aquatic environment.

- Water chemistry The water chemistry LOE compares surface water chemistry data to CCME WQG and Yukon CSR standards for the protection of aquatic life. The data is evaluated for potential spatial gradients and extent of contamination patterns (if present) downstream of the Site. This LOE is used for aquatic plants, aquatic invertebrates, fish, and amphibians.
- **Sediment chemistry** Compares the available sediment chemistry data against sediment criteria for the protection of aquatic life. The data is evaluated for potential spatial gradients and extent of contamination patterns downstream of the Site. This LOE is used for aquatic plants, aquatic invertebrates, fish, and amphibians
- **Amphibian soil screening benchmarks** Soil chemistry data for lead is compared to amphibian-based toxicity values derived from the literature.
- Aquatic habitat survey a field assessment of the suitability of aquatic habitat from a
 hydraulic (discharge, velocity, stream channel profile) and ecological perspective (sediment grain
 size and distribution, stability, barriers, etc.). This was not used as an LOE on its own but
 provided context for interpreting the fish and benthic invertebrate surveys; reported in
 Appendix B.
- **Field surveys** surveys of the periphyton/macrophytes, benthic invertebrate, fish, and amphibian communities/populations:
 - Periphyton/aquatic plant survey: A qualitative assessment of the presence of aquatic plants and periphyton communities was made for stations in Camp Creek and North Creek.
 This LOE does not provide quantitative ratings for effect size and other metrics and is presented as a narrative in the WOE assessment.
 - Benthic invertebrate community: The benthic invertebrate field survey LOEs (Camp Creek/North Creek and False Canyon Creek) compares the abundance and richness of the benthic invertebrate community, with a focus on sensitive taxa, for assessing the structure and ecological function of the benthic invertebrate community. Additionally, any observed effects on benthic invertebrate community were qualitatively compared to water and sediment chemistry patterns to determine if effects are mine related.
 - Fish population: Comparison of total and relative abundance of fish species collected from stations in Camp Creek, North Creek, and False Canyon Creek. This LOE is presented as a narrative and does not provide quantitative ratings for effect size and other metrics.
 - Amphibian survey: The amphibian survey LOE was intended to compare species presence, abundance, condition and other endpoints in relation to habitat quality and COPC gradients in soil. However, as no amphibians were located during the survey, it did not inform on these metrics.

- **Tissue chemistry** Fish tissue chemistry (sculpin) was measured at two stations: near the confluence of MH-30 and False Canyon Creek, and MH-16 (far-field exposure). Metal concentrations were compared between areas; no reference data are available.
- **Water toxicity testing Acute** Two acute toxicity tests were carried out on the aquatic invertebrate *Ceriodaphnia dubia*:
 - Water Effect Ratio (WER) Testing: WER testing was conducted to develop site-specific water quality objectives (SSWQO) for potential use in renewal of the Water Licence (see Section 1.1). The test endpoint was Ceriodaphnia dubia survival in the 48-hr tests on different concentration of aluminum, cadmium, chromium, copper, iron, lead, and zinc.
 - Dilution Series Testing: Two dilution series tests on MH-04 site water and a mixture of MH-04 and MH-25 (1380 Portal) were conducted to evaluate *C. dubia* survival over 7 days of exposure. Toxicity test results (and associated effects concentrations) were compared with concentrations at selected stations within Camp Creek, False Canyon Creek, and Tributary E to determine if metal concentrations associated with effects in the tests are reflective of water chemistry data downstream from the Site.
- **Water toxicity testing Chronic** The same dilution series tests mentioned above were conducted to evaluate the chronic response of 7-day *C. dubia* reproduction and 72-h *P. subcapitata* growth inhibition (cell yield) to different concentrations (dilutions) of site water.

Table 2-1. Receiving environment monitoring stations and lines of evidence (LOE) used in the aquatic ERA.

		Line of Evidence available for each Station								
Station Code	Station Description	Water Chemistry	Sediment Chemistry	Benthic Invertebrate Community	Fish Tissue Chemistry	Fish Survey	Qualitative Habitat Survey (observations of aquatic plants)	Dilution Series Toxicity Testing ¹	Literature-based periphyton effects concentrations	WER Tests ¹
Reference										
PH-1	Sampling location near the Pump House located upstream from MH-04. Considered the headwaters of Camp Creek	•								
CC-1	Small creek upstream of the confluence with Camp Creek that is unaffected by runoff from the 1380 Gully area	•								
MH-26 ²	Tributary D, upstream of confluence with False Canyon Creek	•								
MH-29	Located on Access Creek, upstream of Camp Creek	•	•	•		•	•			
MH-30	Reference station located on an unnamed tributary to FCC, approximately 3 km downstream from the Reclaim Pond	•	•	•	•	•	•			
Camp Creek										
MH-04	Camp Creek located immediately above the West Interceptor Ditch sample	•	•	•		•	•	•		•
CC-3	Downstream from MH-04 and upstream of the tailings area	•	•	•		•	•			
MH-28A	Downstream from MH-27 on Camp Creek, and just upstream of the confluence with Portal Creek		•	•		•	•			
MH-05	A small intermittent stream that drains the east side of the Jewelbox Hill	•								
MH-28	Located on Portal Creek upstream from the confluence with Camp Creek	•		•		•	•			
MH-27	Located downstream of the Reclaim Pond on Camp Creek, upstream from the confluence with Access Creek	•	•	•		•	•	•		•
MH-11	Camp Creek located approximately 3 km downstream of the tailing management facility	•	•	•		•	•	•	•	•
CC-Confl	Located at the downstream extent of Camp Creek where it joins with False Canyon Creek		•	•	•*	•	•			
False Canyon C	reek									
MH-13	The main channel of False Canyon Creek, approximately 10 kilometres downstream of the reclaim pond	•	•	•		•	•	•	•	•
MH-14	The main channel of False Canyon Creek, approximately 20 kilometres downstream of the Reclaim Pond just upstream of the confluence with Tributary E	•								

Table 2-1. Receiving environment monitoring stations and lines of evidence (LOE) used in the aquatic ERA.

			-	Lin	ne of Evidenc	e available	for each Statio	on		
Station Code	Station Description	Water Chemistry	Sediment Chemistry	Benthic Invertebrate Community	Fish Tissue Chemistry	Fish Survey	Qualitative Habitat Survey (observations of aquatic plants)	Dilution Series Toxicity Testing ¹	Literature-based periphyton effects concentrations	WER Tests ¹
alse Canyon C	reek									
MH-16	The main channel of False Canyon Creek, downstream of the confluence of Tributary D, approximately 22 kilometres downstream of the reclaim pond	•	•	•	•	•	•	•		•
MH-20	The main channel of False Canyon Creek, approximately 13 kilometres upstream of the mouth and immediately above the Tributary B confluence	•	•	•		•	•			
ributary E										
MH-08	A small intermittent drainage south of the Burnick pit and portal sites which will consolidate drainage within a sediment pond from those sites as well as Burnick pit access road runoff; the drainage contributes to the upper end of Tributary E, east fork, of False Canyon Creek	•						•	•	•
MH-12 and MH-12A	Approximately 2 km downstream from the North Dam. NOTE: MH-12A was established as an ERA station upstream of MH-12 in 2014 in suitable habitat for stream sampling	•	•	•		•	•	•		•
TRIBEWF01	West Fork of Tributary E, upstream from TRIBEWF02	•								
TRIBEWF02	West Fork of Tributary E, downstream from the confluence with flow from SDH-BD-01	•								
MH-15	Upstream of the confluence with the east fork of Tributary E	•								
MH-18	Main stem of Tributary E, downstream from the confluence of the East Fork and West Fork, and approximately 1 km upstream from the confluence with False Canyon Creek									

Notes:

¹ Results from the dilution series and water effect ratio (WER) toxicity tests were compared to a subset of stations within each drainage.

² MH-26 has been monitored as MH-20 since 2010. MH-20 station name changed to MH-26 for data collected since 2010.

^{*} Field staff (Laberge) noted that some fish were collected from the CC-Confl location near MH-30. Reference/exposure comparisons for the Fish Tissue LOE are not part of the AERA.

3. RISK CHARACTERIZATION AND UNCERTAINTY ASSESSMENT

3.1. Risk Predictions and Uncertainties

3.1.1. Aquatic Plant Communities

The assessment endpoint for aquatic plant communities is structure and ecological function and the entity (spatial scale) is assumed to be represented by the entire creek (i.e. Camp Creek, False Canyon Creek, and Tributary E). This assessment endpoint was evaluated using four LOEs (see Table 3–4 in Volume 1A [Azimuth 2015a]):

- **LOE 1 Water chemistry:** Compare water chemistry to guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- **LOE 2 Sediment chemistry:** Compare sediment chemistry data to criteria and guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- LOE 3 Qualitative periphyton/aquatic plant survey: Qualitative documentation of presence, and percent composition of the macrophyte community in relation to habitat/stream variables and water quality (COPC gradient).
- **LOE 4 Water toxicity testing:** Compare growth in 72-hr *Pseudokirchneriella subcapitata* test across a gradient of COPC exposure in water (dilution series compared to upstream water and laboratory control).
- LOE 5 Literature-derived effects thresholds for periphyton: Compare zinc concentrations at selected locations downstream from the Site to concentration-response relationships derived from Hill et al., 2000 for various periphyton endpoints in a field study.

Evaluation of these LOEs was conducted in detail in **Appendix A**. Overall risk conclusions for this receptor group were based on a WOE evaluation of the five LOEs (see **Table 3–1**); the water toxicity testing LOE (LOE 4) was given the highest LOE weighting particularly given the limited application of the field survey (LOE 3).

Camp Creek — Potential risks to aquatic plant communities are considered low-to-moderate (based on location) with a high degree of uncertainty based on the following LOE findings and WOE assessment:

- Camp Creek was rated moderate for water and sediment contaminant exposure, with the highest concentrations of COPCs reported downstream from the former Reclaim Pond at MH-11.
- Effects to aquatic plant communities were undetermined the qualitative habitat survey. No rooted aquatic macrophytes were observed throughout Camp Creek, consistent with the habitat characteristics of lotic environments (see Appendix B for photographs of the habitat). However, the presence of a diverse benthic invertebrate community throughout Camp Creek (see Section 3.1.2) suggests that there is likely a functional primary producer community (i.e., periphyton) present; uncertainty is considered moderate because this is not a direct assessment of the plants themselves.

- Effects concentrations for *P. subcapitata* cell yield in the mixture toxicity test compared to the 95th percentile COPC concentrations at the Camp Creek stations indicate there is the potential for adverse effects to aquatic primary producers in some reaches of Camp Creek. The highest effects were predicted for lower Camp Creek (MH-11) in the winter months (December to May) prior to freshet (Figure A11-5). After freshet (June), the concentrations of zinc decrease, resulting in generally negligible-to-moderate predicted effects to *P. subcapitata* cell yield. Farther upstream at MH-04 (referred to as Upper Camp Creek) zinc concentrations were in the negligible-to-low effect range for most months from 2013 dating back to 1999. There is a moderate degree of uncertainty associated with this LOE because of the unknown species sensitivity of *P. subcapitata* compared with the resident periphyton community in Camp Creek.
- Zinc concentrations at MH-11 compared to the effects thresholds from the periphyton field study by Hill et al.,2000 indicate that there is the potential for low level (10% to 20%) reductions of chlorophyll-a (functional change) and species richness (structural change). There is a high degree of uncertainty for this LOE because the effects thresholds were derived from the literature and it is unknown whether the periphyton communities downstream of Sä Dena Hes have similar sensitivity.
- WOE Integration The risk characterization presented in **Table 3–1** for the Camp Creek aquatic primary producer receptor group is separated into Upper and Lower Camp Creek because of the spatial-differences in risk ratings concluded in the WOE assessment. Zinc concentrations were high enough downstream from the Site at MH-11 during the winter months (2007 to 2013) to potentially cause a high level of adverse effects on cell yield. However, during key summer algal growing months, potential effects at MH-11 were in the negligible-to-moderate category. While weighted the highest, the toxicity LOE is associated with a moderate level of uncertainty when extrapolating from the laboratory to the field (i.e., uncertainty regarding the sensitivity of P. subcapitata compared to the resident periphyton community). Compared with literature-based effects thresholds, the zinc concentrations at MH-11 were predicted to have only low (10-20%) reductions in chlorophyll-a production and species richness. These results are in line with the results of the toxicity tests that predict the possibility of reduced P. subcapitata cell yield at MH-11. The presence of a diverse benthic invertebrate community (i.e., numerous sensitive taxa) in Camp Creek provides evidence of functional primary producer community in Camp Creek, but was not a direct measure of aquatic plants. Overall, risks were rated as moderate and uncertainty is considered high for lower Camp Creek, because there is high likelihood that additional data (e.g., quantitative periphyton survey) could change the overall risk rating for aquatic plants. Risks to aquatic plant communities in Upper Camp Creek (MH-04) are considered negligible to low.

False Canyon Creek — Potential risks to aquatic plant communities are considered negligible with a low degree of uncertainty based on the following LOE findings and WOE assessment:

• Chemistry LOEs in False Canyon Creek were rated as moderate for water and low for sediment, with the highest COPC concentrations reported for MH-13.

- The qualitative aquatic plant survey was not completed in the False Canyon Creek drainage.
 While benthic invertebrate results are more uncertain, the presence of a fairly diverse benthic invertebrate community in False Canyon Creek (see Section 3.1.2) suggests that there is likely a functional primary producer community (i.e., periphyton) present; uncertainty is considered moderate because this is not a direct assessment of the plants themselves.
- Effects concentrations for *P. subcapitata* cell yield in the mixture toxicity test were higher than the 95th percentile COPC concentrations at the False Canyon Creek stations, indicating there is a limited (negligible) potential for adverse effects to aquatic primary producers in False Canyon Creek. While general uncertainty associated with this LOE is considered moderate, this LOE tends to be conservative because laboratory organisms are typically more sensitive than resident organisms that have been acclimated to higher metals concentrations in the field. Therefore, the likelihood that potential effects have been missed under field conditions is considered low.
- Zinc concentrations at MH-13 are well below the concentrations shown to cause effects to
 periphyton biomass, chlorophyll-a production, autotrophic index, and species richness in the
 survey published by Hill et al. (2000). A negligible magnitude rating was applied to the aquatic
 plant receptor group in False Canyon Creek, with moderate uncertainty for reasons described
 previously in the Camp Creek aquatic plant summary.
- WOE Integration 95th percentile COPC concentrations (specifically zinc) in the water samples from False Canyon Creek were below the concentrations shown to cause effects in the mixture toxicity test and the literature-based endpoints; this resulted in a negligible rating of risk. Uncertainty was considered low because the laboratory-based toxicity LOE tends to be a conservative measure of potential effects in the field. The toxicity LOE was weighted higher than the surface water and sediment chemistry LOEs in the overall WOE assessment for potential effects to aquatic plant communities in False Canyon Creek. The presence of a fairly diverse and abundant benthic invertebrate community in False Canyon Creek also suggests a functional primary producer community is present.

Tributary E — Potential risks to aquatic plant communities are considered low with a moderate degree of uncertainty based on the following LOE findings and WOE assessment:

- The exposure assessment in Tributary E was moderate for water and low for sediment.
- The qualitative aquatic plant survey was completed in North Creek at MH-12A where the benthic invertebrate sample was collected. Similar to Camp Creek, there were no rooted aquatic macrophytes, as was expected for this drainage. The substrate at MH-12A was primarily cobble and gravel, and there was visual evidence of a periphyton community present along the length of the reach (see Appendix B, Photo 17). The presence of a diverse and abundant benthic invertebrate provides supporting evidence of a functional aquatic primary producer community in North Creek; uncertainty is considered moderate because this is not a direct assessment of the plants themselves.

- Mixture toxicity test results indicated that 95th percentile zinc concentrations at MH-08 in Burnick Creek were within the low effects range for reduced *P. subcapitata* cell yield. Using monthly historic water quality (199-2013), potential effect-sizes range from negligible-to-high, but appear to be lower (negligible) in recent years (**Figure A11-5**). At the next closest station on North Creek (MH-12), the risk was considered negligible, suggesting that any potential adverse effect to aquatic plant communities is limited in spatial extent. There is a moderate degree of uncertainty associated with this LOE because of the unknown species sensitivity of *P. subcapitata* compared with a possible resident periphyton community in Tributary E.
- Zinc concentrations at MH-08 are well below the concentrations shown to cause effects to
 periphyton biomass, chlorophyll-a production, autotrophic index, and species richness in the
 survey published by Hill et al. (2000). MH-08 is the farthest upstream station in the Tributary E
 drainage and has the highest metals concentrations in Tributary E, so potential effects further
 downstream in Tributary E are considered unlikely.
- WOE Integration Tributary E aquatic plant communities are at low risk (with moderate uncertainty) of effects based on the WOE assessment. The toxicity testing LOE indicated a low potential risk to aquatic plants, with a small spatial extent limited to Burnick Creek. Zinc concentrations were below effects thresholds for periphyton based on the literature study. Furthermore, the presence of a fairly diverse and abundance benthic invertebrate community in North Creek, and visual observations of periphyton, imply minimal (if any) effects from the mine on primary producers in this drainage.

3.1.2. Aquatic Invertebrates

The assessment endpoint for aquatic invertebrates is structure and ecological function of the benthic invertebrate communities. The spatial scale/entity are the receiving environments downstream from the mine: Camp Creek, False Canyon Creek, and Tributary E. This assessment endpoint was evaluated using five LOEs (see Table 3–4 in Volume 1A [Azimuth 2015a]):

- **LOE 1 Water chemistry:** Compare water chemistry to guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- **LOE 2 Sediment chemistry:** Compare sediment chemistry data to criteria and guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- **LOE 3 Benthic invertebrate survey:** Quantitative evaluation of the benthic invertebrate community assemblages downstream from the mine site.
- **LOE 4 Water effects ratio (WER) testing:** Comparison of acute toxicity testing endpoints for *Ceriodaphnia dubia* from parallel toxicity tests using laboratory water and site water to determine whether the site water characteristics modify contaminant bioavailability and potential toxicity.

• **LOE 5 – Water toxicity testing – chronic:** Comparison of 7-day *Ceriodaphnia dubia* survival and reproduction across a gradient of COPC exposure in water (dilution series compared to upstream water and laboratory control; acclimation included in study design).

Evaluation of each of these LOEs was conducted in detail in **Appendix A**. Overall risk conclusions for this receptor group were based on a WOE evaluation of the five LOEs (see Table 3–1). The benthic invertebrate survey LOE (LOE 3) was generally considered to have the highest LOE weighting, with consideration of toxicity-based LOEs 4 and 5.

Camp Creek – Potential risks to aquatic invertebrates from mine related impacts are considered low with a moderate degree of uncertainty based on the following LOE findings and WOE assessment:

- Camp Creek was rated moderate for water and sediment contaminant exposure, with the highest concentrations of COPCs reported downstream from the former Reclaim Pond.
- Effects to benthic invertebrates based on the 2014 data were considered negligible to low
 (depending on the station) with high uncertainty. Reduced benthic invertebrate total abundance
 relative to reference was observed in the downstream portion of Camp Creek from below the
 former Reclaim Dam at MH-28A to MH-11; however, the reduced abundance was not observed in
 EPT taxa, suggesting the effect is likely due to habitat suitability and/or modified flow due to
 annual dewatering of the Reclaim Pond.
- Mixture toxicity test results on *C. dubia* indicate there is potential for low level effects to survival downstream from the Site at MH-11. Zinc was identified as the likely cause of the observed toxicity in the mixture test, and low effects concentration (10-20% reduction in survival) was similar to the 95th percentile zinc concentration reported at MH-11 (0.14 mg/L). This concentration of zinc also corresponded to a high effect (>50%) on *C. dubia* reproduction. Farther upstream at MH-04 and MH-27, the effect was negligible on survival, and low for reproduction. Uncertainty for this LOE was considered moderate.
- WOE Integration The benthic invertebrate community LOE assessment provides the strongest evidence of a relatively functional and diverse aquatic invertebrate community in Camp Creek (negligible to low effects with high uncertainty). Toxicity test results on *C. dubia* indicated the *potential* for adverse effects to aquatic invertebrates, but the spatial scale was limited primarily to lower Camp Creek (MH-11) and extrapolating laboratory results to the field is considered to have higher uncertainty than direct field measurements. Overall risks are considered low with moderate uncertainty.

False Canyon Creek – Potential risks to benthic invertebrates in False Canyon Creek are considered low with a moderate degree of uncertainty based on the following WOE assessment:

 There is an upstream to downstream trend in water and sediment chemistry in False Canyon Creek. MH-13 had higher metals concentrations than MH-16 and MH-20 and was rated as "moderate" for water chemistry and "low" for sediment chemistry.

- Effects to benthic invertebrates determined from the long-term field monitoring program (Laberge 2015) were considered moderate with high uncertainty based on lower EPT/sensitive taxa metrics at MH-13 versus downstream stations. Qualitative comparisons to Camp Creek stations (MH-11/CC-Confl and the MH-30 reference) did not indicate impairment at MH-13. Importantly, Laberge (2015) documents important habitat/physical stream characteristics that explain the differences in benthic invertebrate assemblages between the three monitoring stations. Based primarily on habitat and comparisons to water toxicity thresholds (next bullets), the relationship between effects (difference in EPT) and metals chemistry is not considered causal in the False Canyon Creek study. Data supporting stronger comparisons to Camp Creek stations and an outside reference would reduce uncertainty in risk ratings.
- Dilution toxicity test results on *C. dubia* indicate there is negligible potential for effects (with
 moderate uncertainty) to survival or reproduction at MH-13 and further downstream in False
 Canyon Creek. Similarly, the WER toxicity testing results on *C. dubia* indicate water chemistry at
 MH-13 and further downstream in False Canyon Creek is in the "no-effect" range; indicating
 negligible potential for effects to invertebrates in False Canyon Creek.
- WOE Integration The benthic invertebrate community LOE indicated that there are lower EPT/sensitive taxa indices at MH-13 relative to the downstream locations, but there is a high degree of uncertainty regarding the cause of the reduced number of sensitive taxa. Water quality data compared to the toxicity testing benchmarks suggest there is likely no effect on the False Canyon Creek benthic invertebrate community due to metals in the surface water. Multiple years of data, combined with knowledge of the habitat conditions, strongly suggest that any difference in the number of sensitive taxa or EPT indices at MH-13 is due to the habitat and stream characteristics at this location.

Tributary E – Potential risks to benthic invertebrates in Tributary E are considered low with a moderate degree of uncertainty based on the following WOE assessment:

- Tributary E was rated moderate for water chemistry and low for sediment contaminant exposure.
 Burnick Creek (MH-08) was the station responsible for the moderate exposure rating for water
 chemistry. The two other stations in Tributary E had surface water COPC concentrations that
 were rated negligible-to-low for exposure (based on the 95th percentile), but data are limited
 (Appendix A).
- Effects to benthic invertebrates based on the 2014 field survey were considered moderate with high uncertainty. The highest abundance was observed at MH-12A in North Creek in the June 2014 survey, but the abundance of EPT individuals and the number of EPT taxa were lower relative to the reference location. A high level of uncertainty was associated with the LOE rating because of the limited dataset (1 year) and uncertainty about the suitability of comparing the benthic invertebrate community at MH-12A with the reference location MH-29 on Access Creek due to potential confounding effects of habitat differences between the two locations.

- Results of the Dilution and WER toxicity tests on *C. dubia* indicate there is negligible to low risk (with moderate uncertainty) of effects to aquatic invertebrates in North Creek, and by extension, farther downstream in Tributary E. No effects were observed in the WER tests at concentrations corresponding to the 95th percentile at MH-08 or the maximum concentration at MH-12. Low level effects were predicted for *C. dubia* reproduction at MH-08 when compared to the zinc concentration that caused adverse effects in the Mixture test. Downstream at MH-12, the zinc concentration was within the negligible effects range (i.e., no effects on *C. dubia* reproduction relative to the control).
- WOE Integration With the exception of Burnick Creek, the available chemistry data in Tributary E indicated low risk of exposure with moderate uncertainty. Reduced EPT abundance relative to the reference areas was observed in the single sample collected from MH-12A on North Creek in 2014, but water quality data from Burnick Creek (MH-08) and North Creek (MH-12) compared to the toxicity testing benchmarks in the Dilution and WER tests indicate negligible-to-low risks for aquatic invertebrates in this drainage. Overall, the low risk rating (with moderate uncertainty) was considered appropriate given the inconsistency in effects ratings between the benthic invertebrate community and toxicity testing LOEs.

3.1.3. Fish

The assessment endpoint for fish is viability of local fish populations. This assessment endpoint was evaluated using six LOEs as follows (see Table 3–4 in Volume 1A [Azimuth 2015a]):

- **LOE 1 Water chemistry:** Compare water chemistry to guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- **LOE 2 Sediment chemistry:** Compare sediment chemistry data to criteria and guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- LOE 3 Fish tissue chemistry: Compare near-field vs far-field site fish tissue chemistry data.
- **LOE 4 Water toxicity testing (acute):** Survival of rainbow trout (96-hr static test using rainbow trout (*O. mykiss*) exposed to mine site source water (MH-06A or MH-06B) collected as part of Teck's Water License program.
- LOE 5 Fish habitat survey: Comparison of total and relative abundance of fish species
 collected from stations in relation to habitat/stream variables and water quality (COPC gradient)
 in Camp Creek and False Canyon Creek.
- LOE 6 Aquatic plant and invertebrate LOEs: See LOEs for aquatic plants and
 invertebrates; fish are also assessed indirectly via health of benthic communities upon which they
 rely for food.

Evaluation of each LOE was conducted in detail in **Appendix A**, and considered the risk-characterization stage attributes (Table 5-2 in the Volume 1 [Azimuth 2014d]). Overall risk conclusions and uncertainties were obtained by integrating all six LOEs (provided below and in **Table 3–1**); the fish habitat survey

(LOE 5) was generally considered to have the highest LOE weighting, with consideration of fish tissue chemistry (LOE 3) and toxicity testing (LOE 4).

Camp Creek – Potential risks to fish are considered negligible with a low degree of uncertainty based on the following LOE findings and WOE assessment:

- Fish are not expected to be present in Camp Creek due to a lack of suitable habitat and barriers to fish access. No fish were captured from Camp Creek during the June 2014 survey between MH-04 to MH-11. Historic fish data from Camp Creek is limited to one location sampled in the Baseline IEE completed by SRK in the fall and spring of 1989, and no fish were captured. Fish have been recorded as far upstream as the confluence of Camp Creek and False Canyon Creek, but based on the available surveys and knowledge of the habitat in Camp Creek and False Canyon Creek, it is unlikely that Camp Creek would support a permanent fish community (see Appendix B [this report], SRK 1990, and Laberge 2015).
- Even if fish were present in Camp Creek, the quarterly rainbow trout LC50 toxicity tests suggest negligible potential effects (but high uncertainty). No mortalities have been observed in the on whole-effluent tests from the Reclaim Pond (MH-06A) dating back to 2002. However, extrapolating the LC50 results from MH-06A to Camp Creek has high uncertainty for MH-11, because surface water concentrations are higher than at MH-06A; other stations (MH-04) are more similar to MH-06A.
- Camp Creek was rated moderate for water and sediment contaminant exposure, with the highest concentrations of COPCs reported downstream from the former Reclaim Pond.
- We note that near-field tissue concentrations (from the confluence of Camp Creek with False Canyon Creek) were considered to be highly elevated relative to far-field tissues, with lead concentrations in near-field fish approximately 10 times higher than in far-field fish. (This LOE is included under False Canyon Creek, but is mentioned here for context).
- Aquatic invertebrate LOEs suggest low potential risks with moderate uncertainty for COPC-related impacts to fish food in Camp Creek. There was some reduced total abundance in the downstream portion of Camp Creek relative to reference areas that were attributed to habitat or stream characteristics.
- WOE Integration The absence of fish from Camp Creek in 2014 is consistent with findings from the baseline IEE (SRK 1990) and with known habitat preferences for the various species found farther downstream (e.g., slimy sculpin, Arctic grayling). It is not expected that Camp Creek would support a permanent fish community, largely due to the absence of cover and suitable areas to overwinter. Furthermore, there are numerous barriers to fish migration in the upper reaches of False Canyon Creek that likely impede fish migration (Laberge 2015). As a result, risks to fish in Camp Creek are considered negligible with low uncertainty.

If fish populations were to be present in the system in the future, contaminant-related effects are still considered unlikely and based on available information risks would be rated low with

moderate uncertainty in light of the LC50 toxicity test results compared to the surface water chemistry in Camp Creek, and expected elevations in tissue concentrations of metals.

False Canyon Creek – Potential risks to fish are considered low with a moderate degree of uncertainty based on the following LOE findings and WOE assessment:

- False Canyon Creek was rated moderate for water chemistry and low for sediment contaminant exposure.
- Near-field tissue concentrations (Camp Creek and False Canyon Creek confluence) were
 considered to be highly elevated relative to far-field tissues, with lead concentrations in near-field
 fish approximately 10 times higher than in far-field fish. This LOE has moderate uncertainty for
 extrapolating to a measure of effects.
- As discussed above, no mortalities have been observed in the quarterly rainbow trout LC50 toxicity tests on whole-effluent from the Reclaim Pond (MH-06A) dating back to 2002. Extrapolating the LC50 results from MH-06A to False Canyon Creek has moderate uncertainty, but long-term surface water concentrations (95th percentile) for most COPCs at the farthest upstream location MH-13 are similar to MH-06A (see Appendix A, Section 11.2.4). Only iron was elevated at MH-13 relative to concentrations at MH-06A.
- Fish community data (species presence / absence) shows similar species are present in False
 Canyon Creek. The absolute number of individual fish captured has varied over-time, but the
 catch data show a relatively stable fish community is present in False Canyon Creek as far as MH13.
- Aquatic invertebrate LOEs suggest low potential risks with moderate uncertainty for COPC-related impacts to fish food in False Canyon Creek.
- WOE Integration Fish species presence / absence in False Canyon Creek has been relatively consistent dating back to 1992. The overall numbers of each species at the monitoring locations varies among years, but there do not appear to be long-term trends in reduced catch for the various species at MH-13, MH-16, or MH-20. Year-over-year differences in the absolute number of fish captured seem to be primarily due to changes in water levels, particularly for MH-13. No toxicity testing has been carried out on fish using water from False Canyon Creek, but a comparison of the long-term surface water chemistry in False Canyon Creek to the LC50 monitoring location at the former Reclaim Pond implies effects to fish are unlikely. Overall, risks were considered low (rather than negligible) with moderate uncertainty because near-field tissues were 10 times higher in lead than far-field fish.

Tributary E – Potential risks to fish are considered negligible with a low degree of uncertainty based on the following LOE findings and WOE assessment:

 No fish were captured from North Creek during the June 2014 survey. Historic fish data from 1989 reported in the Baseline IEE documents fish presence downstream in Tributary E. Based on the available surveys and knowledge of the habitat in Camp Creek and False Canyon Creek, it is

unlikely that North Creek would support a permanent fish community (see **Appendix B** [this report], SRK 1990, and Laberge 2015).

- As discussed above, no mortalities have been observed in the quarterly rainbow trout LC50 toxicity tests on whole-effluent from the Reclaim Pond (MH-06A) dating back to 2002. Extrapolating the LC50 results from MH-06A to stations in Tributary E has moderate uncertainty, but long-term surface water concentrations (95th percentile) for most COPCs at MH-08 (Burnick Creek) are similar to MH-06A. Aluminum, chromium, and iron are historically higher at MH-08 relative to MH-06A (see Appendix A [Section 11]), but this location represents the "worst-case" station in the Tributary E drainage; water quality improves farther downstream at MH-12 (Table A2-2; Appendix A).
- Tributary E was rated moderate for water chemistry and low for sediment contaminant exposure.
- Aquatic invertebrate LOEs suggest low potential risks with moderate uncertainty for COPC-related impacts to fish food in Tributary E.
- WOE Integration No fish were captured from North Creek in 2014. It is not expected that the upstream portion of North Creek would support a stable fish community, but baseline information in the IEE (SRK 1990) shows the downstream Tributary E environment is fish bearing. Risks to fish under current conditions are considered negligible with a low degree.

If fish populations were to be present in the system in the future, contaminant-related effects are still considered unlikely and based on available information risks would be rated low with moderate uncertainty in light of the LC50 toxicity test results compared to the surface water chemistry in Burnick Creek, North Creek and Tributary E.

3.1.4. Amphibians

The assessment endpoint for common amphibian species is viability⁹ of local amphibian populations¹⁰. For listed species, the assessment endpoints are survival, reproduction, growth, and deformities of individual organisms¹¹. There were two amphibian ROCs identified in the PF – the wood frog, which prefers aquatic habitats and the western toad, which prefers terrestrial habitats. Wood frogs were observed in the Tailings Ponds in 2013, but with the draining of the ponds for closure, amphibians are now more likely present in on-Site marshy areas and terrestrial AECs (rather than creeks). However, to be conservative, and because ponded wetland beaver habitats may occur downstream of the Site (and locations may vary

3-10

⁹ We define viability as the ability of a population to sustain itself over the long term. We assume that assessing organism level attributes (e.g., growth and fecundity) will be protective of population level attributes (e.g. abundance).

¹⁰ The assessment population consists of a group of conspecific organisms occupying a defined area that has been selected to serve as an assessment endpoint entity for the ERA (Barnthouse et al. 2008). The assessment population is operationally defined in the ERA as the local population, which consists of all organisms exposed to, or indirectly affected by, contaminants at the Site.

¹¹ The measurement endpoint is based on an average individual within a test population.

overtime), we have included an assessment of amphibians in creeks downstream of the Site in the AERA. The assessment, however, relies on chemistry LOEs and invertebrate food sources for amphibians, with high uncertainty in risk conclusions. Risk management decision-making in the aquatic environment is assumed to be driven by the other ROCs. More emphasis was placed on assessing amphibians (western toad) in 'terrestrial' portions of the site (see LOEs 3, 4 and 5 below). The Site is at the northern edge of the western toad's range and it has not been documented on-Site. However, if it is present on-Site, the toad may inhabit many terrestrial habitats, including the subalpine and alpine areas (COSEWIC, 2012). The spatial scale/entity is assumed to be represented by the creeks and terrestrial AECs (Volume 1A [Azimuth 2015a]).

This assessment endpoint was evaluated using three LOEs for aquatic amphibians/life stages, and three LOEs for terrestrial amphibians/life stages considering current and future conditions as appropriate (see Table 3–4 in Volume 1A [Azimuth 2015a]):

• Aquatic Amphibians/Life-stages

- LOE 1 Water chemistry: Compare water chemistry to guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns. We also bring in information from a recent meta-analysis of amphibian water-based toxicity data (Liu 2015).
- LOE 2 Sediment chemistry: Compare sediment chemistry data to criteria and guidelines for protection of aquatic life. Evaluate spatial gradients and extent of contamination patterns.
- LOE 4 Aquatic invertebrate LOEs: See LOEs for aquatic and soil invertebrates; amphibians are also assessed indirectly via health of invertebrate communities upon which they rely for food.

• Terrestrial Amphibians/Life-stages

- LOE 3 Soil-based effects thresholds for amphibians compared with soil chemistry: Compare soil lead concentrations from the Site to effects-based amphibian thresholds from the literature.
- LOE 4 –Terrestrial invertebrate LOEs: See LOEs for aquatic and soil invertebrates; amphibians are also assessed indirectly via health of invertebrate communities upon which they rely for food.
- LOE 5 Qualitative amphibian survey: The intention was to compare species presence, abundance, condition and other endpoints in relation to habitat quality and COPC gradients in soil, water and/or sediment. However, no amphibians were observed during the survey, likely due to low abundance and/or survey timing; but they are expected to be present on-Site. As a result, this LOE is included only qualitatively.

Evaluation of each of these LOEs was conducted in detail in **Appendix A** and considered the risk-characterization stage attributes (Table 5-2 in the Volume 1 [Azimuth 2014d]). Updated risk predictions and uncertainties obtained by integrating the appropriate LOEs for aquatic and terrestrial amphibians/life

stages are provided below (see also **Table 3–1** [aquatic], and **Table 3–2** [terrestrial]). For aquatic amphibians, more weighting was placed on the chemistry LOEs, including recent information from a study on water-based amphibian toxicity thresholds for three of the main aquatic COPCs at the site – cadmium, lead and zinc (see below). For terrestrial amphibians, results of the comparison of soil chemistry to soil-based effects thresholds was given the most weight in the WOE risk characterization.

3.1.4.1. Aquatic Amphibians/Life-stages

Camp Creek – Potential risks to aquatic amphibians/life stages are considered to range from low to moderate, with a high degree of uncertainty, based on the following WOE assessment:

• Water and sediment chemistry were evaluated for this receiving environment and both media were considered to be moderately elevated above CCME guidelines and CSR standards (particularly for cadmium, lead, and zinc). We note that a recent study compiled literature on amphibian water-based toxicity tests to develop concentration-response relationships for cadmium, lead, mercury and zinc. The amphibian data compilation included studies evaluating malformation and mortality endpoints. While considered preliminary, this study suggests that, based on available information, generic water quality guidelines are generally conservative, relative to effects "thresholds" for amphibians (Liu 2015). Comparing amphibian "thresholds" for cadmium (0.010 mg/L), lead (0.030 mg/L) and zinc¹⁰ (0.56 mg/L) to concentrations in receiving water suggests effects to amphibians are unlikely, with the possible exception of lead at MH-11 (95th percentile of 0.046 mg/L):

	Amphibian	95 th Percentile Concentration in Receiving Environment Stations (mg/L)											
COPC	"Thresholds"	"Thresholds" MH-04 MH-11 MH-08 M											
	(mg/L)	Upper Camp	Lower Camp	Burnick Creek	False Canyon								
		Creek	Creek	Dufflick Creek	Creek								
Cadmium	0.010	0.00038	0.00075	0.00017	0.00028								
Lead	0.030	0.020	0.046	0.0063	0.0069								
Zinc	0.56	0.032	0.14	0.024	0.013								

 Aquatic invertebrate LOEs suggest low potential risks with moderate uncertainty for COPC-related impacts to amphibian food (i.e., abundance of invertebrates is not impaired).

3-12

¹² Thresholds were set by Azimuth based on the Liu 2015 data, as the concentration below which the bulk of data did not show effect sizes above 20%, and above which, the bulk of data showed effect sizes above a 20% level. We note that for zinc, there were two studies (with a total of four treatments) showing 50% effect sizes at concentrations between 0.01 and 0.08 mg/L zinc. However, the vast majority of treatment concentrations associated with toxicological responses above a 20% effect size were above 0.56 mg/L zinc, which was selected here as the "threshold".

False Canyon Creek — Potential risks to aquatic amphibians/life stages are considered low, with a high degree of uncertainty, based on the following WOE assessment:

- The water chemistry LOE was rated as moderate (for upstream MH-13) to low (for downstream MH-16 and MH-20), based on exceedances of iron, lead, aluminum, chromium, copper and selenium. However, amphibian thresholds for cadmium, lead and zinc (see above) were higher than 95th percentile concentrations in False Canyon Creek receiving water, suggesting effects to amphibians are unlikely.
- Sediment chemistry was rated as low, based on exceedances of arsenic, cadmium, lead, zinc.
- Aquatic invertebrate LOEs suggest low potential risks with moderate uncertainty for COPC-related impacts to amphibian food (i.e., abundance of invertebrates is not impaired).

Tributary E – Potential risks to aquatic amphibians/life stages are considered low, with a high degree of uncertainty, based on the following WOE assessment:

- Water and sediment chemistry LOEs were evaluated for this receiving environment. While water
 and sediment chemistry COPCs were mostly rated as low (water: copper, iron, lead, selenium;
 sediment: arsenic), some water COPCs were moderately elevated above CCME guidelines and
 CSR standards (aluminum and chromium) at MH-08. However, amphibian thresholds for
 cadmium, lead and zinc (see above) were higher than 95th percentile concentrations in Burnick
 Creek receiving water, suggesting effects to amphibians are unlikely.
- Aquatic invertebrate LOEs suggest low potential risks with moderate uncertainty for COPC-related impacts to amphibian food (i.e., abundance of invertebrates is not impaired).

Because the water and sediment quality guidelines are not specific to amphibians, the recent metaanalysis has not been formally published/reported, and no site-specific information on resident organisms has been collected, potential risks ranged from low to moderate with a high level of uncertainty. It is assumed that risk management (and water permitting) decisions for the aquatic environment will be driven by other ROCs with more robust information and confirmed presence. More detailed assessment or other LOEs would be required to reduce uncertainty in risks to amphibians in aquatic receiving environments.

3.1.4.2. Terrestrial Amphibians/Life-stages

Burnick Zone (AEC 2) – Potential risks to amphibians at this AEC are considered negligible-to-low with high uncertainty, based on the following WOE assessment:

- The amphibian survey did not specifically target the Burnick area (targeted lower elevations and areas with nearby aquatic habitat).
- The soil toxicity thresholds derived from the literature for lead, suggest negligible (1300 Portal) or low (Burnick) potential effect sizes and localized spatial extent (only 1 sample exceeded); uncertainty in this LOE was considered high.

 Terrestrial invertebrate LOEs suggest negligible potential risks with moderate uncertainty for COPC-related impacts to amphibian food (i.e., biomass and abundance of invertebrates were not impaired).

Jewelbox/Main Zone (AEC 1/9) – Potential risks to amphibians at this AEC are considered high with high uncertainty, based on the following WOE assessment:

- The amphibian survey did not specifically target the Jewelbox/Main Zone area (lower elevations and areas with nearby aquatic habitat were targeted).
- The soil toxicity thresholds derived from the literature for lead, suggest high potential effect sizes
 and spatial extent is considered moderate under post-closure conditions (i.e., with application of
 a soil cover on the re-contoured area of the Jewelbox bench); uncertainty in this LOE was
 considered high.
- Terrestrial invertebrate LOEs suggest negligible potential effects with moderate uncertainty for COPC-related impacts to amphibian food (i.e., biomass and abundance of invertebrates were not impaired).
- Further site-specific information or other LOE tools would be required to reduce uncertainty in
 the assessment of potential risks to amphibians at this AEC. Although potentially elevated risks to
 amphibians are present in the Jewelbox/Main Zone AEC, this finding is unlikely to change risk
 management decisions, as amphibian risk rating results are similar to those obtained for some
 species of birds and mammals in the TERA (readers are referred to Azimuth 2015b for further
 information).

Mill Site (AEC 3) - Overall, potential risks to amphibians at this AEC are considered negligible to low with high uncertainty, based on the following WOE assessment:

- The amphibian survey targeted the Mill Site; however no amphibians were observed from any location on-Site or at reference locations.
- The soil toxicity thresholds derived from the literature for lead, suggest, after completion of the 2015 soil cover, negligible (Haul Road) or low (Mill Site) potential effects and limited spatial extent; uncertainty in this LOE was considered high.
- Terrestrial invertebrate LOEs suggest negligible potential risks with moderate uncertainty for COPC-related impacts to amphibian food (i.e., biomass and abundance of invertebrates is not impaired). Overall, potential risks to amphibians at this AEC are considered low with moderate uncertainty.

Tailings Management Facility (AEC 8) - Overall, potential risks to amphibians at this AEC are considered low with high uncertainty, based on the following WOE assessment:

• The amphibian survey targeted several areas in this AEC; however no amphibians were observed from any location on-Site or at reference locations.

- The soil toxicity thresholds derived from the literature for lead, suggest, after completion of the 2014 soil cover, low potential effects and limited spatial extent; uncertainty in this LOE was considered high.
- Terrestrial invertebrate LOEs suggest negligible potential risks with moderate uncertainty for COPC-related impacts to amphibian food (i.e., biomass and abundance of invertebrates is not impaired).

3.2. General Considerations in the ERA

Overall, a combination of conservative and realistic decisions was made in the face of uncertainty in this risk assessment; generally, there is a greater chance of making a Type I error (false positive) than a Type II error (false negative). While risk conclusions are considered robust, they inherently reflect a considerable degree of professional judgment and expert opinion. Our goal was to be as transparent as possible in the risk assessment process.

The findings contained in this report are based, in part, upon information provided by others. In preparing this report, Azimuth assumed that the data or other information provided by others is factual and accurate. If any of the information is inaccurate, site conditions change, new information is discovered, and/or unexpected conditions are encountered in future work, then modifications by Azimuth to the findings, conclusions and recommendations of this report may be necessary.

In addition, the conclusions and recommendations of this report are based upon applicable legislation existing at the time the report was drafted. Changes to legislation, such as an alteration in acceptable limits of contamination, may alter conclusions and recommendations.

This report is time-sensitive and pertains to a specific site and a specific scope of work. It is not applicable to any other site, development or remediation other than that to which it specifically refers. Any change in the Site, remediation or proposed development may necessitate a supplementary investigation and assessment.

ERA is an iterative process where results from initial phases are used to identify uncertainties in risk predictions and inform the need for further studies. The strategy of conducting the ERA in parallel with site investigation work, as well as concurrently with closure/remediation activities, and the Water Licence permitting process, there can lead to greater uncertainty in the ERA.

			All	l Drainage Ba	asins			Camp	Creek				False Can	yon Creek		Tributary E						
				vance	ą.	Magnit	ude ³	Causa	lity ⁴		Magnit	ude ³	Causa	ılity ⁴		Magni	tude ³	Causa	ality ⁴			
Receptor Group	LOE#	LOE Category (Tool)	Data Quality ¹	Ecological Rele	LOE Weighting	Rating	Uncertainty	Summary	Uncertainty	Risk Characterization ⁵	Rating	Uncertainty	Summary	Uncertainty	Risk Characterization ⁵	Rating	Uncertainty	Summary	Uncertainty	Risk Characterization ⁵		
	1	Water chemistry	✓	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	Upper Camp Creek - Low Risk with Low Uncertainty: Water toxicity test results predicted negligible-to-low risks of effects to algae in	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High		Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High			
	2	Sediment chemistry	✓	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	Upper Camp Creek. Zinc concentrations were below literature-based effects thresholds for structure and function of periphyton communities. Uncertainty was considered low because the laboratory toxicity LOE tends to be a conservative measure of potential effects in the field.	Low and Isolated (exp)	High (eff)	N/A; Plausible	High	Negligible Risk with Low Uncertainty: The qualitative plant survey was not	Low (exp)	High (eff)	N/A; Plausible	High	Low Risk with Low Uncertainty: A visually noticeable periphyton community was present in North Creek in		
Aquatic Plants	3	Qualitative periphyton/aquatic plant survey ⁷	√	High	+	could be explained	by the timing of th	of in-stream plant com le survey (early in the g utrients (groundwater	growing season),	Lower Camp Creek - Moderate Risk with High Uncertainty: Water toxicity testing results indicate the potential for adverse effects to algal		N/A: No surv	ey completed.		completed at stations in the False Canyon Creek drainage. 95 th percentile COPC concentrations (specifically zinc) in the water samples from False Canyon Creek were below the concentrations shown to cause effects in the mixture toxicity test. Uncertainty was considered low because the laboratory-based toxicity. LOE tends to	observed in June 2 by the timing of the	2014 survey. Limit survey (early in t	dence of a periphyton co ted plant community co che growing season), cre ., groundwater fed syste	uld be explained eek characteristics	2014 in areas of predominantly cobble/gravel substrate and continuous		
	4	Water toxicity testing	√	Moderate	++	Upper CC: Neg-low (eff) Lower CC: Neg-high (eff)	Moderate (eff)	High; N/A	Moderate	growth in Lower Camp Creek; results vary from negligible-to-high effects in winter, but post-freshet months are given greater emphasis (negligible to moderate). The literature based LOE suggested "low" effects to some periphyton endpoints. The qualitative plant survey was of limited use; however, the presence of a diverse benthic invertebrate community in Camp Creek provides supporting evidence of a		Low (eff)	High; N/A	Moderate	be a conservative measure of potential effects in the field. A functionally intact aquatic primary producer community is inferred based on a diverse and abundant benthic invertebrate community in False Canyon Creek.	Low and Limited Spatial Scale (eff)	Low (eff)	High; N/A	Moderate	potential effects in the field. Furthermore, the presence of a diverse and abundant benthic invertebrate community in North Creek implies the minimal (if any) effects of the mine on primary producers in this drainage.		
	5*	Literature-based periphyton effects concentrations	√	Moderate	+	Low and isolated (eff)	High (eff)	N/A; Plausible	High	Creek provides supporting evidence of a functional primary producer community in this drainage. Uncertainty is high, because there is high likelihood that additional data (e.g., quantitative periphyton survey) could change the overall risk rating for aquatic plants. Additional assessment would be required to reduce uncertainty.	munity in , because ional data survey) tting for ssment (eff)	High (eff)	N/A; Plausible High			Negligible High (eff) (eff)		N/A; Plausible	High			
	1	Water chemistry	√	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High		Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High		Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High			
	2	Sediment chemistry	✓	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	Low Risk with Moderate Uncertainty: The benthic invertebrate community LOE assessment provides the strongest evidence of a relatively functional and diverse aquatic invertebrate community in Camp Creek (negligible to low effects).	(exp)	High (eff)	N/A; Plausible	High	Low Risk with Moderate Uncertainty: The benthic invertebrate community LOE indicated that there are lower EPT/sensitive taxa indices at MH-13 relative to the downstream locations, but there is a high degree of uncertainty regarding the cause of the reduced	Low (exp)	High (eff)	N/A; Plausible	High	Low Risk with Moderate Uncertainty: With the exception of Burnick Creek, the available chemistry data in Tributary E indicated low risk of exposure with moderate uncertainty. Reduced EPT abundance relative to the reference areas		
Aquatic Invertebrates	3	Benthic invertebrate community survey	✓	High	+++	Negligible to Low (eff)	High (eff)	Weak, Positive; N/A	Moderate	Toxicity test results on <i>C. dubia</i> indicated the potential for adverse effects to aquatic invertebrates, but the spatial scale was limited primarily to lower Camp Creek (MH-11) and was based on comparing the exposure concentrations (zinc) in the		High (eff)	None; N/A	Moderate	number of sensitive taxa. Water quality data compared to the toxicity testing benchmarks suggest there is likely no effect on the False Canyon Creek benthic invertebrate community due to metals in the surface water. Multiple years of data,	Moderate (eff)	High (eff)	None; N/A	Moderate	was observed at MH-12A on North Creek in 2014, but water quality data from Burnick Creek (MH-08) and North Creek (MH-12) compared to the toxicity testing benchmarks in the Dilution and WER tests indicate negligible-to-low risks for aquatic		
	4	Water toxicity testing - acute ⁸	✓	Moderate	++	Low (Limited Spatial Scale) (eff)	Moderate (eff)	High, Positive	Moderate	toxicity tests to the 95th percentile of the long-term water quality data at MH-11. The field survey was weighted more heavily than laboratory toxicity testing results.	Negligible (eff)	Moderate (eff)	High, Positive	Moderate	combined with knowledge of the habitat conditions, strongly suggest that any difference in the number of sensitive taxa or EPT indices at MH-13 is due to the habitat and stream characteristics at this location.	Negligible (eff)	Moderate (eff)	High, Positive	Moderate	invertebrates in this drainage. Overall, the low risk rating was considered appropriate given the inconsistency in effects ratings between the benthic invertebrate community and toxicity testing LOEs.		
	5	Water toxicity testing - chronic	✓	Moderate	++	High (Limited Spatial Scale) (eff)	Moderate (eff)	High, Positive	Moderate		Negligible (eff)	Moderate (eff)	High, Positive	Moderate		Low (Limited Spatial Scale) (eff)	Moderate (eff)	High, Positive	Moderate			

Table 3-1: WOE risk characterization summary for Sä Dena Hes aquatic ERA.

			All	Drainage Ba	asins			Camp	Creek				False Can	yon Creek				Tribut	tary E			
				Vance	~	Magni	tude ³	Causa	llity⁴		Magnit	tude ³	Causa	lity ⁴		Magn	itude³	Causal	lity⁴			
Receptor Group	LOE#	LOE Category (Tool)	Data Quality 2	Ecological Rele	LOE Weighting	Rating	Uncertainty	Summary	Uncertainty	— Risk Characterization ⁵	Rating	Uncertainty	Summary	Uncertainty	— Risk Characterization ⁵	Rating	Uncertainty	Summary	Uncertainty	Risk Characterization ⁵		
	1	Water chemistry	✓	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	, V	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High		Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High			
	2	Sediment chemistry	✓	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High		Low and Isolated (exp)	High (eff)	N/A; Plausible	High	Low Risk with Moderate Uncertainty: Fish species presence in False Canyon Creek has been relatively consistent dating	Low (exp)	High (eff)	N/A; Plausible	High			
Fish ⁶	3	Fish tissue	✓	Moderate	++	N/A	N/A	N/A	N/A	Based on the 2014 survey and historical data, Camp Creek is unlikely fish-bearing due to habitat limitations. Even if fish are present under future conditions, the available toxicity testing data suggest	High (exp)	High (eff)	N/A	N/A	back to 1992. Species abundance varies among years, likely due to water levels particularly for MH-13. A comparison of the long-term surface water chemistry in False Canyon Creek to the LC50 monitoring	N/A	N/A	N/A	N/A	Negligible Risk with Low Uncertainty: No fish were captured from North Creek in 2014, which is expected for the upstream portion of North Creek. Even if fish are present under future conditions, the available LC50 toxicity testing data suggest		
Fish ⁶	4	Water toxicity testing (acute)	✓	Moderate	++	Negligible (eff)	High (eff)	N/A	N/A	negligible potential effects. However, there is uncertainty because the full concentration range of receiving water in Camp Creek (MH-11) was not represented by the LC50 monitoring location, and the test was acute rather than sublethal.	Negligible (eff)		N/A	location implies there is negligible risk of effects to fish; uncertainty was rated moderate because the toxicity tests were acute, rather than sublethal. Overall, risks were considered low (rather than negligible) because near-field tissues were	Negligible (eff)	Moderate (eff)	N/A	N/A	risks of contaminant-related effects to potential fish populations in North Creek and Tributary E are unlikely, but there is uncertainty because the testing was acute rather than sublethal.			
	5	Fish survey ⁷	✓	High	++		o be fish bearing I	4 survey and historical of ikely due to lack of suite of fish access.			Narrative assessment: Long-term monitoring and 2014 survey document several species in False Canyon Creek; slimy sculpin present as far upstream as confluence with Camp Creek. Narrative assessment: Based on 2014 survey for times higher in lead than far-field fish. Narrative assessment: Based on 2014 survey for times higher in lead than far-field fish. Narrative assessment: Based on 2014 survey for times higher in lead than far-field fish.											
	6	Aquatic plant and invertebrate LOEs	✓	Low	+	Low (eff)	Moderate (eff)	N/A	N/A		Low (eff)	Moderate (eff)	N/A	N/A		Low (eff)	Moderate (eff)	N/A	N/A			
	1	Water chemistry and amphibian toxicity thresholds	√	Low	++	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	Low to Moderate Risk with High Uncertainty: Water and sediment concentrations exceed guidelines. Water-based	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	Low Risk with High Uncertainty: Water and sediment concentrations exceed guidelines. Water-based	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	Low Risk with High Uncertainty: Water and sediment concentrations exceed guidelines. Water-based		
Amphibians - Aquatic (see also Table 3-2 for terrestrial amphibians/life stages)	2	Sediment chemistry	✓	Low	+	Moderate and Widespread (exp)	High (eff)	N/A; Plausible	High	amphibian thresholds suggests effects to amphibians are unlikely in most of Camp Creek, with the exception of lead at MH- 11. Uncertainty is considered high as no site-specific information on resident	Low and Isolated (exp)	High (eff)	N/A; Plausible	High	exceus guinelines. Water-based amphibian thresholds suggests effects to amphibians are unlikely in False Canyon Creek. Uncertainty is considered high as no site-specific information on resident organisms has been collected. Additional	Low (exp)	High (eff)	N/A; Plausible	High	amphibian thresholds suggests effects to amphibians are unlikely in the Tributary E drainage. Uncertainty is considered high as no site-specific information on resident organisms has been collected. Additional		
	4	Aquatic invertebrate LOEs	✓	Low	+	Low (eff)	Moderate (eff)	N/A	N/A	organisms has been collected. Additional assessment would be required to reduce uncertainty.	Low (eff)	Moderate (eff)	N/A	N/A	assessment would be required to reduce uncertainty.	Low (eff)	Moderate (eff)	N/A	N/A	assessment would be required to reduce uncertainty.		

Notes:

Risk Ratings (See Section 3 for risk and uncertainty ratings): Negligible-Low Risk

Moderate Risk

High Risk

N/A = not assessed. In the case of the fish tissue LOE in Camp Creek and Tributary E, N/A was applied because no fish were captured during the survey.

- * LOE added to the aquatic plant WOE evaluation after the Updated PF was issued (Azimuth 2014d)

¹ Data quality - a check mark indicates acceptable data quality; and an "x" indicates unacceptable data quality.

 $^{^2 \ \}text{LOE weighting - greater number of '+' signs indicates greater weighting on this LOE. Weightings range from '+' to '+++'.}$

³ Magnitude considers degree of contamination (exposure "exp") or effect size (effects "eff"), as well as spatial extent and temporal representativeness.

⁴ Causality considers strength of correlation and supporting evidence.

⁵ Risk characterization considers concordance among LOEs and provides an overall risk and uncertainty rating. See Section 3 for risk and uncertainty ratings by ROC.

 $^{^{\}rm 6}$ No fish were found at the sampling locations in Camp Creek or Tributary E in 2014.

⁷ No formal magnitude and causality ratings were derived for the Qualitative Aquatic Plant Survey and Fish Survey. A narrative assessment of the available information was provided in Appendix A for the Risk Characterization.

⁸ The LOE for Water Toxicity Testing - Acute combines the survival results for *C. dubia* from the WER test and the Mixture Dilution Tests. These tests were previously classified as separate LOEs in Table 3-4 of Volume 1A Problem Formulation (Azimuth 2015a).

Table 3-2. WOE risk characterization summary for amphibians in the terrestrial environment, post-closure conditions, Sä Dena Hes Mine Site. (For aquatic amphibians/lifetages, see Table 3-1).

			All	AECs			Burr	ick Zone -	ost-closure		Jewelbo	x/Main	Zone - Po	ost-closure		N	1ill Site - P	Post-clos	sure	Tailing	s Manage	ment Fac	cility - Cui	rrent/Post-closure		•			EC, Outside AEC 1 O of Appendix A)
Receptor Group	LOE#	LOE Category (Tool)	Data Quality	Eco Relevance	LOE Weighting ²	Magnitude ³	Uncertainty	Causality ⁴	Uncertainty Risk Characterizations	Magnitude³	Uncertainty	Causality⁴	Uncertainty	Risk Characterizations	Magnitude ³	Uncertainty	Causality⁴	Uncertainty	Risk Characterizations	Magnitude ³	Uncertainty	Causality ⁴	Uncertainty	Risk Characterizations	Magnitude³	Uncertainty	Causality⁴	Uncertaint _y	Risk Characterizations
	3	Soil Invertebrate LOEs (as food source) ⁶	✓	Low	+	Negligible	Moderate	N/A	N/A Negligible (1300 Port: to Low (Burnick) Risk with High Uncertaint Risks based primarily o	n : :	· Moderate	N/A	N/A	Negligible Risk with High Uncertainty (1250 Portal).	Negligible	Moderate	N/A	N/A	Negligible (Haul Road) to Low (Mill Site) Risk with High Uncertainty: An amphibian survey was conducted in this AEC, however no	Negligible	• Moderate	N/A	N/A	Low Risk with High Uncertainty: An amphibian survey was conducted in this AEC, however no amphibians	Negligible	Moderate	N/A	N/A	Negligible Risk with High Uncertainty: An amphibian survey was conducted in some reference areas, however no amphibians
Amphibians - Terrestrial	4	Soil-based effects thresholds for amphibians	√	Moderate	. ++	Negligible (1300 Portal) Low (Burnick)	High	N/A; Plausible	soil toxicity threshold and suggest negligible low effects/localized spatial extent. Terrestrial invertebrat LOEs indicate negligib effects to the amphibi food source. Amphibi	High (all except) Negligible (1250 Portal)		N/A; Plausible	High	High Risk with High Uncertainty: Risks based primarily on soil toxicity thresholds derived from the literature for lead, which indicate potentially high effect	Negligible (Haul Road) Low (Mill Site)	High	N/A; Plausible	High	amphibians were observed. Soil toxicity thresholds and terrestrial invertebrate LOEs suggest low potential effects/limited spatial extent post reclamation. Terrestrial	Low	High	N/A; Plausible	High	were observed. Soil toxicity thresholds and terrestrial invertebrate LOEs suggest low potential effects/limited spatial extent. Terrestrial invertebrate LOEs indicate negligible	Negligible	High	N/A; Plausible	High	were observed. Soil toxicity thresholds and terrestrial invertebrate LOEs suggest negligible potential effects (all samples below 'low' threshold, except one). Terrestrial invertebrate
	5	Qualitative Survey	× (no amphibia located)	ns N/A		N/A (su	irvey not cor	iducted at Buri	survey was not conducted in this AEC Site at northern exter of Western Toad distribution.	t	irvey not con	ducted at J	ewelbox)	size and widespread spatial extent for some portions of this AEC. Amphibian survey was not conducted in this AEC. Site at northern extent of Western Toad distribution.			encountered to low abund f survey.		invertebrate LOEs indicate negligible effects to the amphibian food source. Site at northern extent of Western Toad distribution.		amphibians possibly due timing o	to low abund	d in 2014	effects to the amphibian food source. Site at northern extent of Western Toad distribution.		mphibians er essibly due to timing of s	low abunda	in 2014	LOEs indicate negligible effects to the amphibian food source. Site at northern extent of Western Toad distribution.

Risk Ratings (See Section 3 for risk and uncertainty ratings):

Negligible-Low Risk

Moderate Risk

High Risk N/A = not assessed. In the case of the amphibian survey, N/A was applied because no amphibians were encountered during the survey.

"-" LOE not used

 $^{^{1}}$ Data quality - a check mark indicates acceptable data quality; and an "x" indicates unacceptable data quality.

² LOE weighting - greater number of '+' signs indicates greater weighting on this LOE. Weightings range from '+' to '+++'.

³ Magnitude considers degree of contamination (exposure "exp") or effect size (effects "eff"), as well as spatial extent and temporal representativeness.

⁴ Causality considers strength of correlation and supporting evidence.

⁵ Risk characterization considers concordance among LOEs and provides an overall risk and uncertainty rating. See Section 3 for risk and uncertainty ratings by ROC.

 $^{^{6}}$ See WOE Table 3-1 in the Addendum to the Terrestrial ERA (Azimuth 2015b).

4. IMPLICATIONS FOR RISK MANAGEMENT

As described in **Section 3** and **Table 3–1** and **Table 3–2**, the AERA found that potential risks to most receptor groups in most receiving environments (or AECs for amphibians) are currently negligible or low (uncertainty varied by ROC and environment). Where potentially elevated risks were identified, they were accompanied by a high degree of uncertainty. ROCs with potentially elevated risks included:

- The aquatic plant community in lower (but not upper) Camp Creek (moderate risk with high
 uncertainty), based primarily on the toxicity testing LOE, and secondarily, information from the
 literature on zinc effects to periphyton. A quantitative assessment of plants (e.g., periphyton
 survey) was not conducted in the AERA, leading to higher uncertainty about actual effects in the
 field.
- Aquatic amphibians in Camp Creek (low-moderate risks with high uncertainty), based on a
 preliminary screening of water chemistry data and information from the literature on amphibian
 toxicity thresholds.
- Terrestrial amphibians in Jewelbox/Main Zone (AEC 1/9), based on toxicity-based soil screening
 thresholds from the literature. We note that this finding is unlikely to change risk management
 decisions for the terrestrial environment, as amphibian risk rating results are similar to those
 obtained for some species of birds and mammals in the TERA (readers are referred to Azimuth
 2015b for further information).

If uncertainties in risk findings are considered too high to support Site management needs and decisions, further assessment could be conducted to reduce uncertainty.

Unlike the TERA, which was a significant driver for closure planning due to soil contamination, the AERA had a lower profile role. The long-term water quality dataset for the vicinity of the mine identified metals exceeding standards in a pattern that suggests it is mine-related; however, exceedances were typically in the low-moderate range (<10 fold above standards), in some cases related to turbidity, and intermittent for some COPCs. While the aquatic risk assessment results have been used to provide input into the permitting process and adaptive management plan (AMP), the Yukon's water license process was the main driver for decisions about post-closure water quality monitoring.

Teck undertook the AERA for due diligence purposes by building on years of water quality data and existing aquatic environmental effects studies. Augmented with some 2014 on-site data, this information was used to describe any aquatic risks and, if elevated risks with reliable certainty were identified, to consider options for managing those risks.

We understand that Teck is developing an AMP that will monitor post-reclamation surface water and groundwater quality. Thresholds triggering responses are linked to trend analysis and comparison with water quality limits specified in the Water Licence. Long-term monitoring and trend analysis can provide information to allow the development of appropriate responses which are based on a 'weight of evidence' and not solely a limited number of data points. Responses to such triggers could also include expansion of the aquatic resource monitoring network, adjustments to the frequency or intensity of monitoring

efforts, or both. These requirements will be determined on a case basis and will be dependent on the nature of the trigger. In addition to water quality, Teck plans to monitor sediment quality, benthic communities, and continue fish monitoring as per the previous Water Licence.

In summary, risk management for aquatic receptors is being delivered through the Water Licence and AMP.

5. REFERENCES

- Access (Access Consulting Group Ltd.). 2012. Technical Memorandum Reclamation Progress Report. December 18, 2012.
- Access. 2013. Memorandum Re: Sä Dena Hes Mine Backfilling Excavated Materials and Soil Sampling. Prepared for Teck Resources Ltd. October 7, 2013.
- Admirall, W., H. Blanck, M. Buckert-de Jong, H. Guasch, N. Ivorra, V. Lehmann, B.A.H. Nyström, M. Paulsson, and S. Sabater. 1999. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Research. 33(9): 1989-1996.
- Arciszewski, T., M.A. Gray, K.R. Munkittrick, C. Baron. 2010. Guidance for the collection and sampling of slimy sculpin (*Cottus cognatus*) in northern Canadian lakes for environmental effects monitoring (EEM). Can. Tech. Rep. Fish. Aquat. Sci. 2909:v + 21 p.
- Azimuth (Azimuth Consulting Group Partnership). 2013. Sä Dena Hes Mine Problem Formulation for the Human Health and Ecological Risk Assessment (HHERA). June 2013. Report prepared for Teck Metals Ltd.
- Azimuth. 2014a. Sä Dena Hes Mine: Data Report in Support of the Human Health and Ecological Risk Assessments (HHERA). Prepared for Teck Metals Ltd. April 2014.
- Azimuth. 2014b. Sä Dena Hes Mine: Human Health Risk Assessment. Prepared for Teck Metals Ltd. April 2014.
- Azimuth. 2014c. Sä Dena Hes Mine: Interim Results of the Ecological Risk Assessment (ERA) to Guide Closure Planning. Prepared for Teck Metals Ltd. April 2014.
- Azimuth. 2014d. Sä Dena Hes Mine: Volume 1 Updated Problem Formulation for the Ecological Risk Assessment. Prepared for Teck Resources Limited. September 2014.
- Azimuth. 2014e. Sä Dena Hes Mine: Volume 2 Draft Ecological Risk Assessment for the Terrestrial Environment. Prepared for Teck Resources Limited. September 2014.
- Azimuth. 2014f. Sä Dena Hes Mine: Evaluation of Water Quality Data to Support Permitting. Prepared for Teck Resources Limited. April 2014.
- Azimuth. 2015a. Sä Dena Hes Mine: Volume 1 Addendum to the Problem Formulation for the Ecological Risk Assessment. Prepared for Teck Resources Limited. July 2015.
- Azimuth. 2015b. Sä Dena Hes Mine: Volume 2 Addendum to the Terrestrial Ecological Risk Assessment. Prepared for Teck Resources Limited. August 2015.
- Bazar, M.A., M.J. Quinn Jr., K. Mozzachio, J.A. Bleiler, C.R. Archer, C. T. Phillips, M.S. Johnson. 2009. Toxicological responses of red-backed salamanders (*Plethodon cinereus*) to soil exposures of copper. Archives of Environmental Contamination and Toxicology. 57(1):116-122.
- Bazar, M.A., M.J. Quinn Jr., K. Mozzachio, J.A. Bleiler, C.R. Archer, C. T. Phillips, M.S. Johnson. 2010. Toxicological responses of red-backed salamanders (*Plethodon cinereus*) exposed to aged and amended soils containing lead. Archives of Environmental Contamination and Toxicology. 58(4):1040-1047.
- BC MOE (BC Ministry of Environment). 2006. British Columbia Water Quality Guidelines 2006 Edition (BC WQG). Prepared pursuant to Section 2(e) of the Environment Management Act, 1981. Available from http://www.env.gov.bc.ca/wat/wq/wq_guidelines.html.
- BC MOE. 2011. BC CSR Schedule 9: Generic numerical sediment criteria. BC Reg 375/96. May 31, 2011.
- BC MOE. 2013a. Stage 8 Amendments to the Contaminated Sites Regulation. January 2013.

- BC MOE. 2013b. Industrial Land Use, Human Health Protection Intake of Contaminated Soil Standard for Lead. Director's Interim Standards for Contaminated Sites. January 2013.
- BC MOE.2013c. Guidance for the Derivation and Application of Water Quality Objectives in British Columbia. Water Protection and Sustainability Branch. April 2013.
- Blanck, H. W. Admiraal, R.F.M.J. Cleven, H. Guasch, M.A.G.T. van den Hoop, N. Ivorra, B. Nyström, M. Paulsson, R.P. Petterson, S. Sabater, and G.M.J. Tubbing. 2003. Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Archives of Environmental Contamination and Toxicology. 44: 17-29.
- CCME (Canadian Council of Ministers of the Environment). 1996. A framework for ecological risk assessment: General guidance. National Contaminated Site Remediation Program. Winnipeg, Manitoba.
- CCME 1997. A framework for ecological risk assessment: technical appendices. National Contaminated Site Remediation Program. Winnipeg, Manitoba.
- CCME 1999. Protocols for Deriving Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water).
- CCME 2012a. Draft fact sheet for a Canadian Soil Quality Guidelines for the Protection of Human Health Lead. Canadian Council of Ministers of the Environment, Winnipeg, MB.
- CCME 2012b. Draft scientific criteria document for a Canadian Soil Quality Guidelines for the Protection of Human Health Lead. Canadian Council of Ministers of the Environment, Winnipeg, MB.
- CCME 2015a. Canadian Water Quality Guidelines: Summary Table. In Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Winnipeg, MB.
- CCME 2015b. Canadian Sediment Quality Guidelines: Summary Table. In Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Winnipeg, MB.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2012. COSEWIC assessment and status report on the Western Toad in Canada. Ottawa. xiv + 71 pp. Accessed online at: (Species at Risk Public Registry); September 22, 2015.
- Edwards, P.A. and R.A. Cunjak. 2007. Influence of water temperature and streambed stability on the abundance and distribution of slimy sculpin (*Cottus cognatus*). Environmental Biology of Fishes 80:9–22.
- EMR (Yukon Energy Mines and Resources). 2014. Letter re: Amendment to the Detailed Decommissioning and Reclamation Plan Sä Dena Hes Mine Quartz Mining License QML-0004. Letter dated June 3, 2014 to Teck Metals Ltd.
- EC (Environment Canada). 2012a. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance. Report prepared for Environment Canada by Azimuth Consulting Group Inc.
- EC. 2012b. Field manual for wadeable streams. Canadian Aquatic Biomonitoring Network. April 2012.
- EC. 2012c. Laboratory methods: processing, taxonomy, and quality control of benthic macroinvertebrate samples. Canadian Aquatic Biomonitoring Network. April 2012.
- EY (Environment Yukon). 2002. Contaminated Sites Regulation (O.I.C. 2002/171). August 2002.
- EY. 2010. Fact Sheet: Risk Assessment and Risk Management. CSR#3. May 2010. Available from: http://environmentyukon.gov.yk.ca/contaminatedsites.
- EY. 2011. Protocol No. 12: Risk Assessment Methods. Protocol for the Contaminated Sites Regulation Under the Environment Act;

- EY. 2012. Protocol No. 6: Application of Water Quality Standards. Protocol for the Contaminated Sites Regulation Under the Environment Act.
- Gebauer (Gebauer Associates Ltd.) 2013. Sä Dena Hes Mine Ecological Risk Assessment 2012 Field Report. Technical Memorandum. February, 2013.
- Golder (Golder Associates Ltd). 2013. Phase I and II Environmental Site Assessment Sä Dena Hes Mine Yukon Territory. February, 2013.
- Golder. 2014a. Sä Dena Hes Mine Closure 2013 Analytical Data Summary for Soil Assessment Work. Technical Memorandum prepared for Teck Metals Ltd. April 1, 2014.
- Golder. 2014b. Sä Dena Hes Mine Closure 2013 Analytical Data Summary for Hydrogeological Assessment Work. Technical Memorandum prepared for Teck Metals Ltd. April 9, 2014.
- Golder. 2015a. Environmental Site Assessment Sä Dena Hes Mine Closure, Yukon Territory. Submitted to Michelle Unger, Teck Resources Ltd. May 2015.
- Golder. 2015b. Observations on Soil Geochemistry at the Closed Sä Dena Hes Mine Site, YT. Technical Memorandum. Prepared for Azimuth Consulting Group Partnership and included in the Volume 2 Addendum to the Terrestrial ERA. May 2015.
- Harder (P.A. Harder & Associates Ltd.). 1992. "Environmental Assessment of False Canyon Creek, 1992 Study", Prepared for Curragh Resources.
- Hill, B.H., W.T. Willingham, L.P. Parrish, and B.H. McFarland. 2000. Periphyton community responses to elevated metal concentrations in a Rocky Mountain stream. Hydrobiologia 428: 161-169.
- Laberge (Laberge Environmental Services and Can-Nic-A-Nick Environmental Sciences) 2012. Environmental Monitoring at False Canyon Creek. December 2012.
- Laberge. 2015. Environmental Monitoring at False Canyon Creek. January 2015.
- Lehmkuhl, D.M. 1979. How to know the aquatic insects. University of Saskatchewan. Wm. C. Brown C. Publishers. Dubuque, Iowa.
- Liu, E. 2015. Ecological Risk Assessments for Amphibians In Canada. Presentation at the Science Advisory Board for Contaminated Sites in BC (SABCS) Conference, September 24, 2015, Vancouver, BC.
- Pandy, L.K., T. Han, and J.P. Gaur. 2015. Response of phytoplanktonic assemblage to copper and zinc enrichment in microcosm. Ecotoxicology. 24:573-582.
- Paulsson, M., B. Nyström, and H. Blanck. 2000. Long-term toxicity of zinc to bacteria and algae in periphyton communities from the river Göta Älv, based on a microcosm study. Aquatic Toxicology. 47:243-257.
- Rosenberg, D. and V. Resh. 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall Inc. New York.
- SAB (Science Advisory Board for Contaminated Sites in BC). 2008. Detailed ecological risk assessment guidance. Prepared by Golder Associates under contract to the SAB.
- SAB. 2010. Guidance for a weight of evidence approach in conducting detailed ecological risk assessment in BC. Submitted to BC MOE by SAB. Prepared by Exponent Inc. under contract to the SAB.
- Salice, C.J., J.G. Suski, M.A. Bazar, L.G. Talent. 2009. Effects of inorganic lead on Western fence lizards (*Sceloporus occidentalis*). Environmental Pollution 157(12):3457-3464.
- SRK (SRK Consulting Ltd.). 1990. Mt. Hundere Project, Initial Environmental Evaluation. Prepared for Mt. Hundere Joint Venture.
- SRK. 2012. Sä Dena Hes Closure ML/ARD Data Gap Analysis Memo. July 2012.

- SRK. 2013. Sä Dena Hes 1380 Portal Discharge Investigation. Prepared for Teck Resources Ltd. February 2013.
- SRK. 2014a. Sä Dena Hes 2013 Annual Report Yukon Water Licence QZ99-045. Prepared for Teck Resources Ltd. March 2014.
- SRK. 2014b. Sä Dena Hes Water Quality Monitoring Plan and Data Summary Report. Prepared for Teck Resources Ltd. January 2014.
- SRK. 2014c. Sä Dena Hes 2013 Seepage Monitoring Program. Prepared for Teck Resources Ltd. March, 2014.
- SRK. 2014d. Water Quality Loading Assessment of Burnick Portal and 1380 Portal Discharge, Sä Dena Hes. Prepared for Teck Resources by SRK Consulting, Vancouver. September 2014.
- SRK. 2014e. Sä Dena Hes Potential for Evaporite Salt Formation on Tailings Cap Memo. Prepared for Teck Metals Ltd. March 2014.
- SRK. 2015a. 2014 Annual Report Yukon Water Licence QZ99-045. Prepared for Teck Resources Ltd. March 2015.
- Teck. 2015. Sä Dena Hes Operating Corporation: Sä Dena Hes Mine Detailed Decommissioning and Reclamation Plan (DDRP) August 2015 Update. Prepared by Teck Resources Limited, August 31, 2015.
- USEPA (Environmental Protection Agency). 1998. Guidelines for ecological risk assessment. EPA/630/R-95/002F.
- USEPA. 2007. Framework for metals risk assessment. Office of the Science Advisor. Risk Assessment Forum. EPA 120/R-07/001. March 2007.

TABLE OF CONTENTS

TABLE OF	F CONTENTS	
LIST OF F	FIGURES	١
LIST OF 1	TABLES	/
1. INTRO	DDUCTION	.1
	verview	
1.2. D	atasets	.1
1.3. A	ppendix Organization	.2
2. WATE	R CHEMISTRY	.3
2.1. LO	OE Description	.3
2.2. D	ata Analysis	.3
2.2.1.	Overview	
2.2.3.	Results	, 4
2.3. LO	DE Attributes	.5
2.3.1.	Data Quality	
2.3.2.	Ecological Relevance	
2.3.3.	- 3	
2.3.4.	Causality	. 6
3. SEDIN	MENT CHEMISTRY	12
	OE Description	
	ata Analysis	
	Overview	
	Methods	
	Results	
	OE Attributes	
	Data Quality	
	Ecological Relevance	
	Magnitude	
	Causality	
	FISSUE CHEMISTRY	
	OE Description	
	ata Analysis	
	Overview	
	Methods	
	Results DE Attributes	
4.3. L	DE AUTIDULES	45

4.3.1.	Data Quality	25
4.3.2.	Ecological Relevance	25
4.3.3.	Magnitude	25
4.3.4.	Causality	26
5. QUALI	TATIVE FIELD SURVEY OF AQUATIC PLANTS	30
5.1. LO	DE Description	30
5.2. Na	arrative Summary	30
6. BENTH	HIC INVERTEBRATE FIELD SURVEY - NEAR-FIELD STATIONS	31
6.1. LC	DE Description	31
6.2. Da	ata Analysis	31
6.2.1.	Overview	31
6.2.2.	Methods	32
<i>6.2.3.</i>	Results	34
6.3. LC	DE Attributes	34
<i>6.3.1.</i>	Data Quality	34
6.3.2.	Ecological Relevance	34
6.3.3.	Magnitude	<i>3</i> 4
6.3.4.	Causality	37
7. BENTH	IIC INVERTEBRATE FIELD SURVEY – FALSE CANYON CREEK	43
7.1. LC	DE Description	43
7.2. Da	ata Analysis	43
7.2.1.	Overview	43
7.2.2.	Methods	44
7.2.3.	Results	46
7.3. LC	DE Attributes	48
7.3.1.	Data Quality	48
7.3.2.	Ecological Relevance	48
7.3.3.	Magnitude	48
7.3.4.	Causality	51
8. FISH F	POPULATION SURVEY	57
8.1. LC	DE Description	57
8.2. N	arrative Summary	57
<i>8.2.1.</i>	Overview	57
<i>8.2.2.</i>	Methods	57
<i>8.2.3.</i>	Results	<i>58</i>
<i>8.2.4.</i>	Summary	61
9. AMPH	IBIAN SURVEY	64
9.1. LO	DE Description	64
9.2. Da	ata Analysis	64

0 2 N	larrative Interpretation64	1
	MPHIBIAN SOIL TOXICITY THRESHOLDS66	
	OE Description	
	data Analysis	
	. Literature Search	
	Surrogate Receptor	
	7. Toxicity Test Methods	
	7. Toxicity Test Results	
	OE Attributes	
	Data Quality	
	2. Ecological Relevance	
	2. Magnitude	
	. Causality	
	/ATER-BASED TOXICITY TESTING74	
	OE Description74	
	ata Analysis74	
	. Overview	
	Dilution Series Toxicity Test (Aquatic Plants and Invertebrates)	
11.2.3	. WER Toxicity Test (aquatic invertebrates)	7
11.2.4	. Quarterly Rainbow Trout Toxicity Testing 70	8
11.3. L	OE Attributes)
11.3.1	. Data Quality	0
11.3.2	2. Ecological Relevance	0
11.3.3	2. Magnitude	0
11.3.4	. Causality	3
12. P	ERIPHYTON COMMUNITY TOXICITY THRESHOLDS96	ó
12.1. L	OE Description90	5
12.2. D	ata Analysis96	5
12.3. L	OE Attributes97	7
12.3.1	. Data Quality	7
	Ecological Relevance	
12.3.3	. Magnitude	8
12.3.4	. Causality	9
13. R	EFERENCES	2

LIST OF FIGURES

Figure A3-1.	Metals concentrations in sediment from near-field stations in Camp Creek and North Creek in 2013 and 2014
Figure A3-2.	Sediment chemistry data for far-field monitoring locations in False Canyon Creek (2000-2014)
Figure A4-1.	Slimy sculpin (<i>Cottus cognatus</i>) tissue chemistry, 201427
Figure A6-1.	Benthic invertebrate abundance and richness at near-field sampling stations in 2014
Figure A6-2.	Abundance and richness by taxa group for near-field stations sampled in 2014.40
Figure A6-3.	Relative abundance and richness by taxa group for near-field stations sampled in 2014
Figure A7-1.	Benthic invertebrate abundance, richness, and number of sensitive taxa in False Canyon Creek, 1992-2014
Figure A7-2.	Benthic invertebrate metrics in False Canyon Creek monitoring stations, 1998 to 2014 ¹ 53
Figure A10-1.	Lead concentration (mg/kg dw) in soils from AECs, relative to amphibian toxicity-based benchmarks
Figure A11-1.	Ceriodaphnia dubia survival and reproduction test results from the MH-04 and Mixture dilution toxicity tests
Figure A11-2.	Pseudokirchneriella subcapitata toxicity test results from the MH-04 and mixture dilution toxicity tests
Figure A11-3.	Normalized response results for <i>C. dubia</i> (survival and reproduction) and <i>P. subcapitata</i> (cell yield) in the mixture dilution toxicity test86
Figure A11-4.	Proportion of water quality samples assigned to each risk category when comparing the site-specific zinc concentration against the <i>P. subcapitata</i> mixture dilution toxicity test concentration response relationship87
Figure A11-5.	Predicted effects to <i>P. subcapitata</i> cell yield based on site-specific zinc concentrations, 1999-2013
Figure A12-1.	Concentration response relationship for periphyton indices and zinc concentrations from Hill et al., 2000

LIST OF TABLES

Table A2-1.	Water quality screening results for COPCs identified during in the Problem Formulation for the Sä Dena Hes mine site AERA9
Table A2-2.	Water quality screening summary for the Camp Creek, False Canyon Creek, and Tributary E receiving environments
Table A3-1.	Metals concentrations in sediment from the near-field monitoring stations in 2013 and 2014
Table A3-2.	Summary of metals concentrations in sediment from the monitoring stations in False Canyon Creek, 2000-2014
Table A4-1.	Whole-body metals concentrations (µg/g wet weight) in slimy sculpin (<i>Cottus cognatus</i>) from the False Canyon Creek receiving environment, 201428
Table A4-2.	Slimy sculpin whole-body metals concentrations (µg/g dry weight) from 1992 compared with the 2014 tissue chemistry results
Table A6-1.	Benthic invertebrate community effects assessment for the 2014 near-field sampling program
Table A7-1.	Benthic invertebrate data from the long-term monitoring program in False Canyon Creek
Table A7-2.	Presence/absence of sensitive benthic invertebrates from the ephemeroptera, plecoptera, and trichoptera (EPT) taxon groups ¹ , in Camp Creek and False Canyon Creek (2014) and comparison to recent years (August 2008-2012) data for MH-13 (False Canyon Creek)
Table A7-3.	False Canyon Creek benthic invertebrate LOE - assessment of magnitude and causality
Table A8-1.	Fish catch data for the 2014 program in Camp Creek and False Canyon Creek.62
Table A8-2.	Fish catch data from the baseline investigation relative to the operational/closure period
Table A9-1.	Results of Amphibian Encounter Surveys Conducted at the Sä Dena Hes Mine, August 2014
Table A10-1.	Lead concentrations in soils (mg/kg dw) compared to amphibian toxicity benchmarks
Table A10-2.	Summary of salamander 28-day soil toxicity tests reported in Bazar et al., 2010
Table A11-1 .	Toxicity test results and water quality data for the <i>C. dubia</i> and <i>P. subcapitata</i> tests compared against the CCME and YK CSR water quality screening criteria.89
Table A11-2.	Ceriodaphnia dubia effects sizes for the MH-04 and Mixture Tests ¹ 91

Table A11-3.	Pseudokirchneriella subcapitata growth inhibition effects sizes for the MH-C and Mixture Tests ¹ .	
Table A11-4.	Water effect ratio (WER) test results for the 48-hr <i>Ceriodaphnia dubia</i> survitests.	
Table A11-5.	Predicted risk ratings for site-specific water quality data compared to the concentration response relationship for effects to <i>P. subcapitata</i> cell yield from zinc.	9 5
Table A12-1.	Periphyton endpoints and metals concentrations reported in the Hill et al., 2000 study.	101

1. INTRODUCTION

1.1. Overview

This appendix provides detailed information for each line of evidence (LOE) used in evaluating potential risks and associated uncertainties for the ecological risk assessment (ERA) of aquatic receptors at the Sä Dena Hes Mine Site. The aquatic receptor groups considered in the aquatic ERA (AERA) include the following:

- Aquatic Plants
- Aquatic Invertebrates
- Fish
- Amphibians

LOEs for these receptor groups were initially identified during the Draft Problem Formulation (Azimuth 2013a) and have been updated in the Updated Problem Formulation (see Table 6-11 in Section 6 of Volume 1). During the risk characterization process, each LOE is evaluated according to a series of attributes that represent data quality, ecological relevance, magnitude, and evidence for causality; see detailed criteria in Tables5-2 and 5-3 of Volume 1. This approach to risk characterization is consistent with recent ERA guidance from Environment Canada (2012) and the Science Advisory Board for Contaminated Sites in British Columbia (SAB 2008, 2010).

Generally, each LOE used in an ERA links information or assumptions about exposure and effects, and considers causality. In some cases an LOE is limited to evaluating exposure only (e.g., LOEs such as surface water or sediment); for tissue chemistry, evaluation is limited to evaluating changes along a spatial gradient. While most LOEs are evaluated quantitatively, some LOEs (LOEs 5 and 9) are qualitative and/or data is limited. These qualitative LOEs are reported in a narrative fashion.

The detailed LOE assessment presented in this appendix "builds the case "for the weight-of-evidence (WOE) evaluation. Results of individual LOEs are integrated in Section 2 of Volume 3 to reach a conclusion regarding potential risks for a specified receptor group/assessment endpoint.

In the Sä Dena Hes AERA, we provide risk conclusions for current conditions, which are assumed to be representative of post-closure conditions. Assumptions are documented in Section 2.3and Table 2-1of Volume 3.

1.2. Datasets

The data analyses conducted for each LOE in each section as appropriate, but for many of the LOEs, analyses have been reported previously in separate documents and readers are referred to other sources for more detailed information. The datasets and/or reports used to support the LOE assessment include the following:

- A review of the major supporting studies provided in Section 4 of the Volume 1 Updated PF (Azimuth 2014d)
- Volume 3 Main AERA Report (cited as Volume 3)
- Volume 1 Updated PF (cited as Volume 1, Azimuth 2014d)
- Volume 1 Addendum PF (cited as Volume 1A, Azimuth 2015a)
- Azimuth Data Report for 2012 and 2013 programs (cited as Azimuth 2014a)
- Environmental Monitoring Reports by Laberge Environmental Services and Can Nic-A-Nick (cited as Laberge 2012 and 2015 [provided as Appendix E in this AERA])
- The baseline Initial Environmental Evaluation (IEE) Report by SRK (cited as SRK 1990)

References are provided in the Volume 3 main report.

1.3. Appendix Organization

Each of the following sections describes LOEs used in the aquatic ERA for the Sä Dena Hes ERA. The general LOE categories include:

- Water chemistry for aquatic plants, aquatic invertebrates, fish and amphibians
- Sediment chemistry for aquatic plants, aquatic invertebrates, fish and amphibians
- Fish tissue chemistry as measures of COPC exposure to fish,
- Field surveys for plants (qualitative), benthic invertebrates (semi-quantitative), fish (presence/absence) and amphibians (timed survey)
- Water-based toxicity testing for aquatic plants and aquatic invertebrates (including water effects ratio)and fish

For each LOE, we describe specifically how the exposure and effects information is used to inform the LOE, the data analysis that underpins the LOE, and the risk characterization stage attributes.

2. WATER CHEMISTRY

2.1. LOE Description

The water chemistry LOE compares surface water chemistry data to CCME WQG and Yukon CSR standards for the protection of aquatic life. The data is evaluated for potential spatial gradients and extent of contamination patterns (if present) downstream of the Site.

This LOE is applicable to aquatic plants, invertebrates, fish and amphibians.

2.2. Data Analysis

2.2.1. Overview

Water chemistry data for screening was provided by SRK (Microsoft Access database). The data set is comprised of quarterly and monthly samples collected in accordance with the Water Use Licence (QZ99-045), as well as water samples collected for various other monitoring programs. Water quality data has been collected from 1991 to 2014 at various locations including receiving environments but also seeps and adits/portals. For the purpose of the AERA, only monitoring locations identified as potential aquatic habitat were assessed (see Table 2-1 in Volume 3 for a list of monitoring locations used in the AERA and in this LOE). Portal and seep monitoring locations are not considered aquatic habitat and were excluded from assessment in the AERA¹. Additionally, for the purpose of screening, only water samples collected between 1999 and December 2013 were carried forward in this assessment (see Volume 1, Azimuth 2014d). The water quality stations assessed include:

Reference

- o CC-1 (reference, drains the southern slope of Mt. Hundere)
- Access Creek: MH-29 (considered reference and confirmed by SRK)
- o Tributary D: MH-26
- Unknown Tributary to False Canyon Creek: MH-30 (reference)

Camp Creek

- Camp Creek: PH-01, MH-04, CC-3, MH-27, MH-11
- Portal Creek: MH-05, MH-28

¹Refer to Section 6.2 of Volume 1 for a discussion of the portal and seep monitoring locations. Screening results for the portal and seep stations compared against the matrix numerical standard for groundwater flow to surface water used by aquatic life (EY 2002) are presented in Section 6.3.3 of Volume 1

False Canyon Creek: MH-13, MH-14, MH-16

Tributary E2

o Burnick Creek: MH-08

o North Creek: MH-12

o Tributary E: TRIBEWF01, TRIBEWF02, MH-15

Tributary E receives drainage from two potential sources: North Tailings Dam seepage and the Burnick Zone (SRK 2014d). The water quality dataset is limited for Tributary E, particularly for the downstream locations MH-12 and MH-15. MH-08, located on-Site in Burnick Creek, is the only aquatic receiving environment station³ that has been routinely sampled dating back to 1999.

2.2.2. Methods

Section 6 of the Volume 1 (Azimuth 2014d) describes the screening process and benchmarks used to identify contaminants of potential concern (COPCs) for the aquatic environment (see Appendix A). Water quality data from 1999 to 2013⁴ were screened against the following:

- Yukon CSR aquatic life standards (Schedule 3; EY 2002), which are divided by the 10-fold safety factor to compare with water chemistry data from receiving aquatic habitats (*Protocol 6* of the Yukon CSR, EY 2012).
- CCME WQG for the Protection of Aquatic Life (CCME 2014a).

Data were screened in using R (v 2.15.2) software to identify COPCs by station using exceedance ratios (i.e., the concentration in the sample divided by the standard). The CCME and Yukon CSR screening criteria are presented in Table 6-2 of Volume 1 (Azimuth 2014d).

2.2.3. Results

Exceedance ratios using the Yukon CSR aquatic life standards and the CCME aquatic life criteria are presented in Table A2-1 on a station by station basis. COPCs include aluminum, cadmium, chromium, copper, iron, lead, selenium, and zinc.

² Tributary E drainage is not considered impacted by source loading from the Burnick Zone [see Section 6.2.2.2 of Volume 1], but is included in AERA based on source loading from seepage from the North Tailings Dam (MH-02) to North Creek, and ultimately to the East Fork of Tributary E.

³Stations MH-02 (North Dam seep) and MH-22 (Burnick Zone portal) have been monitored more frequently, but these are not considered aquatic habitat and are therefore excluded from the AERA. Refer to Volume 1 Appendix A for information on the COPC screening specific to source water (portals and seeps) on-Site.

⁴ COPC screening for receiving water was not updated with 2014 data in the 2015 PF Addendum because reclamation work was in progress in 2014 (e.g., draining of the tailings ponds), which may have temporarily altered water quality at the Site; see Azimuth 2015a for further information.

Water chemistry results are discussed in Section 6.3.5 and Appendix A of Volume 1 (Azimuth 2014d, Figures A-1 to A-15). Figure A-7 (CCME time series plot) and Figure A-15 show the exceedance ratios for cadmium, copper, iron, lead, selenium, and zinc at MH-30 (reference) relative to the False Canyon Creek stations; the results suggest that concentrations in False Canyon Creek may be within the range of reference/background concentrations in the area.

2.3. LOE Attributes

2.3.1. Data Quality

Acceptable –The following step-wise approach was taken to assessing the quality of the dataset prior to screening:

- 1. Data where the detection limit was greater than the screening criteria were omitted from the dataset (e.g., chromium had several non-detect measurements in the dataset that were above the screening criteria, particularly for historical data collected between 2004 and 2007).
- 2. Data were plotted by station to determine if there are potential outliers in the dataset. Outliers were visually examined on a station-by-station basis, and isolated for further investigation. If the outliers were from samples collected prior to 2004, they were considered unrepresentative of current conditions and removed from the dataset.
- 3. Samples were distinguished between newer water quality data (2004 2013) and older data (1999 2003). If a COPC exceedance was observed in the older dataset at a given station, but no exceedances were observed since 2004, then the COPC was not carried forward in the AERA.
- 4. Samples with TSS concentrations > 50 mg/L were flagged in the screening process, and the results were compared with samples where TSS was < 50 mg/L before carrying COPCs forward in the AERA. This ensured that observed total metal concentrations were not artificially biased high because of sediment entrained in the water sample.

The step-wise data quality assessment for the water COPC screening was described in more detail in Appendix A of Volume 1 (Detailed Soil and Water COPC Screening Methods and Results).

2.3.2. Ecological Relevance

Low – Comparisons of water chemistry data to various benchmarks are considered to have low ecological relevance for predicting risks to aquatic receptors. The LOE does not incorporate any site-specific information on effects to receptor communities themselves. The water chemistry information does provide important context (i.e., contaminant exposure) for establishing exposure levels and interpreting other LOEs.

2.3.3. Magnitude

Magnitude Interpretive Framework

The interpretive framework applied to assess the degree of contamination on a creek-by-creek basis for Camp Creek, False Canyon Creek, and Tributary E (North Creek) receiving environments is based on: (1) the magnitude of exceedance: (2) the number of samples exceeding; and (3) the spatial extent of exceedances.

The magnitude of exceedance was calculated based on exceedance ratios (see Section 2.2.2); and the CCME WQG were used instead of the YK CSR standards when defining the magnitude of exceedance. The CCME WQGs are considered more relevant than the 2002 Schedule 3 aquatic life standard in the YK CSR.

The interpretive framework is as follows:

- Magnitude (based on the 95th percentile concentration exceedance ratio at the worst case station in each receiving environment between 2004 and 2013⁵):
 - o Below Guidelines (Negligible)= the same or lower than screening guidelines
 - Above Guidelines
 - Low = exceedance ratios of 1 to 3
 - Moderate = exceedance ratios of 3 to 10
 - High = exceedance ratios greater than 10
- Spatial Scale:
 - Isolated = exceedances at only 1 station within the receiving environment
 - Limited = exceedances at 2 stations
 - Widespread = exceedances at more than 2 sampling stations
- Frequency of Exceedance:
 - Rare = exceedance rate < 5%
 - Limited = exceedance rate between 5 and 20 %
 - Consistently = exceedance rate > 20%

Ratings are summarized in Table A2-2 by receiving environment. Overall spatial and temporal trends are assessed in Section 2.3.3.2.

⁵The 95th percentile was chosen to for defining the magnitude of the CCME WQG exceedances because of the large dataset.

Magnitude Rating

Camp Creek

- Magnitude Above Benchmarks; Moderate (cadmium, lead, zinc); Low (aluminum, chromium, iron, selenium)
- Spatial Scale Widespread for most COPCs, with increasing concentrations of cadmium, lead, and zinc downstream at MH-11 relative to the upstream comparator station MH-04.
- Frequency Consistently above guidelines

False Canyon Creek

- Magnitude Above Benchmarks; Moderate (Iron, lead); Low (aluminum, chromium, copper, selenium)
- **Spatial Scale Widespread**, with an overall improvement of water quality from MH-13 to MH-16 (see Figure A-7 in Azimuth 2014d).
- Frequency Consistently above guidelines for iron

With the exception of iron, COPCs identified in the False Canyon Creek stations were based on less than 5 exceedances dating back to 2004. The magnitude rating of moderate for iron and lead was based on exceedance ratios of 3 to 5 at the worst case station MH-13.

Tributary E

- Magnitude— Above Benchmarks; Moderate (Aluminum, chromium); Low (copper, iron, lead, selenium)
- Spatial Scale Widespread
- Frequency Consistently above guidelines

Cadmium exceeds only the YK CSR standard, and consistent with the framework outlined above, was not carried forward in the LOE assessment.

Overall Spatial and Temporal Trends

Spatial – Spatial extent of contamination is widespread in Camp Creek (up to MH-11 [2 km downstream] for most COPCs, and up to MH-13 [10 km downstream] for lead).

There appears to be a spatial gradient of higher COPC concentrations in Camp Creek relative to downgradient stations in False Canyon Creek; concentrations increase from MH-04 to MH-11 in Camp Creek, and then decrease from MH-11 in Camp Creek to MH-13, MH-14, and MH-16 in False Canyon Creek. Cadmium and zinc, identified as COPCs in Camp Creek, occur below the screening criteria at the 95th percentile concentration at all of the False Canyon Creek stations (Table A2-2). As discussed in Section 2.2.3, concentrations in False Canyon Creek may be within the range of reference/background concentrations in the area.

Temporal - Concentrations in Camp Creek and False Canyon Creek are expected to follow the seasonal trend observed since 1999; key COPCs (cadmium, lead, and zinc) are typically higher during base-flow (October to April) when surface flow is primarily from groundwater compared to freshet (late May to June) when surface water is primarily from snow melt (SRK 2014d). Overall, there is no evidence of an increasing long-term trend in the concentration of COPCs in Camp Creek (SRK 2014a). Current water quality is considered representative of the likely long-term concentrations at Camp Creek and False Canyon Creek locations, provided the attenuation capacity of the waste rock and soils in contact with the source water on-Site is not exhausted (SRK 2014d).

Concentrations in the Tributary E drainage in the future are expected to remain consistent with current water quality data. The recent loadings assessment report by SRK (2014d) indicates water quality concentrations in Tributary E are expected to remain elevated well into the future. Attenuation experiments using downgradient soils from the Burnick Zone indicate zinc in the loading from the Burnick Portal (MH-22) is precipitating on contact, and the attenuation mechanism will effectively continue for more than 200 years. Attenuation of the metals from the seepage from the North Tailings Dam has not been evaluated, but according to SRK, the load does not affect downgradient surface water quality (SRK 2014d).

Uncertainty About Magnitude

Moderate for Exposure; **High for Effects** – For this LOE we consider uncertainty related to the magnitude of exposure to be moderate. The exposure site dataset is long-term, but the reference dataset is limited. There is also uncertainty about the long-term water quality, as SRK has indicated there is potential for exhaustion of the attenuation capacity of soils downgradient from the MH-25. Uncertainty related to extrapolating this LOE to effects to aquatic receptors is considered high because it does not incorporate any site-specific information on water characteristics or the aquatic receptors themselves. Note, uncertainty related to effects is provided in Table 3–1.

2.3.4. Causality

Causality - Strength of Correlation

Correlation (N/A); **Supporting Evidence (Plausible)** – This LOE is limited to evaluating exposure relative to effects-based benchmarks/standards. Because the standards are effects-based, they provide plausible supporting evidence for potential toxicity. However, because standards are usually derived to be conservative for multiple sites/environments, exceedance of a standard only indicates the possibility for an effect. This LOE does not provide evidence of causality for actual effects.

Uncertainty Related to Causality

High – While the mechanism of action is supported by the data underlying the water standards, this LOE does not incorporate site-specific information on effects to assess strength of relationships/causality.

Table A2-1. Water quality screening results for COPCs identified during in the Problem Formulation for the Sä Dena Hes mine site AERA.

				CCME Chronic WQG									Yukon	CSR aquat	ic life star	ndards			Concentrations (mg/L)				
				Data Sumn	nary		Exce	edance Ra	tio Stats			Data Sumi	mary		Exceed	lance Rat	io Stats			Conc	entrations (mg/L)	
Drainage Area	Station	СОРС	N	N < MDL	N > WQG	Min	Mean	Median	95 th %ile	Max	N	N < MDL	N > WQG	Min	Mean	Median	95 th %ile	Max	Min	Mean	Median	95 th %ile	Max
	CC-1	Cadmium	2	0	0	0.44				0.45	2	0	2	1.6				1.7	0.00008				0.00009
		Cadmium	2	0	1	0.39				1.2	2	0	2	1.2				4.8	0.00006				0.00024
	MH-30	Iron	2	0	2	1.0				1.3	2	0	0						0.31				0.40
<u>.</u> .		Lead	2	0	1	0.12				1.1	2	0	0	0.083				0.83	0.00033				0.0050
Reference	MH-29	Cadmium	2	0	0	0.28	2.22		0.56	0.84	2	0	2	1.3	1.6		2.0	3.6	0.00008	0.00000	0.00010	2 2221	0.00018
		Cadmium	10	7	0	0.049	0.38	0.42	0.56	0.62	10	7	8	0.20	1.6	1.7	2.3	2.6	0.00001	0.00009	0.00010	0.00014	0.00016
	$MH-26^{\dagger}$	Copper	10	4	1	0.15	0.50	0.30	1.4	2.0	10	4	1	0.078	0.26	0.15	0.74	1.1	0.00047	0.0018	0.0010	0.0052	0.0076
		Iron	10	0	4	0.66	0.94	0.96	1.2	1.2	10	0	0	0.010	0.20	0.000	0.00	1.4	0.20	0.28	0.29	0.35	0.36
		Lead	10 3	0	3	0.029	0.27	0.095	1.0	1.4	10	1	1	0.018	0.26	0.088	0.99	1.4	0.00020	0.0016	0.00053	0.0060	0.0085
	PH-1	Cadmium	3	0	3	2.9 1.0	3.0	2.9	3.2	3.2	3 3	0 0	3 3	1.0	13	12	14	14	0.00062	0.00067	0.00069	0.00070	0.00071
		Selenium Aluminum	21	3	2	0.050	0.42	0.23	1.5	1.6 1.9	21	3	0	1.0	1.2	1.1	1.5	1.6	0.0010 0.0050	0.0012	0.0011	0.0015 0.12	0.0016
		Cadmium	45	0	31	0.030	31	1.1	1.5	1342	45	0	44	1.0	131	4.5	6.3	5667	0.0030	0.042	0.023	0.00038	0.19
		Copper	33	7	1	0.20	0.27	0.16	0.43	3.1	33	7	44 1	0.029	0.14	0.086	0.24	1.6	0.00004	0.0078	0.00026	0.00038	0.011
	MH-04	Iron	46	1	1	0.030	0.27	0.10	0.43	1.4	46	1	0	0.023	0.14	0.080	0.24	1.0	0.00020	0.0003	0.00030	0.0017	0.41
	WIII 04	Lead	45	0	5	0.017	18	0.12	3.3	790	45	0	5	0.021	20	0.12	3.3	860	0.0030	0.033	0.00070	0.020	5.2
		Selenium	33	5	1	0.30	0.74	0.80	0.99	1.1	33	5	1	0.30	0.74	0.12	0.99	1.1	0.00013	0.00074	0.00070	0.0010	0.0011
		Zinc	46	12	3	0.30	0.36	0.30	1.1	1.9	46	12	0	0.030	0.14	0.089	0.60	0.93	0.0050	0.00074	0.0080	0.0010	0.057
•	CC-3	Cadmium	1	0	0	0.17	0.50	0.27	1.1	0.78	1	0	1	0.030	0.14	0.003	0.00	2.9	0.0030	0.011	0.0000	0.032	0.00018
•		Cadmium	4	0	2	0.92	1.1	0.98	1.3	1.4	4	0	4	3.7	4.7	4.3	6.0	6.3	0.00022	0.00028	0.00026	0.00036	0.00038
		Lead	10	0	5	0.37	0.53	0.43	0.84	0.90	4	0	1	0.42	0.59	0.45	0.96	1.1	0.0025	0.0035	0.0027	0.0058	0.0063
	MH-05	Selenium	2	0	2	2.5				2.6	2	0	2	2.5				2.6	0.0025				0.0026
		Zinc	4	0	1	0.17	0.70	0.62	1.3	1.4	4	0	0	0.057	0.21	0.16	0.43	0.47	0.0051	0.021	0.019	0.039	0.042
		Cadmium	4	0	1	0.19	0.51	0.32	1.1	1.2	4	0	3	0.92	2.2	1.4	4.6	5.2	0.00006	0.00013	0.00009	0.00028	0.00031
Camp Creek		Iron	4	1	1	0.017	0.39	0.074	1.2	1.4	4	1	0						0.0050	0.12	0.022	0.36	0.42
	MH-28	Lead	4	1	1	0.029	0.32	0.069	0.95	1.1	4	1	1	0.018	0.34	0.060	1.0	1.2	0.00020	0.0021	0.00046	0.0063	0.0073
		Selenium	4	0	1	0.55	0.81	0.76	1.2	1.2	4	0	1	0.55	0.81	0.76	1.2	1.2	0.00055	0.00081	0.00076	0.0012	0.0012
•		Cadmium	10	0	0	0.41	0.65	0.67	0.90	0.97	10	0	10	1.9	2.7	2.8	3.6	3.9	0.00011	0.00016	0.00017	0.00022	0.00024
	MH-27	Lead	10	0	1	0.27	1.4	0.55	5.7	9.6	10	0	1	0.32	1.4	0.56	5.8	9.8	0.0019	0.0086	0.0033	0.035	0.059
	IVIN-27	Selenium	10	0	1	0.54	0.82	0.82	1.0	1.1	10	0	1	0.54	0.82	0.82	1.0	1.1	0.00054	0.00082	0.00082	0.0010	0.0011
		Zinc	10	0	1	0.35	0.60	0.59	0.94	1.1	10	0	0	0.12	0.20	0.20	0.31	0.37	0.011	0.018	0.018	0.028	0.033
•		Aluminum	68	15	6	0.010	0.42	0.20	1.5	4.6	68	15	0						0.0010	0.042	0.020	0.15	0.46
		Cadmium	104	3	31	0.22	5.6	0.74	3.2	479	104	3	104	1.2	29	3.2	15	2500	0.00007	0.0017	0.00019	0.00075	0.15
		Chromium	3	0	1	1.0	1.2	1.0	1.5	1.5	3	0	1	1.0	1.2	1.0	1.5	1.5	0.0010	0.0012	0.0010	0.0015	0.0015
	MH-11	Copper	69	11	3	0.050	0.32	0.23	0.85	2.7	69	11	1	0.022	0.16	0.11	0.38	1.6	0.00020	0.0012	0.00085	0.0034	0.0065
	IVIII-TT	Iron	109	5	8	0.017	0.33	0.16	1.4	2.8	109	5	0			_			0.0050	0.099	0.048	0.42	0.84
		Lead	104	1	28	0.039	5.3	0.35	6.6	426	104	1	25	0.031	3.8	0.34	5.2	271	0.00027	0.037	0.0022	0.046	3.0
		Silver	54	48	2	0.20	0.26	0.20	0.38	2.0	54	48	0						0.00002	0.00003	0.00002	0.00004	0.00020
		Zinc	109	6	27	0.17	1.2	0.50	4.6	11	109	6	6	0.030	0.32	0.13	1.4	2.9	0.0050	0.035	0.015	0.14	0.34
		Aluminum	21	3	1	0.050	0.37	0.28	0.77	1.7	21	3	0						0.0050	0.037	0.028	0.077	0.17
		Cadmium	39	8	4	0.034	3.6	0.27	1.7	120	39	8	22	0.18	19	1.6	7.2	667	0.00001	0.0011	0.00008	0.00028	0.040
		Copper	25	2	2	0.075	0.38	0.28	1.1	1.3	25	2	0	0.033	0.19	0.13	0.55	0.66	0.00030	0.0015	0.0010	0.0043	0.0053
False Canyon Creek	MH-13	Iron	39	0	13	0.027	1.0	0.73	3.1	4.1	39	0	0						0.0080	0.31	0.22	0.93	1.2
		Lead	39	2	2	0.0043	4.9	0.12	4.8	141	39	2	2	0.0050	2.7	0.11	1.2	90	0.00003	0.027	0.00077	0.0069	0.99
		Selenium	25	6	3	0.50	0.76	0.70	1.4	1.7	25	6	3	0.50	0.76	0.70	1.4	1.7	0.00050	0.00076	0.00070	0.0014	0.0017
		Zinc	39	21	1	0.063	0.29	0.20	0.44	1.6	39	21	1	0.021	0.23	0.056	0.14	6.4	0.0019	0.0088	0.0060	0.013	0.048

Table A2-1. Water quality screening results for COPCs identified during in the Problem Formulation for the Sä Dena Hes mine site AERA.

				CCME Chronic WQG									Yukon	CSR aquat	ic life star	ndards			Community of Invall				
				Data Summary		Exceedance Ratio Stats				Data Summary				Exceed	lance Rat	io Stats		Concentrations (mg/L)					
Drainage Area	Station	СОРС	N	N < MDL	N > WQG	Min	Mean	Median	95 th %ile	Max	N	N < MDL	N > WQG	Min	Mean	Median	95 th %ile	Max	Min	Mean	Median	95 th %ile	Max
		Aluminum	21	5	4	0.16	1.1	0.26	2.2	14	21	5	0						0.016	0.11	0.026	0.22	1.4
		Cadmium	39	10	1	0.046	4.5	0.24	0.61	165	39	10	22	0.23	23	1.3	2.9	833	0.00001	0.0014	0.00008	0.00017	0.050
		Chromium	4	1	1	0.10	1.3	1.0	2.7	3.0	4	1	1	0.10	1.3	1.0	2.7	3.0	0.00010	0.0013	0.0010	0.0027	0.0030
	MH-14	Copper	25	5	1	0.075	0.35	0.25	0.84	2.1	25	5	0	0.033	0.16	0.13	0.37	0.92	0.00030	0.0014	0.0010	0.0034	0.0083
		Iron	39	0	15	0.030	1.1	0.93	2.0	9.2	39	0	0						0.0090	0.33	0.28	0.59	2.8
False Canyon Creek		Lead	39	3	1	0.010	3.4	0.10	0.89	126	39	3	2	0.0064	2.2	0.083	0.62	80	0.00007	0.024	0.00061	0.0062	0.88
(con't)		Selenium	25	2	3	0.40	0.82	0.85	1.1	1.1	25	2	3	0.40	0.82	0.85	1.1	1.1	0.00040	0.00082	0.00085	0.0011	0.0011
		Aluminum	17	4	1	0.10	0.54	0.20	1.7	4.7	17	4	0						0.010	0.054	0.020	0.17	0.47
		Cadmium	32	11	1	0.033	2.2	0.18	0.43	65	32	11	14	0.17	11	0.81	1.7	333	0.00001	0.00068	0.00005	0.00010	0.020
	MH-16	Iron	32	0	3	0.29	0.85	0.61	2.8	4.0	32	0	0						0.088	0.26	0.18	0.85	1.2
		Lead	32	4	2	0.0051	0.63	0.051	1.6	14	32	4	2	0.0033	0.42	0.040	1.0	9.1	0.00004	0.0041	0.00034	0.0070	0.10
		Zinc	32	28	1	0.17	0.25	0.17	0.33	1.4	32	28	0	0.030	0.066	0.043	0.11	0.46	0.0050	0.0075	0.0050	0.010	0.041
		Aluminum	73	20	7	0.010	0.86	0.20	4.5	20	73	20	0						0.0010	0.086	0.020	0.45	2.0
		Cadmium	109	18	5	0.049	3.9	0.27	0.80	382	109	18	57	0.20	16	1.1	3.4	1600	0.00001	0.00083	0.00006	0.00017	0.080
		Chromium	7	0	3	0.41	2.9	1.0	8.1	9.0	7	0	3	0.41	2.9	1.0	8.1	9.0	0.00041	0.0029	0.0010	0.0081	0.0090
	MH-08	Copper	75	16	6	0.057	0.43	0.23	1.2	6.0	75	16	2	0.029	0.22	0.12	0.61	3.0	0.00020	0.0015	0.00080	0.0043	0.021
		Iron	114	8	9	0.017	0.43	0.11	1.3	12	114	8	0						0.0050	0.13	0.033	0.38	3.7
		Lead	109	15	6	0.0041	0.59	0.065	1.1	37	109	15	6	0.0032	0.51	0.063	1.1	30	0.00002	0.0031	0.00038	0.0063	0.18
Tributary E		Selenium	72	19	7	0.10	0.74	0.70	1.7	2.0	72	19	7	0.10	0.74	0.70	1.7	2.0	0.00010	0.00074	0.00070	0.0017	0.0020
		Zinc	114	70	4	0.17	0.37	0.20	0.81	4.1	114	70	2	0.056	0.12	0.066	0.27	1.4	0.0050	0.011	0.0060	0.024	0.12
		Cadmium	1	0	0					0.84	1	0	1					3.2					0.00019
	TRIBEWF01	-	1	0	1					2.8	1	0	0										0.85
		Zinc	1	0	1					1.1	1	0	0	0.36	0.36	0.36	0.36	0.36					0.032
	MH-12	Cadmium	2	0	0	0.17				0.37	2	0	1	0.72				1.5	0.00004				0.00008
		Iron	2	0	1	0.089				1.1	2	0	0						0.027				0.32

Notes:

No screening criteria are available for aluminum and iron in the YK CSR Schedule 3 generic numerical water standards.

Concentration data are shown as the maximum if only one data point was available at a given station for a particular COPC. If two data points are available, the minimum value is also presented.

Exceedance ratings are applied to the various stats as:

Low	1 to 3 times the water quality screening criteria
Moderate	3 to 10 times the water quality screening criteri
High	> 10 times the water quality screening criteria

^{*} Data are presented for the Tributary E drainage, but are not discussed in the context of the AERA as outlined in the Problem Formulation (see Section 6.2.2.2 of Volume 1).

¹ The dataset was limited to recent data (2004-2013) with TSS concentrations < 50 mg/L, consistent with the approach used for screening the water quality data for the Problem Formulation (refer to Table 6-3 and Table 6-4 in Volume 1).

Station MH-26 is considered a far-field reference location on Tributary D, which flows into False Canyon Creek downstream from Tributary E.

Table A2-2. Water quality screening summary for the Camp Creek, False Canyon Creek, and Tributary E receiving environments¹.

		Camp Creek	False Canyon Creek	Tributary E		
СОРС	Summary ²	(PH-01, MH-04, CC-3, MH-28A, MH-28, MH- 27, MH-11)	(MH-13, MH-14, MH-16)	(MH-08, MH-12, TRIBEWF01, TRIBEWF02, MH-15)		
	Magnitude ³	Low (MH-11)	Low (MH-14)	Moderate (MH-08)		
Aluminum	Spatial Scale ⁴	Limited (MH-04 and MH-11)	Widespread (All stations)	Isolated (MH-08)		
	Frequency ⁵	Limited (9%)	Limited (10%)	Limited (10%)		
	Magnitude	Moderate (MH-11)	Negligible	Negligible		
Cadmium	Spatial Scale	Widespread (All stations)	Widespread (All stations)	Widespread (MH-08, TRIBEWF01, MH-12)		
	Frequency	Consistently (40%)	Limited (5% CCME)	Limited (4%)		
	Magnitude	Low (MH-11)	Low (MH-14)	Moderate (MH-08)		
Chromium ⁶	Spatial Scale	Isolated (MH-11)	Isolated (MH-14)	Isolated (MH-08)		
	Frequency	Limited (17%)	Limited (15%)	Consistently (33%)		
	Magnitude	Negligible	Low (MH-13)	Low (MH-08)		
Copper	Spatial Scale	Limited (MH-04, MH-11)	Isolated (MH-13, MH-14)	Isolated (MH-08)		
	Frequency	Rare (3%)	Rare (4%)	Rare (4%)		
	Magnitude	Low (MH-11)	Moderate (MH-13)	Low (MH-08)		
Iron	Spatial Scale	Widespread (MH-04, MH-28, MH-11)	Widespread (All stations)	Widespread (MH-08, TRIBEWF01, MH-12)		
	Frequency	Limited (6%)	Consistently (28%)	Limited (9%)		
	Magnitude	Moderate (MH-11)	Moderate (MH-13)	Low (MH-08)		
Lead	Spatial Scale	Widespread (Most stations)	Widespread (All stations)	Isolated (MH-08)		
	Frequency	Consistently (20%)	Rare (4.5%)	Limited (5.2%)		
	Magnitude	Low (MH-28)	Low (MH-13)	Low (MH-08)		
Selenium	Spatial Scale	Widespread (Most stations)	Limited (MH-13, MH-14)	Isolated (MH-08)		
	Frequency	Limited (7%)	Limited (9%)	Limited (9%)		
	Magnitude	Moderate (MH-11)	Negligible	Negligible		
Zinc	Spatial Scale	Widespread (Most stations)	Limited (MH-13, MH-16)	Limited (MH-08, TRIBEWF01)		
	Frequency	Limited (18%)	Rare (1.8%)	Rare (4.1%)		

Notes:

³ Magnitude: COPCs by drainage are highlighted according to the CCME WQGs based on the 95th percentile concentration at the worst case station in each drainage:

Negligible	Not a COPC (i.e. less than the screening criteria)
Low	SQ of 1 to 3
Moderate	SQ of 3 to 10
High	SQ > 10

⁴ Spatial Scale: <u>Isolated</u> = exceedances at only 1 station; <u>Limited</u> = exceedances at 2 stations; <u>Widespread</u> = exceedances at more than 2 stations.

⁶ The majority of the chromium data from 2004 to 2013 had non-detects above the CCME and CSR WQG, and were not included in the screening summary.

¹ Refer to Appendix A Table A2-1 for the screening summary for each monitoring station.

² Summary:

⁵ Frequency of exceedance for all samples within the drainage: <u>Rare</u> = exceedance rate < 5%; <u>Limited</u> = exceedance rate between 5 and 20%; <u>Consistently</u> = exceedance rate > 20%.

3. SEDIMENT CHEMISTRY

3.1. LOE Description

The sediment chemistry LOE compares the available chemistry data against sediment criteria for the protection of aquatic life. The data is evaluated for potential spatial gradients and extent of contamination patterns downstream of the Site.

This LOE is applicable to aquatic plants, invertebrates, fish and amphibians.

3.2. Data Analysis

3.2.1. Overview

The following sediment data were used for this LOE:

- Azimuth collected two sediment samples were collected from near-field locations in Camp Creek, one upstream at station MH-04 and one downstream at MH-27 in 2013.
- A near-field sediment sample program was completed by Azimuth as part of the AERA in June and August 2014; including the following samples (a total of nine stations, see Figure 1–2 of Volume 3 for locations):
 - Six locations were sampled in Camp Creek (upstream to downstream): MH-04, CC-3, MH-28A, MH-27, MH-11 and CC-Confl (the confluence of Camp Creek and False Canyon Creek)
 - Two reference/background locations were sampled, one in Access Creek (MH-29, presumed to be within the mineralized zone of Sä Dena Hes) and another in a tributary of False Canyon Creek (MH-30) downstream from MH-11.
 - One sediment sample (MH-12A) was collected near water quality station MH-12 in North Creek (within Tributary E).
- Routine sediment samples were collected every two years in False Canyon Creek (stations MH-13, MH-16, MH-20, considered far-field) from 1992 to 2014 as part of the Water Licence. Data collected after 2000 was considered sufficient for assessing the sediment quality for the LOE.
 Prior to 2000, only a few analytes were analyzed (arsenic, cadmium, copper, lead, and zinc. The 1992-1998 data is reported in Laberge (2015).
- Laberge also collected a sediment sample at MH-30 (reference) in 2014.

3.2.2. Methods

Collection Methods

Near-field and reference sediments were sampled by Azimuth using a Beckson Pump (Guzzler method) that targets fine sediments from the hyporheic zone of the stream (see Azimuth 2014a for a detailed

description of sediment collection and processing methods for near-field and reference sediments). Sediment was collected from the middle of the stream, away from the edges or bottom of the stream bank to target fine sediment. The Guzzler method is generally used in high-gradient streams where sediment is rarely deposited more than a few mm in thickness and where grab samplers would be ineffective for collection. The Guzzler method gathers a grain size consisting of fine sand or smaller, usually achieving a consistency in grain size and minimizing differences in metals concentrations due to different grain size materials. Sediment samples were analyzed for grain size, total metals (mg/kg dw), pH and organic carbon content (%) by ALS, Burnaby BC.

Far-field sediments in False Canyon Creek were collected by Laberge as part of a routine monitoring program from 1992 to 2014 collection of sediment using a hand trowel. Sediment was collected from near the stream bank, within what appeared to be depositional areas. Several trowel scoops were collected, composited and homogenized before passing through a 100 um sieve. These samples were also analyzed for total metals, but not grain size or TOC. Laberge also collected a sample at MH-30 using the hand trowel method.

To support the AERA, Laberge collected replicate samples from MH-30, MH-11 and the confluence of False Canyon Creek and Camp Creek using both the trowel and Guzzler methods to determine if the two collection methods produce similar chemistry results. Of note is that laboratory analyses for metals are routinely completed on the < 2 mm fraction (sand, silt and clay) for either field collection method as part of standard laboratory procedures. Sediment chemistry results from the trowel and guzzler methods are presented in Table 3-2 of Volume 1A (Azimuth 2015a). The two methods differed slightly in the results, notably for lead and zinc, with concentrations higher in the trowel method than the Guzzler method. This is likely due to different habitats sampled within each station, but without replication, it's unknown whether the results are statistically "different". For the purpose of the AERA, the Guzzler chemistry data collected by Laberge from MH-30, MH-11, and CC-Confl was used in the LOE assessment for consistency with the other near-field stations sampled in June.

Data Handling and Analysis

The Camp Creek, North Creek, and False Canyon Creek sediment chemistry data were tabulated and screened in Microsoft Excel. Plots of the chemistry data were generated using R software. Sediment metals data are compared to the BC Contaminated Sites Regulation (CSR) 'sensitive' (SedQC_{SCS}) and 'typical' (sediment quality (SedQC_{TCS}) criteria as well as the CCME probable effects levels (CCME 2015b).

3.2.3. Results

Sediment chemistry results up to and including 2013 has been previously summarized in: the Data Report (Azimuth 2014a), Volume 1 (Azimuth 2014d); 2014 sediment data is provided in Volume 1A (Azimuth 2015a). Arsenic, cadmium, lead, and zinc were identified as COPCs in both Camp Creek and False Canyon Creek receiving environments based on single-sample exceedances in the updated screening (see Volume 1A).

Sediment data relevant to this LOE (for COPCs identified above) are provided as follows:

- The 2014 near-field sediment chemistry data have not previously been reported, so a high-level summary of the sediment chemistry sampled specifically for the AERA in 2014 is provided below and in Table A3-1 and Figure A3-1.
- Far-field sediment data from False Canyon Creek used in this LOE (2000 to 2014) are summarized in Table A3-2 and shown in Figure A3-2. A narrative discussion of the sediment chemistry data collected in 2014 from False Canyon Creek is provided in the environmental monitoring report completed by Laberge (2015).

2014 Reference Stations (MH-30 and MH-29)

- Conventional Parameters Sediment pH was consistently around 8.0 at all stations (including exposure), with a total organic carbon concentration of 2.7% and 6.6% at MH-29 and MH-30. Sediment grain size at MH-29 was dominated by silt (77%) with a small proportion of sand (14%). MH-30 was 61% sand and 30% silt.
- Metals There were no exceedances of the sediment quality criteria at MH-30, possibly because
 of coarse grain size and/or the watershed south of Sä Dena being relatively less mineralized.
 Metals concentrations in sediments at MH-29 in Access Creek were more similar to concentrations
 in downstream exposure stations, possibly due to similarities in grain size. Arsenic, cadmium,
 lead and zinc exceeded the SedQC_{TCS} at this reference station.

2014 Near-field Stations (Camp Creek and North Creek)

- Conventional Parameters Sediment pH was near 8.0 and TOC ranged from 1.5 to 4%.
 Sediment grain size was dominated by silt/clay (41 78%) at all stations except at MH-11 (77% sand).
- Metals Cadmium, lead and zinc exceeded the SedQC_{TCS} at all Camp Creek stations; arsenic
 exceeded at least the SedQC_{TCS} at all Camp Creek stations. The North Creek station (MH-12A)
 had no exceedances above applicable criteria with the exception of arsenic which exceeded the
 SedQC_{SCS}. Specifically:
 - Arsenic –All Camp Creek stations exceeded at least the SedQC_{SCS}; overall there appears to be a slight decrease in arsenic from upstream (MH-04) to downstream (MH-11).
 - Cadmium Concentrations of cadmium decreased slightly from upstream to downstream on Camp Creek. Cadmium concentration was highest at MH-04, and was lowest at MH-11.
 - Lead and Zinc These two metals have similar spatial patterns of concentrations within and between stations, from up to downstream. Information on the soil geochemistry of the Site indicates that these metals co-occur (Golder 2015b). Lead and zinc concentrations exceeded the SedQC_{TCS} at MH-04, concentrations of these two metals then increase with increasing distance downstream of MH-04 to CC-3 (adjacent to the Reclaim Pond), to reach highest concentrations at MH-28A (just upstream of Portal Creek) and MH-27, just downstream from here (Note that the relative magnitude of difference between lead and zinc

was similar within stations, both from the guzzler samples as well as the trowel-collected samples.

3.3. LOE Attributes

3.3.1. Data Quality

Acceptable – Standard field and laboratory practices and QAQC procedures were applied for collection of sediment chemistry data. Data were then inspected by plotting the data and examining the variability within a station when multiple replicate samples were collected. No samples were excluded based on this assessment. Two different sampling methods have been used to collect sediments - the Guzzler was used in the near-field program whereas the trowel was used for the False Canyon Creek routing monitoring program. Because sampling methods were consistent within a waterbody and also because the comparison of replicate samples using the two methods showed both provided comparable metals chemistry, both methods are considered useful and acceptable for the LOE assessment.

3.3.2. Ecological Relevance

Low – Comparisons of sediment chemistry data to various benchmarks are considered to have low ecological relevance for predicting risks to aquatic receptors for the following reasons: (1) the LOE does not incorporate any site-specific information on effects to receptor communities themselves; (2) sediment deposits in the creeks are limited and are unlikely to be a key exposure media for aquatic receptors (only form a small part of contaminant exposure; (3) both the Guzzler sampling method and laboratory analysis (standard analysis is on the < 2.0 mm fraction) specifically targets the fine sediment fraction often associated with elevated metals concentrations, thus potentially overestimating bulk sediment concentrations.

3.3.3. Magnitude

Magnitude Interpretive Framework

The interpretive framework applied to assess the degree of contamination on a creek-by-creek basis for Camp Creek, False Canyon Creek, and Tributary E (North Creek) receiving environments is based on: (1) the magnitude of exceedance relative to the $SedQC_{SCS}(2)$ the number of samples exceeding; and (3) the spatial extent of exceedances. The interpretive framework as follows:

- Magnitude:
- Below Criteria (Negligible) = the same or lower than screening criteria
- Above Criteria
 - Low = 1 to 3 times above screening criteria
 - Moderate = 3 to 10 times above screening criteria
 - High = Greater than 10 times above screening criteria

- Spatial Scale:
- Isolated = exceedances at only 1 station within the receiving environment
- Limited = exceedances at 2 stations
- Widespread = exceedances at more than 2 sampling stations
 - Frequency of Exceedance:
- Rare = exceedance rate < 5%
- Limited = exceedance rate between 5 and 20 %
- Consistently = exceedance rate > 20%

The magnitude of exceedance was calculated as follows:

- Sediment chemistry data from Camp Creek and North Creek (collected with the Guzzler) is limited
 (2013 and 2014 only), so magnitude ratings are applied to each individual sample (Table A3-1).
 The worst-case magnitude of exceedance at any given station was applied to the entire sediment
 chemistry LOE for Camp Creek and North Creek.
- As there is long-term sediment chemistry data for False Canyon Creek stations (collected by hand trowel), magnitude ratings were applied to the 90th percentile concentration (2000 to 2014) at each False Canyon Creek station. The worst case magnitude of exceedance for a given COPC at the 90th percentile concentration was applied as the LOE rating.

Magnitude Rating

Camp Creek

- Magnitude Moderate (cadmium, lead, zinc), Low (arsenic)
- Spatial Scale Widespread sediment chemistry exceedances
- Frequency Consistently above criteria

False Canyon Creek

- Magnitude Low (arsenic, cadmium, lead, zinc)
- **Spatial Scale Isolated** exceedances at MH-13, with concentrations below screening criteria at MH-16 and MH-20 (Figure A3-2).
- Frequency Consistently above criteria at MH13 for arsenic, cadmium, lead, and zinc.

Tributary E

- Magnitude Low (arsenic)
- Spatial Scale Unknown (only 1 station)
- Frequency Unknown (only 1 sample)

Overall Spatial Trends Relative to Reference

Patterns of metals (Figure A3-1 and A3-2) indicate that arsenic and cadmium concentrations are elevated relative to sediment criteria throughout the Camp Creek watershed, including the reference location downstream at Access Creek (MH-29) and the farthest upstream station MH-04 (e.g., MH-29 has the highest concentrations of arsenic and lead). These data suggest that arsenic and cadmium in sediments may be naturally elevated above BC CSR and the CCME PEL.

Lead and zinc concentrations are somewhat elevated relative to criteria at the near-field reference station in Access Creek, but increase in Camp Creek sediments to reach highest concentrations a few hundred meters downgradient of the Mine Site at MH-28A and MH-27. The concentration pattern of these metals suggests that there has been enrichment of lead and zinc in sediment from groundwater and surface water sources beginning at the Mine Site (CC-3) and increasing downstream of the Tailings Facility at MH-28A and MH-27 and diminishing from MH-11 downstream. The relative contributions via surface water runoff (e.g., roads, disturbed soils) or groundwater is not known. It is possible that inputs from naturally mineralized soils along the flowpath of the stream, may contribute to the spatial gradient of lead and zinc in sediment. Golder's technical analysis of background vs mining-related soil metals concentrations indicated "soil concentrations outside the areas directly impacted by mining can be naturally occurring; they would be related to the natural geological metal dispersion halo surrounding a zinc-lead skarn deposit" (see Golder 2015b [Appendix C of the Volume 2 Addendum]).

Uncertainty About Magnitude

Camp Creek and North Creek – High for Exposure and Effects – A high uncertainty rating for the magnitude of exposure is applied for the near-field sediment data from Camp Creek and North Creek for the following reasons: (1) the limited amount of data available for analysis; and (2) dewatering activities were on-going during the sampling program in 2014 (i.e., the affect dewatering may have had on near-field sediment quality at MH-28A and MH-27 downstream from the Site is unknown).

False Canyon Creek – Low for Exposure; High for Effects – We consider uncertainty related to the magnitude of exposure to be low for the sediment chemistry LOE for False Canyon Creek because of the long-term dataset.

For all receiving environments, uncertainty related to extrapolating this LOE to effects to aquatic receptors is considered high because it does not incorporate any site-specific information on sediment characteristics or the aquatic receptors themselves. Note, uncertainty related to effects is provided in Table 3-1.

3.3.4. Causality

Causality - Strength of Correlation

Correlation (N/A); **Supporting Evidence (Plausible)** – This LOE identifies elevated sediment concentrations relative to effects-based benchmarks/standards. Because the standards are effects-based, they provide plausible supporting evidence for potential toxicity. However, because standards are derived

to be conservative for multiple sites/environments, exceedance of a standard only indicates the *possibility* for an effect.

Uncertainty Related to Causality

High – While the mechanism of action is supported by the data underlying the sediment standards, this LOE does not incorporate site-specific information on effects to assess strength of relationships/causality.

Figure A3-1. Metals concentrations in sediment from near-field stations in Camp Creek and North Creek in 2013 and 2014.

Note: Only metals identified as COPCs for the Camp Creek stations were plotted against the BC CSR (sensitive and typical) and CCME (probable effect level [PEL]) sediment quality guidelines.

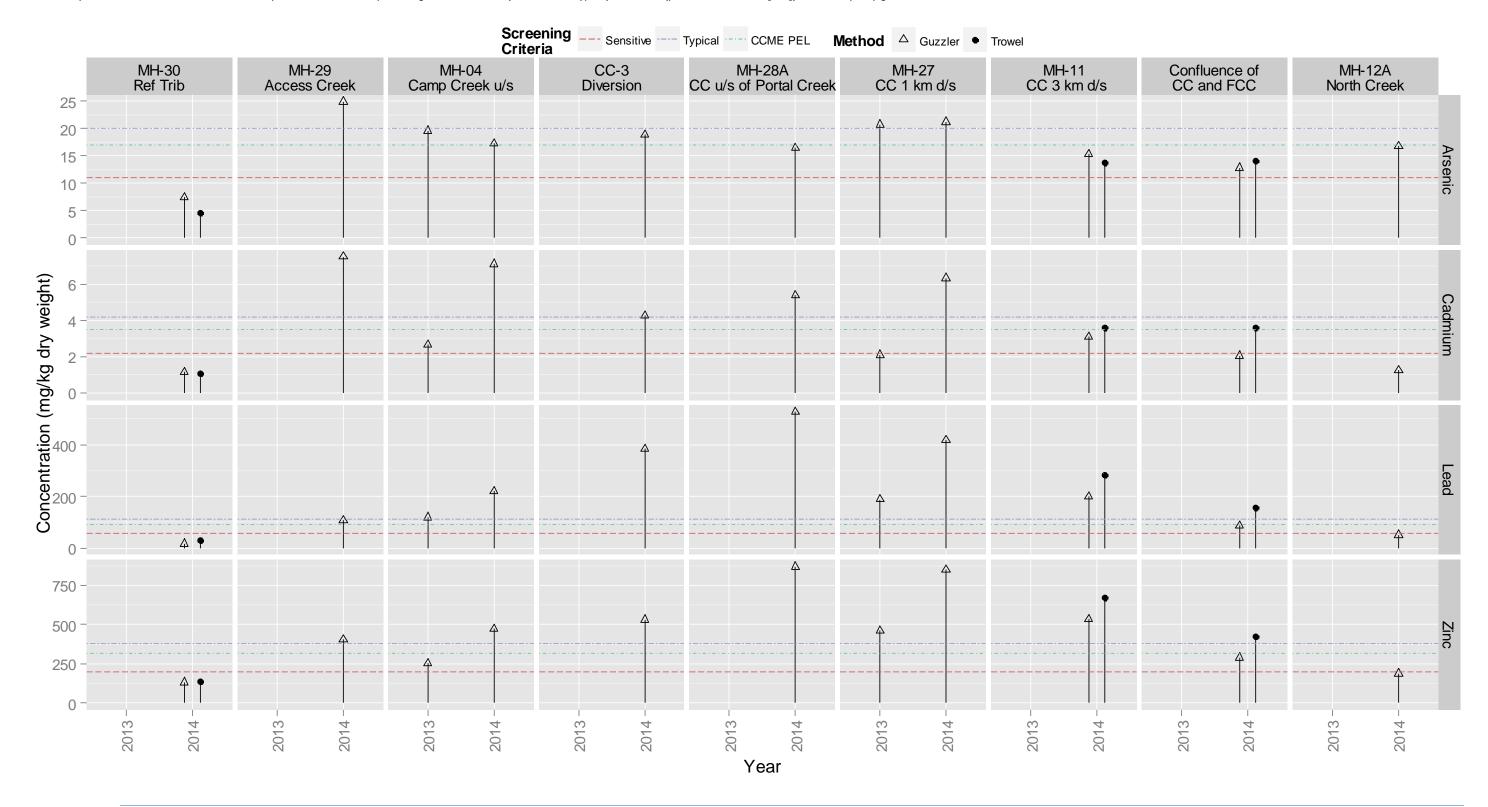


Figure A3-2. Sediment chemistry data for far-field monitoring locations in False Canyon Creek (2000-2014).

Notes: Only metals identified as COPCs for the False Canyon Creek stations were plotted against the BC CSR (sensitive and typical) and CCME (probable effect level [PEL]) sediment quality guidelines.

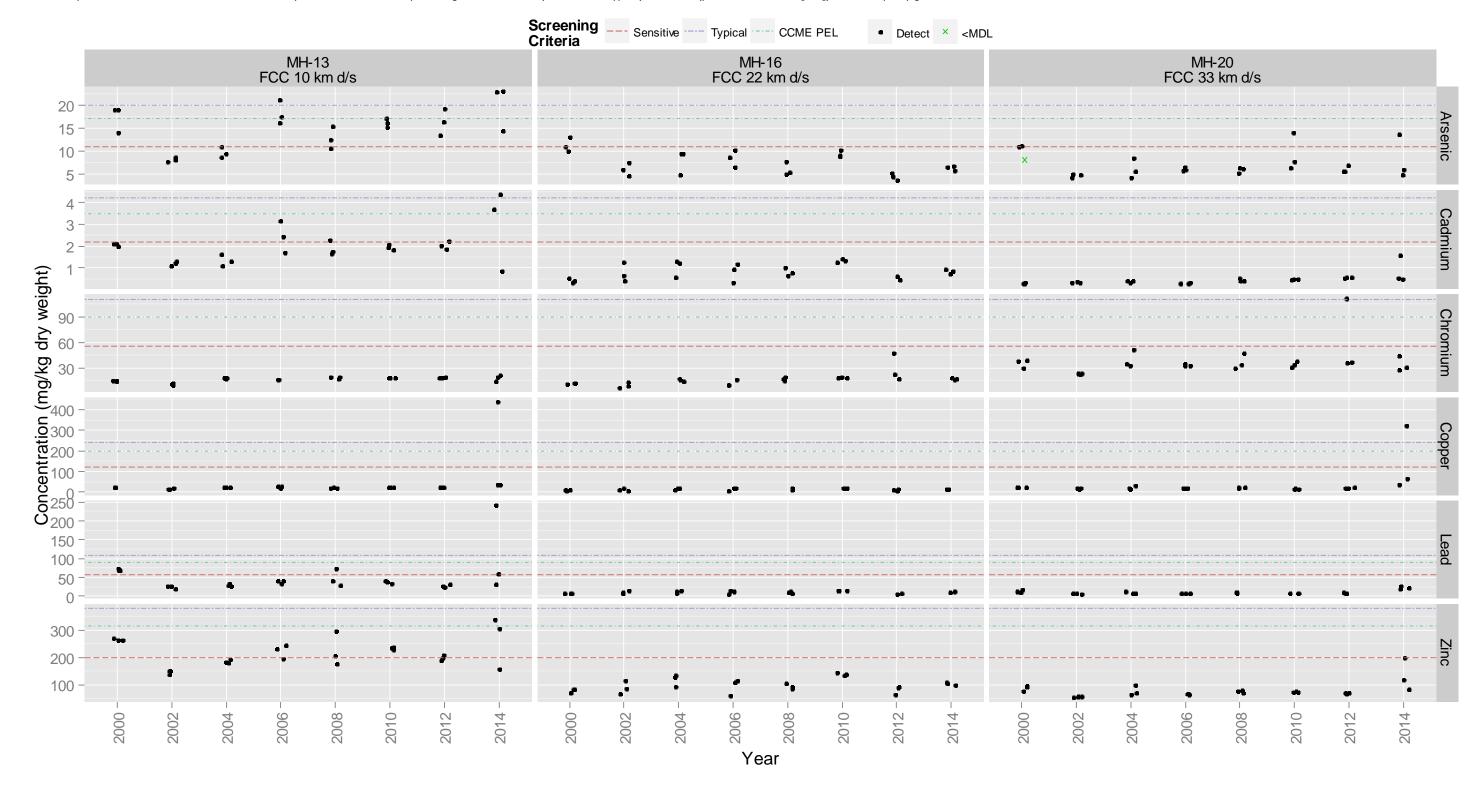


Table A3-1. Metals concentrations in sediment from the near-field monitoring stations in 2013 and 2014.

					Reference		Camp Cre	eek (2013)			Camp Cre	ek (2014)			North Creek
Sample ID / Location Site Code				Unnamed Tributary to FCC MH-30	Access Creek MH-29	Average	Camp Creek Upstream MH-04	Camp Creek u/s from Access Creek MH-27	Camp Creek Upstream MH-04	Camp Creek Diversion CC-3	Camp Creek u/s from Portal Creek MH-28A	Camp Creek u/s from Access Creek MH-27	Camp Creek (2 km d/s) MH-11	Camp Creek u/s from the FCC Confluence CC-Confl	(2014) MH-12A
Ref / Exp	Sedime	ent Screening	Criteria	Reference	Reference	Reference	Exposure	Exposure	Exposure	Exposure	Exposure	Exposure	Exposure	Exposure	Exposure
Date Method	BC (CSR ³ Typical ⁵	CCME ¹ PEL ²	23-Aug-14 Guzzler	25-Jun-14 Guzzler		27-Jun-13 Guzzler	27-Jun-13 Guzzler	- 24-Jun-14 Guzzler	24-Jun-14 Guzzler	25-Jun-14 Guzzler	25-Jun-14 Guzzler	23-Aug-14 Guzzler	23-Aug-14 Guzzler	24-Jun-14 Guzzler
Physical Propertion Moisture	es			47.5									36.7	36.2	
рН				7.6	8.05		8.07	8.24	7.96	8.08	8.09	8.07	8.25	8.27	8.12
Gravel				1.92	<0.10		9.19	15.8	<0.10	<0.10	<0.10	<0.10	2.48	2.58	<0.10
Sand				60.7	14.6		71.6	80.9	46.4	37.8	59	21.3	77.1	77.4	63.8
Silt				33.2	77.4		16.5	2.82	49	52.6	36.6	67.7	18.4	17.3	32.6
Clay				4.2	8		2.66	0.51	4.65	9.61	4.41	11	2	2.71	3.61
TOC				2.67	6.61		1.35	0.24	4.07	2.7	1.65	3.82	1.45	1.36	1.58
Total Metals (mg	/kg dry weight	:)													
Arsenic	11	20	17	7.41	24.9	16.2	19.6	20.7	17.3	18.9	16.5	21.2	15.3	12.8	16.8
Cadmium	2.2	4.2	3.5	1.14	7.51	4.33	2.67	2.1	7.11	4.27	5.38	6.33	3.11	2.05	1.26
Chromium	56	110	90	15.8	32	23.9	22.1	23.0	28.3	25.6	25.3	23.9	18.4	16.2	24.1
Copper	120	240	197	15.8	30.9	23.4	17.9	19.6	25.7	25.1	18.6	23.0	15.4	18.2	16.9
Lead	57	110	91.3	15.7	107	61	119	188	219	384	527	418	200	87	50
Mercury	0.3	0.58	0.486	0.072	0.053	0.063	0.0216	0.0143	<0.050	0.055	<0.050	<0.050	0.0189	0.0363	<0.050
Zinc	200	380	315	132	406	269	252	462	473	530	867	848	533	289	187

Notes:

COPCs by are highlighted according to the magnitude of exceedance of the BC Sensitive Contaminated Site Guideline:

Bold, italics Concentration is **less than** the average reference sediment concentration from MH-29 and MH-30 (Guzzler samples only).

¹ CCME (2014b) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life - Summary Tables.

² PEL - probable effect level.

³ BC MOE (2011) CSR Schedule 9: Generic numerical sediment criteria. BC Reg 375/96. May 31, 2011.

⁴ Sensitive Contaminated Sites Guideline.

⁵ Typical Contaminated Sites Guideline.

Table A3-2. Summary of metals concentrations in sediment from the monitoring stations in False Canyon Creek, 2000-2014¹.

Parameter	CCME ²	вс с	SR ⁴	Reference ⁷	False Canyon Creek Data Summary ⁸								
raiailletei	PEL ³	Sensitive ⁵	Typical ⁶	(MH-30)	N	N > SQG	% > SQG	Min	Mean	90 th %ile	Max		
MH-13 (10 km de	ownstream)												
Arsenic	17.0	11.0	20.0	4.6	24	17	71%	7.7	14.8	20.4	23.0		
Cadmium	3.5	2.2	4.2	1.07	24	5	21%	0.86	2.0	3.0	4.3		
Chromium	90	56	110	18.3	24	0	0%	10.2	16.7	19.2	21.9		
Copper	197	120	240	19.0	24	1	4%	15.4	41.1	32.6	439		
Lead	91.3	57	110	30.8	24	6	25%	18.9	48.5	72	243		
Mercury	0.486	0.3	0.58	0.052	18	0	0%	0.070	0.089	0.10	0.13		
Zinc	315	200	380	139	24	14	58%	139	218	288	338		
MH-16 (22 km d	ownstream)												
Arsenic	17.0	11.0	20.0	4.61	24	2	8%	3.5	7.4	10.2	13.0		
Cadmium	3.5	2.2	4.2	1.070	24	0	0%	0.30	0.82	1.3	1.4		
Chromium	90	56	110	18.3	24	0	0%	7.4	16.6	19.0	47.6		
Copper	197	120	240	19.0	24	0	0%	7.5	14.3	19.9	21.1		
Lead	91.3	57	110	30.8	24	0	0%	6.2	11.1	14.9	15.6		
Mercury	0.486	0.3	0.58	0.052	18	0	0%	0.050	0.062	0.080	0.090		
Zinc	315	200	380	139	24	0	0%	60	100	134	144		
MH-20 (33 km d	ownstream)												
Arsenic	17.0	11.0	20.0	4.6	23	4	17%	4.1	6.9	11.0	14.0		
Cadmium	3.5	2.2	4.2	1.07	24	0	0%	0.27	0.46	0.55	1.6		
Chromium	90	56	110	18.3	24	1	4%	22.4	37.4	46.3	112		
Copper	197	120	240	19.0	24	0	0%	11.5	20.3	23.4	37.2		
Lead	91.3	57	110	30.8	24	0	0%	6.7	11.1	19.0	27.7		
Mercury	0.486	0.3	0.58	0.052	18	0	0%	0.050	0.063	0.074	0.20		
Zinc	315	200	380	139	24	1	4%	55	80	99	200		

Notes

COPCs by are highlighted according to the exceedance of the BC Sensitive Contaminated Site Guideline:

Bold, italics Concentration is *less than* the reference sediment concentration MH-30 (2014 trowel sample).

¹ Sediment collected between 2000 and 2014 by Laberge using a hand trowel. Refer to Table 3-3 in Volume 1A (Azimuth 2015a) for the complete dataset.

² CCME (2014b) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life - Summary Tables.

³ PEL - probable effect level.

⁴ BC MOE (2011) CSR Schedule 9: Generic numerical sediment criteria. BC Reg 375/96. May 31, 2011.

⁵ Sensitive Contaminated Sites Guideline.

⁶ Typical Contaminated Sites Guideline.

⁷ Trowel sample collected at MH-30 in 2014.

⁸ Data Summary:

4. FISH TISSUE CHEMISTRY

4.1. LOE Description

This LOE relies primarily on fish tissue chemistry data collected for slimy sculpin from two sampling areas by Laberge during the August 2014 survey. Historical data from 1992 is presented for comparative purposes, but the results are not integrated into the LOE assessment because of uncertainty regarding the data quality and elevated detection limits for some COPCs⁶.

4.2. Data Analysis

4.2.1. Overview

The 2014 fish tissue component of the AERA was conducted in light of the lack of available information on the level of metals exposure for fish residing downstream from the Site. The intent of the program was to collect replicate fish from the reference location (MH-30) and the nearest exposure station (MH-13) where slimy sculpin have been recorded in previous years. Poor catch success at MH-13 in 2014 meant the exposure location was changed to MH-16 where catch success was higher. MH-30 is considered a reference location for other LOEs of the AERA; however, slimy sculpin collected at MH-30 were captured at or within approximately 100 m of the confluence to False Canyon Creek (CC-Confl), an exposure location. Fish movement between MH-30 and CC-Confl is likely, precluding reference/exposure comparison of metals concentrations for this LOE. As such, CC-Confl / MH-30 and MH-16 are considered to represent near-field and far-field exposure sites, respectively. Data have been organized as follows:

• Near-field Exposure:

 MH-30 (unnamed tributary to False Canyon Creek) and CC-Confl (the confluence of Camp Creek and False Canyon Creek)

• Far-field Exposure:

 MH-16 (on the mainstem of False Canyon Creek, approximately 22 km downstream of the reclaim pond)

Prior to 2014, the only available fish tissue chemistry results were from an August 1992 survey of False Canyon Creek completed by P.A. Harder and Associates. This program captured slimy sculpin from four locations on the mainstem of False Canyon Creek: MH-13, MH-14, MH-19, and MH-20. Arctic grayling and a single round whitefish were also captured from the lower False Canyon Creek at the confluence of the

A-23

⁶ Bonnie Burns (Laberge Environmental Services) provided scanned pages showing the tabulated concentrations of some metals, but maps showing sampling locations, sampling methods, and complete laboratory results were not available for review.

Frances River (Harder, 1992), but for the purpose of the AERA, only the slimy sculpin data from 1992 are shown here given the 2014 tissue chemistry program was limited to this species.

4.2.2. Methods

Collection Methods

Laberge collected fish for lethal sampling using a Smith Route model LR24 battery powered electro-fisher was used for fish capture. Captures were identified and measured for length (± 1mm) and weight (± 0.1gm). Five slimy sculpin from MH-30 and five slimy sculpin from MH-16 were retained for tissue chemistry analysis. Fish retained for chemistry analysis were submitted frozen to ALS Laboratories in Whitehorse. Whole-body metals concentrations were analyzed at the ALS laboratory in Burnaby, BC (refer to Appendix C for the ALS report). Tissues were analyzed by ICP-MS (inductively coupled mass spectrometry) for total metals and reported in dry weight. Percent moisture was reported for each sample to allow conversion to wet weight concentrations.

The methods section in the Harder (1992) report was not available for review, so the fish collection method(s) used in this survey is not known. Metals analysis was carried out using inductively coupled argon plasma (ICAP), and fish were treated as composite whole tissue samples for each location. The ICAP analysis included 33 elements, but only arsenic, cadmium, chromium, copper, lead, manganese, nickel, and zinc were provided in the main report. The full list of results is in an appendix that was not available for review.

Data Handling and Analysis

The fish tissue chemistry data were tabulated and screened in Microsoft Excel. Plots of the chemistry data were generated using R. Tissue metals data are qualitatively compared between near-field and far-field exposure sites. No statistical comparisons were made due to the low sample size. Metal concentrations in near-field samples that were more than two fold above the average far-field sample concentration were bolded, concentrations more than 10 times the maximum far-field sample concentration were shadowed.

4.2.3. Results

Slimy sculpin tissue chemistry data from near-field exposure and far-field exposure samples are presented in Table A4-1 and plotted in Figure A4-1. Fish from near-field and far-field stations had similar weight (2.2 - 15.6 g) and length (7.6 - 11.5 cm) ranges. The moisture content was between 72 and 83% (Table A4-1).

As there are no relevant screening values for tissue chemistry, the assessment focused on the AERA COPCs for water (aluminum, cadmium, chromium, copper, lead, iron, selenium, zinc) and sediment (arsenic, cadmium, lead, zinc). COPC concentrations in fish tissue (with the exception of selenium and copper) tended to be elevated in near-field samples relative to far-field (generally less than 2 times the average far-field concentration). Lead concentrations in three near-field samples were greater than 10-fold higher than the average far-field concentrations.

The 1992 slimy sculpin chemistry data (dry weight) are shown in Table A4-2 alongside the average concentrations for slimy sculpin collected in 2014. The results are shown to allow for a rough comparison of how concentrations in far-field False Canyon Creek stations compare between 1992 and 2014. Conclusions about temporal changes in tissue concentrations should be avoided based on the limited amount of data combined with advances in the analytical methods between 1992 and 2014.

The 1992 tissue chemistry results for aluminum, iron, and selenium were not shown in the main report that was available for review, so it's unknown if the concentrations are similar to those reported for slimy sculpin in the 2014 survey. In the case of arsenic and lead, elevated detection limits in 1992 (10 μ g/g for arsenic and 2 μ g/g for lead) preclude any meaningful comparison of the results. Of the remaining COPCs reported in 1992, concentrations are within the range reported in 2014 for cadmium and copper, and slightly lower than the 2014 concentrations for zinc (Table A4-2).

4.3. LOE Attributes

4.3.1. Data Quality

Acceptable – Data quality of fish tissue data from 2014 is considered acceptable based on standard field and laboratory QA/QC measures that were used. No data quality issues have been identified. The 1992 tissue chemistry data is present for comparison, but the quality of the data is unknown because the full report was not available for review.

4.3.2. Ecological Relevance

Low—Tissue samples collected from the site represent site-specific exposures, but effects are not directly assessed. As a result, this LOE is considered to have low ecological relevance for predicting risks to fish.

4.3.3. Magnitude

Magnitude Interpretive Framework

Degree of contamination ratings for near-field tissue concentrations, relative to far-field, was based generally on the following categories:

- Negligible— similar or lower than far-field concentrations
- Low = less than 2 times above far-field
- Moderate = 2 to 10 times above far-field
- High = Greater than 10 times above far-field

The magnitude of exceedance, but also the frequency of near-field samples exceeding far-field sample concentrations was considered in the degree of contamination ratings.

- Negligible = no samples at least 2 times average far-field
- Low = up to 2 of 5 samples at least 2 times average far-field

- Moderate = 3 of 5 samples times at least 2 times average far-field
- High = 4 or more samples at least 2 times average far-field

Magnitude Rating

The magnitude ratings for near-field exposure when compared to far-field exposure are as follows:

- Magnitude High (lead), Moderate (arsenic, aluminum, cadmium, chromium, iron), Low (copper, selenium, zinc)
- Frequency High (lead), Moderate (cadmium), Low (aluminum, arsenic, chromium, iron),
 Negligible (copper, selenium, zinc)

Uncertainty About Magnitude

High for Exposure and Effects – For this LOE we consider uncertainty related to the magnitude of exposure to be high due to the relatively low number of sample locations and the uncertain movement patterns and spatial exposure for fish (i.e., possibility that fish collected at the near-field exposure site may have been not been exposed to mine influence if they have resided at MH-30 for their entire life history). Uncertainty related to extrapolating this LOE to effects to fish is considered high because it is a measure of exposure only and effects information is not considered.

4.3.4. Causality

Causality - Strength of Correlation

N/A – Causality not assessed.

Uncertainty Related to Causality

N/A – Causality not assessed.

Figure A4-1. Slimy sculpin (Cottus cognatus) tissue chemistry, 2014.

Notes: Near-field refers to the area where Camp Creek, False Canyon Creek and MH-30 (reference) converge. Far-field refers to station MH-16 which is located 22 km downstream of the Site on False Canyon Creek. Green symbol = detection limit (raised in this sample).

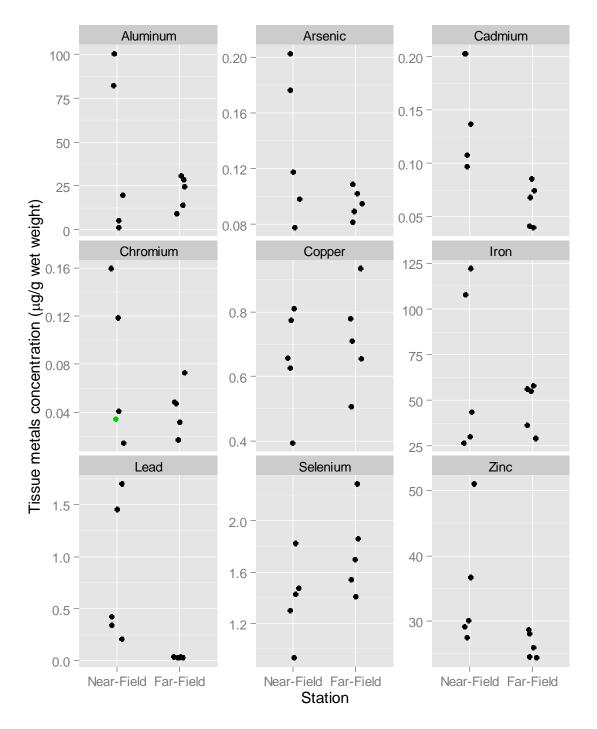


Table A4-1. Whole-body metals concentrations (μg/g wet weight) in slimy sculpin (*Cottus cognatus*) from False Canyon Creek, 2014.

		F	ar-Field Expo	sure (MH-1	6)		Near-Field Exposure (CC-Confl / MH-30)							
Site Code		False Ca	nyon Creek	(22 km dowr	nstream)		Conflu	ence of Cam	p Creek and	False Canyo	n Creek			
Replicate	1	2	3	4	5	Average	1	2	3	4	5			
Weight, Length, and	Moisture													
Weight (g)	15.6	7.1	6.3	4.4	4.8	7.64	12.1	11.8	11.1	6.2	2.2			
Length (cm)	11.5	8.8	8.1	7.6	7.6	8.72	9.8	10.1	9.8	8	6.6			
Moisture (%)	79.2	79.2	77.8	77.4	75.7	77.9	79	76.3	77.6	72.1	82.8			
Total Metals (μg/g w	et weight) ¹													
Aluminum	9.13	24.8	28.6	30.7	14.2	21.5	82.3	5.4	19.9	100.7	1.4			
Arsenic	0.090	0.082	0.103	0.109	0.095	0.096	0.203	0.078	0.118	0.176	0.098			
Cadmium	0.040	0.041	0.085	0.075	0.068	0.062	0.203	0.098	0.108	0.203	0.138			
Chromium	0.017	0.047	0.049	0.073	0.032	0.044	0.119	0.015	0.041	0.160	<0.0344			
Copper	0.508	0.655	0.935	0.780	0.712	0.718	0.811	0.628	0.659	0.776	0.396			
Iron	29.3	55.3	56.4	58.1	36.5	47.1	107.9	30.3	43.9	122.2	27.0			
Lead	0.030	0.037	0.032	0.038	0.041	0.035	1.701	0.214	0.347	1.456	0.427			
Selenium	1.41	2.29	1.70	1.86	1.55	1.762	1.306	1.429	1.481	1.825	0.934			
Zinc	28.1	24.5	26.0	24.4	28.7	26.3	51.0	29.2	27.6	30.1	36.8			

Notes:

¹ Results were reported by ALS as dry weight concentrations. Results were converted to wet weight with the following equation: wet weight concentration = (dry weight concentration) * [1 - (% Moisture/100)]

² Detection limit was raised due to detection of the analyte at comparable levels in the method blank.

< 2 fold > than average far-field

^{2 - 10} fold > than average far-field

> 10 fold average far-field

Table A4-2. Whole-body metals concentrations (μ g/g dry weight) in slimy sculpin (*Cottus cognatus*) from False Canyon Creek, 1992 compared to 2014.

	Environn	nental Assess	ment of Fals	e Canyon		2
Study		Creek, 19	92 Study ¹		2014	I AERA ²
Site Code	MH-13	MH-14	MH-19	MH-20	MH-16	CC-Confl / MH-30
Total Metals (μg/g	dry weight)					
Aluminum ³	-	-	-	-	97.3	175
Arsenic	<10	<10	<10	<10	0.43	0.60
Cadmium	0.4	0.2	0.3	0.4	0.28	0.68
Chromium	3.7	3.9	4.6	4.3	0.20	0.32
Copper	3.6	3.0	3.6	3.5	3.24	2.91
Iron ³	-	-	-	-	214	287
Lead	<2	<2	<2	<2	0.16	3.65
Selenium ³	-	-	-	-	8.01	6.17
Zinc	88.1	85.8	106	93.4	119	162

Notes:

 $^{^{1}}$ 1992 fish tissue concentrations were reported in dry weight by P.A. Harder & Associates Ltd. (1992).

² The 2014 chemistry data are shown in dry weight (average) to allow for comparison with the 1992 data.

 $^{^{3}}$ Results for these metals were contained in an appendix that was not available for review.

5. QUALITATIVE FIELD SURVEY OF AQUATIC PLANTS

5.1. LOE Description

This LOE provides qualitative documentation of presence, and relative composition of the macrophyte community. This LOE does not provide quantitative ratings for effect size and other metrics and is presented as a narrative.

This LOE is used for aquatic plant communities.

5.2. Narrative Summary

Habitat and plant presence information was collected during a site visit in June 2014.

Camp Creek is a moderate to high energy stream with a 2-3 % gradient, moderate flow velocity (>0.5 m/s) and tightly packed, heterogeneous bottom substrate. Upstream areas of the stream are quite typical, with a shallow profile, cobble/gravel substrate and a riparian cover that does not encroach within the stream. Downstream of the Tailings Facility the stream becomes increasingly confined, with near vertical sides of the stream and flat bottom, resembling a U-shaped trench. The stream flows around and between willow roots, suggesting the stream may recently have altered its course.

In Camp Creek and upper False Canyon Creek there appears to be little evidence of in-stream plant community. While riparian vegetation was abundant at all sampling locations, with the exception of North Creek where it was sparse, rooted macrophytes were absent during the June survey. Lack of emergent or submerged macrophytes could be explained by the creek characteristics: shallow profile, moderate velocity, steep gradient in some sections, and limited depositional areas. Additionally, the creek bed path changes from year-to-year in some areas. Early stages of periphyton colonization were observed at some locations (i.e., M-12A in North Creek) in June (early in growing season). No samples were collected for periphyton as the substrate was not suited to the preferred sampling technique. The lower reaches of False Canyon Creek are larger water bodies that likely better supports aguatic growth.

Benthic invertebrates rely on healthy phytoplankton/periphyton communities. The benthic invertebrate community in Camp Creek and upper False Canyon Creek is generally healthy (see Sections 6 and 7) both in richness and abundance) giving possible indication that aquatic plant community is healthy.

6. BENTHIC INVERTEBRATE FIELD SURVEY - NEAR-FIELD STATIONS

6.1. LOE Description

The benthic invertebrate field survey LOE quantitatively compares the total abundance and richness of the benthic invertebrate community, with a focus on sensitive taxa, for assessing the structure and ecological function of the benthic invertebrate community in Camp Creek and Tributary E. The Camp Creek and Tributary E sampling stations are compared to reference stations sampled at the same time. Additionally, any observed effects on benthic invertebrate community were qualitatively compared to water and sediment chemistry patterns to determine if effects are potentially mine related.

This LOE assessment is applicable to the benthic invertebrate community in the Camp Creek and North Creek (Tributary E) receiving environments.

6.2. Data Analysis

6.2.1. Overview

This LOE analyzes the benthic invertebrate community data that was collected from near-field locations (Camp Creek and North Creek) in 2014. Sampling was conducted at stations along length of

The benthic invertebrate field assessment LOEs are reported separately by receiving environment in this Appendix. These LOEs have been separated because the underlying study methods/designs are different, which led to different LOE assessment approaches:

- The near-field program was a one-time study (2014) based on a "CABIN" protocol using a 400 µm mesh kick-net, which incorporated two local reference stations (Section 6).
- The far-field LOE used data from a long-term (1992-2014) monitoring program in False Canyon Creek conducted by
 Laberge, which uses a Surber sampler with a 300 µm mesh net and has a gradient design (upstream with higher exposure versus downstream) (Section 7).
 The intent was to use the metrics and information provided by Laberge for this receiving environment.

Camp Creek, as well as in Portal Creek, North Creek, and two reference areas to assess the overall health of the benthic invertebrate community near the Site. Benthic invertebrate samples were collected from the following locations (see also Table 2-1 and Figure 1-3 in the Volume 3 main report):

Camp Creek

o Camp Creek: MH-04, CC-3, MH-28A, , MH-27, MH-11, CC-Confl

o Portal Creek: MH-28

Tributary E

North Creek: MH-12A

Reference

Access Creek: MH-29

Unknown Tributary to False Canyon Creek: MH-30 (reference)

The program was completed in two sampling events:

- The first sampling event was completed by Azimuth between June 22nd and 27th, 2014. Samples were collected from MH-04 to MH-27 along Camp Creek, MH-28 in Portal Creek, MH-12A in North Creek, and MH-29 in Access Creek.
- The second survey was completed by Laberge at MH-11, MH-30, and CC-Confl between August 23rd and 25th, 2014 at the same time as the benthic invertebrate community sampling program in False Canyon Creek (see Section 7 of this appendix), due to the need for helicopter access at MH-11 and CC-Confl.

The same sampling protocol was used in both the June and August sampling events to allow for qualitative comparison of the benthic invertebrate community data despite the surveys being completed in different seasons.

The sampling station MH-12A receives potential source loading from the North Tailings Dam seep, although SRK has concluded the load is so small that it does not affect downgradient surface water quality (SRK 2014d). Nonetheless, this location can be considered a "worst case" monitoring location for the benthic invertebrate community in Tributary E, as the station is situated closest to the source in an area that is suitable for benthic invertebrate sampling.

6.2.2. Methods

Collection Methods

Benthic invertebrate community samples were collected using travelling kick-net protocol described in (Environment Canada 2012b, Canadian Aquatic Biomonitoring Network [CABIN] protocols) by both Azimuth and Laberge. The method involves walking backwards upstream over a 3 minute period while disturbing the substrate by foot, allowing the current to wash dislodged benthic invertebrates into the kick-net (400 µm mesh). The end of the net is fitted with a cod-end that allows water to flow through, but retain the organisms and debris. Under optimal conditions, the person sampling walks backwards in a zigzag pattern across the width of the stream to integrate benthic invertebrates from various stream microhabitats within the erosional zone (for example, areas around large boulders, riffle, runs, bank overhang) in proportion to their occurrence in a sample reach.

Marginal habitat conditions at some stations led to some modifications to the sampling protocol (see Appendix B for photographs and general habitat descriptions for each station). Sampling locations were preferentially chosen in areas of the reach with riffle/run, and where the depth of water was at least 15 cm (Environment Canada 2012b); however, at MH-28, MH-27, and MH-29, the narrow stream width confined the sampling efforts to defined areas in the creeks. In the event that obstructions were encountered, or the depth of the creek became too shallow, the sampling time was paused and the kicknet was removed from the water column. The timer was restarted once the sampler had relocated and resumed sampling. Heavy amounts of in-stream debris impeded continuous sampling at MH-28, MH-27,

and MH-29, as did the overgrowth of willow at the stations. In the case of MH-28 and MH-29, the suitable habitat for a 3 minute kick sample could not be found. Two minute kick times were used at both locations (see below for a discussion of the data handling).

After the sample was collected, the kick-net was removed from the water column and inspected for benthic invertebrates adhered to the mesh and seams inside of the kick-net. A squirt bottle was used to rinse these organisms to the cod-end, and then into pre-labeled 500 mL plastic containers. A considerable amount of debris (sand, wood, small cobble) was accumulated in the net during sampling at some of the stations. In such cases, the kick-net was periodically emptied into a 20 L bucket before resuming sampling. The bucket swirling method described in Environment Canada (2012b) was used to elutriate the benthic invertebrate from the debris once the kick-time was completed. Benthic invertebrates were poured back into the kick-net and then transferred to the 500 mL container as a way of reducing the volume of debris in the sample. Each sample was preserved using 10% buffered formalin and shipped to Biologica Environmental (Victoria, BC) for taxonomic identification.

Benthic invertebrate samples were processed following the CABIN Laboratory Protocol (Environment Canada, 2012b). Taxonomic identification was completed to the lowest practical level (species where possible). Details of the sorting procedure, identification, and QA measures used by Biologica are provided in Appendix D.

Data Handling and Analysis

Benthic invertebrate taxonomy results from 2014 were compiled into a MS Access database by Biologica. Raw taxonomic data was entered as the total abundance of each taxon at the lowest practical level of identification. In the case of MH-28 and MH-29, only 2 minute kicks were completed, so the taxon abundance was multiplied by 1.5 to standardize all the stations to a 3 minute kick time. Within the database, an exclusion filter was applied to remove specific taxa from the data set. Consistent with CABIN methods (Environment Canada 2012c), this filter was used to remove ostracods, cladocerans, rotifers, copepods, sponges, nematodes, flat worms, vertebrates, and non-aquatic taxa. Filtered raw data were imported to R (v 2.15.2) where the following metrics were calculated for each sample (all are based on a 3 minute kick time):

- Total abundance (number of individuals)
- Richness (total number of different taxonomic groups) by major taxa group (crustacea, diptera, ephemeroptera, plecoptera, trichoptera, and other taxa).
- EPT (ephemeroptera, plecoptera, trichoptera) taxa metrics Abundance and richness of EPT taxa expressed as totals and percentages of each sample. The percentage of each benthic sample comprised of organisms from the EPT taxa is a good indicator of overall benthic invertebrate community health given the sensitivity of these taxa to metals and environmental changes.

Quantitative analysis of the results for the LOE assessment (Section 6.3.3) were made using the reference data paired with exposure stations sampled during the same survey. Near-field exposure stations sampled in June were compared against the MH-29 benthic invertebrate community and MH-11

and CC-Confl sampled in August were compared against the MH-30 benthic invertebrate community. MH-11 was compared to the MH-30 reference due to the timing of the survey; however, MH-29 is also a suitable reference spatially. Due to this ambiguity, MH-11 was compared to both reference stations.

While the CABIN protocol described in Environment Canada 2012b was used for sampling and laboratory methodology, data analyses did not include comparisons to the reference dataset as described in the CABIN protocols.

6.2.3. Results

Plots of the benthic invertebrate community metrics are presented in Figure A6-1 to Figure A6-3. Total abundance and richness is plotted in Figure A6-1 alongside the abundance and richness of the EPT taxa (ephemeroptera, plecoptera, and trichoptera). Figure A6-2 shows the absolute number of individuals (abundance) and taxa (richness) in each sample for the major taxonomic groups. Figure A6-3 shows the relative abundance and richness in each sample. The abundance and richness data are presented in Table A6-1. Discussion of the benthic invertebrate community is presented below in Section 6.3.

6.3. LOE Attributes

6.3.1. Data Quality

Acceptable –Standard procedures were applied to the degree possible to ensure consistency when counting and weighing organisms, including reviewing taxonomy relative to invertebrate guide books and having two staff involved with taking measurements as a QA check. No data quality issues were identified.

6.3.2. Ecological Relevance

High– The field measurements target the assessment endpoint for benthic invertebrates, specifically the structure and ecological function of the invertebrate community.

6.3.3. Magnitude

Approach

The focus of the effects assessment was on changes to the benthic invertebrate community, relative to reference stations sampled in the study, as a result of COPC exposure downstream of the Site rather than differences caused by habitat/physical characteristics.

Effects related to COPCs are expected to manifest as reduced abundance and richness in sensitive EPT taxa (Rosenberg and Resh 1993). A generalized response pattern would include reduced EPT taxa abundance and richness accompanied by increased dipteran (chironomids) taxa abundance and richness with increasing metals. Among the EPT taxa, mayfly larvae (ephemeropterans) are particularly sensitive (Clements et al. 2000; Kiffney and Clements 2003). Reduced benthic invertebrate abundance in the absence of reductions in the number of EPT individuals or EPT taxa was considered evidence in support

of habitat/physical stressors as the probable cause of the observed difference between reference and exposure stations rather than exposure to COPCs in water and/or sediment.

Magnitude Interpretive Framework

Two steps were used to determine derive a magnitude of effect rating; the second step emphasizes changes to the benthic invertebrate community that may be attributable to COPCs:

- 1. Total abundance, richness and EPT metrics (percent EPT abundance and EPT richness) were assessed for each station relative to the appropriate reference location⁷. If no difference (< 10%) in these metrics was observed at the exposure stations, then potential effects were considered negligible for that location.
 - Negligible = No difference (<10%) in total abundance, richness, EPT richness or percent EPT abundance, relative to the reference.

Stations where there was a reduction in one of these metrics relative to reference were carried forward to the second step to determine the magnitude of effects rating.

- 2. In the second step, the community composition metrics (specifically the EPT percent abundance and richness) at the exposure stations relative to reference, were used to determine the magnitude of the effect ratings (regardless of effect sizes based on total abundance and richness) according to:
 - Negligible = Difference (>10%) in total abundance or richness, but no difference (<10%) in EPT richness or percent EPT abundance, relative to the reference.
 - Low = between 10% and 20% reduction in number of EPT taxa or percent EPT abundance relevant to the reference.
 - Moderate = between 20% reduction in number of EPT taxa or percent EPT abundance relevant to the reference.
 - High = greater than 50% reduction in number of EPT taxa or percent EPT abundance relevant to the reference.

⁷The near-field Camp Creek and Portal Creek stations sampled in June (MH-04, CC-3, MH-28A, MH-28, and MH-27) were compared with the reference station MH-29 on Access Creek, while the downstream stations in Camp Creek sampled in August (MH-11, CC-Confl) were compared to MH-30 to account for potential effects of seasonality in the analysis.

Magnitude Rating

Camp Creek

- Magnitude of Effect:
 - Low at MH-04, MH-28, and MH-27
 - Negligible at CC-3, MH-28A, CC-Confl and MH-11 (relative to both references)

A low magnitude of effects rating was applied to MH-04 (upstream Camp Creek) based on slightly lower total richness (11%, Step 1) as well as lower EPT richness and percent EPT abundance relative to the reference area MH-29.

Total abundance was more than 50% lower at MH-28A and MH-27 relative to the abundance at the reference location MH-29 (Table A6-1). Both stations had similar numbers of EPT taxa relative to reference (17 EPT taxa at MH-28A, 19 at MH-27, 18 at MH-29), and Station MH-28A percent EPT abundance was not considered different from reference (negligible effects). A slight reduction in the percent EPT abundance at MH-27 compared to reference resulted in the low risk rating for this station.

There were no differences in total abundance or richness at CC-Confl relative to reference (MH-30). Total abundance was lower at MH-11 relative to reference MH-30 (Step 1); however, there was no difference in EPT richness or percent EPT abundance (Step 2). Comparison of MH-11 to MH-29 would also result in a negligible rating.

The overall effect rating for magnitude in Camp Creek is negligible to low. The farthest downstream Camp Creek station (CC-Confl) had negligible effects, suggesting the potential effects may not extend past MH-27 in Camp Creek.

Tributary E

Magnitude of Effect: Moderate at MH-12A

Total richness at MH-12A was slightly lower at MH-12A relative to the reference MH-29, and the percentage of EPT abundance in the sample was reduced by 21% relative to MH-29 corresponding to a moderate effect rating (20-50%) (Table A6-1). There was also a slight reduction (low effect rating) in the number of EPT taxa at MH-12A (15) compared to MH-29 (18).

Overall Spatial Trends in Camp Creek

In summary, there is no clear spatial trend in reduced richness or abundance related to COPCs over the length of Camp Creek, with effects ranging from negligible to low. Low effects ratings do tend to be concentrated in the upper portion of Camp Creek at MH-04, MH-27 and MH-28 (Table A6-1).

Uncertainty About Magnitude

High – A high level of uncertainty is attached to the magnitude of effect rating in Camp Creek and Tributary E stations. The uncertainty is related to seasonal differences in invertebrate collection; only one year of data, use of different reference stations, dewatering in 2014 done as part of decommissioning

activities and use of the CABIN protocol for sampling methodology but without the use of the CABIN reference dataset.

6.3.4. Causality

In addition to using EPT metrics as a possible signal of effects due to metals contamination, causality was assessed by comparing the magnitude of effects determined above to water and sediment chemistry and water toxicity test information for COPCs at each station where data were available. Magnitude ratings are provided in Table A6-1 based on:

- Water chemistry at each station versus guidelines (Section 2 above)
- Water chemistry at each station versus toxicity benchmarks, i.e., a concentration-response
 relationship developed on a mixture of site/creek water and water effects ratio tests conducted in
 the laboratory using (Section 11 below)
- Sediment chemistry at each station versus guidelines (Section 3 above)

Upstream-to-downstream patterns in the above three LOEs are used to assess the strength of correlation with the benthic invertebrate study results according to the criteria presented in Table 5-3 of the Updated PF (Azimuth 2014e). We note that the 'strength of correlation' analysis is qualitative; statistical analyses were not conducted.

Causality - Strength of Correlation

Camp Creek: Correlation (Weak, Positive); Supporting Evidence (N/A) – There was no obvious association between magnitude of effects and water or sediment quality. Station MH-11 had some of the highest concentrations for lead and zinc, but had negligible effects on benthos while MH12A had moderate effects on benthos but no correspondingly elevated chemistry or toxicity predictions. However, low effects ratings do tend to be concentrated in the upper portion of Camp Creek at MH-04, MH-27 and MH-28. Spatial trends for sediment data (see Section 3.3.3.2) suggest that there has been enrichment of lead and zinc in sediment from groundwater and surface water sources beginning at the Mine Site (CC-3) and increasing downstream of the Tailings Facility at MH-28A and MH-27 and diminishing from MH-11 downstream. It is also possible that inputs from naturally mineralized soils along the flowpath of the stream, may contribute to the spatial gradient of lead and zinc in sediment. Both these factors may contribute to the effects ratings observed at MH-27 and MH28, (although likely not at MH-04); however, dewatering activities in 2014, which coincided with benthic sampling may also be a significant factor.

Tributary E: Correlation (None); **Supporting Evidence (N/A)** – MH-12A had a moderate effect rating primarily due to reduced percent EPT abundance relative to reference.; however, neither water or sediment chemistry data for North Creek are particularly elevated relative to reference or other stations. Metals from the mine site are not considered to be the cause of the moderate effect rating.

Uncertainty About Causality

Moderate –The level of uncertainty about causality is considered moderate for the following reasons: The uncertainty is related to seasonal differences in invertebrate collection; only one year of data, use of different reference stations, dewatering in 2014 done as part of decommissioning activities and use of the CABIN protocol for sampling methodology but without the use of the CABIN reference dataset. Despite these uncertainties, it is not likely that major effects on the benthic community related to the mine were missed.

Figure A6-1. Benthic invertebrate abundance and richness at near-field sampling stations in 2014.

Notes: Abundance measures are for a 3 minute kick-net sample.

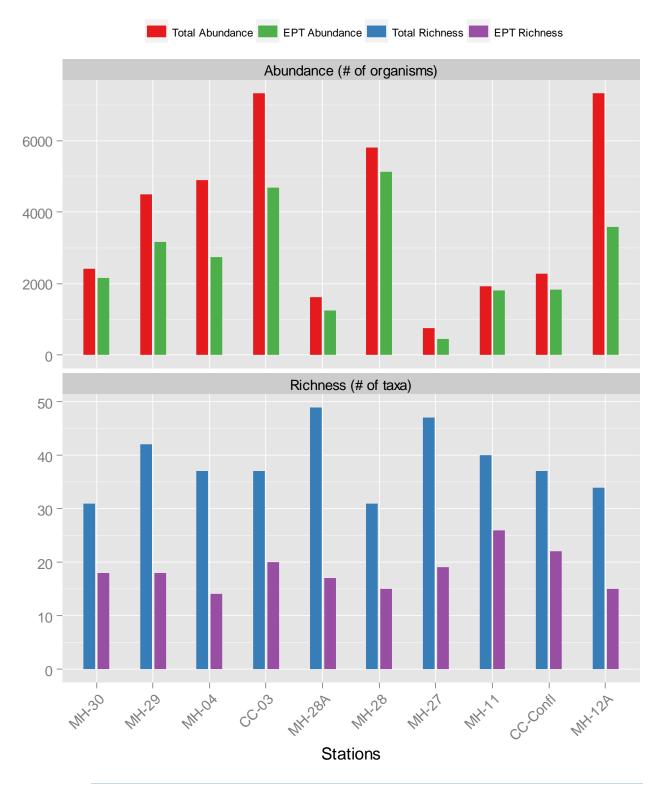


Figure A6-2. Abundance and richness by taxa group for near-field stations sampled in 2014.

Notes: Abundance measures are for a 3 minute kick-net sample.

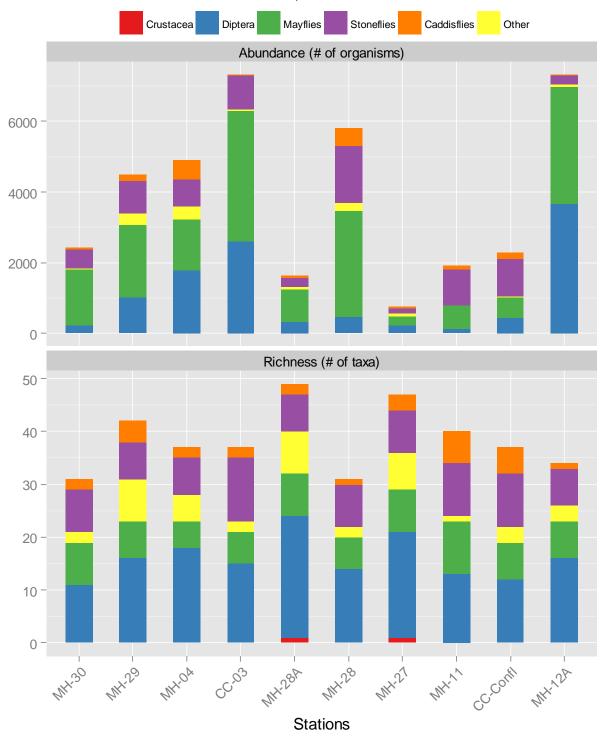


Figure A6-3. Relative abundance and richness by taxa group for near-field stations sampled in 2014.

Notes: Abundance measures are for a 3 minute kick-net sample.

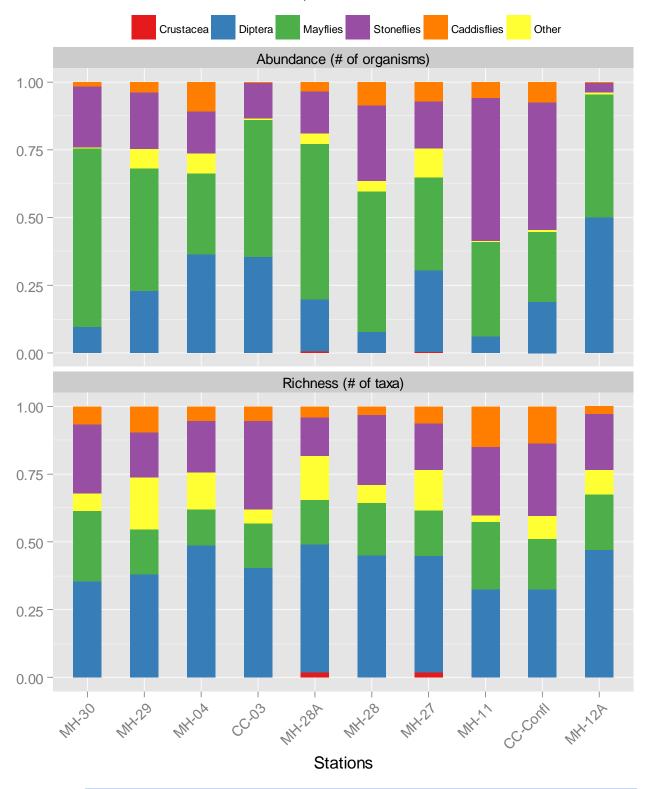


Table A6-1. Benthic invertebrate community effects assessment for the 2014 near-field sampling program.

			August Sampling Event (Laberge)							
	Reference	_		Ехро	osure			Reference	Ехр	osure
	Access Creek	Camp Creek Upstream	Camp Creek Diversion	Camp Creek u/s from Portal Creek	Portal Creek	Camp Creek u/s from Access Creek	North Creek	Unnamed Tributary to FCC	Camp Creek (2 km downstream)	Camp Creek u/s from the Confluence
Metrics ¹	MH-29	MH-04	CC-3	MH-28A	MH-28	MH-27	MH-12A	MH-30	MH-11	CC-Confl
Abundance										
Total Abundance	4500	4895	7328	1628	5814	749	7329	2412	1929	2282
Crustacea	0	0	0	12	0	2	0	0	0	0
Diptera	1032	1788	2604	308	450	227	3672	234	120	432
Ephemeroptera	2040	1452	3696	937	3006	256	3312	1584	672	588
Plecoptera	936	767	956	252	1620	130	249	540	1014	1074
Trichoptera	180	528	24	57	504	54	24	42	117	170
Other taxa organisms	312	360	48	62	234	80	72	12	6	18
Number of EPT organisms	3156	2747	4676	1246	5130	440	3585	2166	1803	1832
Percent EPT Abundance	70.13%	56.12%	63.81%	76.54%	88.24%	58.74%	48.92%	89.80%	93.47%	80.28%
Richness Tatal Diabases	42	27	27	40	24	47	24	24	40	27
Total Richness	42	37	37	49	31	47	34	31	40	37
Crustacea	0	0	0	1	0	1	0	0	0	0
Diptera	16 7	18	15	23	14	20	16 7	11	13	12 7
Ephemeroptera	7	5	6 12	8	6 8	8 8	7	8 8	10	•
Plecoptera	4	2	2	2	0	3	1	2	10 6	10 5
Trichoptera Other Taxa	8	5	2	8	2	3 7	3	2	1	3
Number of EPT Taxa	18	14	20	17	15	19	15	18	26	22
Percent EPT Taxa	42.86%	37.84%	54.05%	34.69%	48.39%	40.43%	44.12%	58.06%	65.00%	59.46%
. 6.66.10 2 6.46	.2.007	57.16.173	5 116575	3 110376	10.0370	101.1070		30.0073	00.0070	331.1670
Overall Effect Rating ²		Low	Negligible	Negligible	Low	Low	Moderate		Negligible	Negligible
Supporting Information for Assessing Ca	usality									
Water Chemistry versus Guidelines ³	No COPCs	Moderate (Pb) Low (Al, Cd, Zn)	No COPCs	No data	Low (Cd, Fe, Se)	Moderate (Pb) Low (Se)	Low (Fe)	Low (Cd, Fe, Pb)	Moderate (Cd, Pb, Zn) Low (Al, Cr, Fe)	No data
Sediment Chemistry versus Guidelines ⁴	Moderate (Cd) Low (As, Pb, Zn)	Moderate (Cr, Pb) Low (Cd, Zn)	Moderate (Pb) Low (Cd, Cr, Zn)	Moderate (Pb, Zn) Low (Cd, Cr, Zn)	No data	Moderate (Pb, Zn) Low (As, Cd)	Low (As)	No COPCs	Moderate (Pb) Low (As, Cd, Zn)	Low (As, Pb, Zn)
Water Chemistry versus Toxicity Tests ⁵	N/A	Negligible / no-effects range	N/A	N/A	N/A	Negligible / no-effects range	Negligible effects	N/A	Low (survival) / High (reproduction) effects	N/A

Notes:

² Overall effect rating (for exposure stations) takes into account the abundance and diversity of sensitive taxa (EPT) at stations where differences in total abundance or total richness were observed.

Negligible effect	<10% reduction relative to refer
Low effect	10-20% reduction to reference
Moderate effect	20-50% reduction to reference
High effect	>50% reduction to reference

Based on Water Chemistry LOE (see Section 2 of the LOE Appendix A; also Azimuth 2014d). A low rating means the concentration (95th%ile or maximum depending on the sample size) is 1-3 fold above guidelines, and moderate is 3-10 fold above guidelines.

N/A = Water chemistry data were not compared to the results in the Toxicity Testing LOE.

¹ Benthic invertebrate metrics for June samples were compared against MH-29, and August samples were compared against MH-30. This was done to account for seasonality.

Abundance measures are standardized to a 3 minute kick time. Richness is expressed as the number of taxa identified at the lowest practical level within each major taxonomic group.

⁴ Based on Sediment Chemistry LOE (see Section 3 of this LOE Appendix A). A low rating means 95%ile concentration is between 1-3 fold above guidelines.

⁵ Based on Water-Based Toxicity Testing LOE (see Section 11 of this LOE Appendix A; also Azimuth 2014d).

7. BENTHIC INVERTEBRATE FIELD SURVEY – FALSE CANYON CREEK

7.1. LOE Description

The benthic invertebrate field survey LOE quantitatively compares total abundance and richness of the benthic invertebrate community, with a focus on sensitive taxa, for assessing the structure and ecological function of the benthic invertebrate community in False Canyon Creek. The False Canyon Creek sampling stations are located along an upstream to downstream gradient, with upstream being closer to the mine site and expected to have higher metals exposure concentrations in water and sediment. Additionally, any observed effects on benthic invertebrate community were qualitatively compared to water and sediment chemistry and habitat conditions to determine whether differences may be mine related, and/or explained by other variables.

As stated in the text box in Section 6, the False Canyon Creek benthic invertebrate LOE is reported separately from Camp Creek because of underlying differences between the programs. Notwithstanding, we do qualitatively compare the 2014 sensitive EPT results in False Canyon Creek (MH-13) to stations in Camp Creek⁸ sampled at the same time (the MH-30 reference station, MH-11 and CC-Confl) to determine any large scale differences.

7.2. Data Analysis

7.2.1. Overview

This LOE relies on field work and data analysis conducted by Laberge Environmental Services (Laberge) and Can-Nic-A-Nick Environmental Sciences (Can-Nic-A-Nick) primarily in the 2012 and 2014 programs (Laberge 2012, 2015, respectively). The report on the 2014 program (Laberge 2015) is included as Appendix E.

Environmental monitoring in False Canyon Creek is conducted every two years (starting in 1992) in compliance with Water Licence QZ99-045, and includes water quality, sediment quality, benthic invertebrate community, and fish community monitoring. Monitoring stations prescribed in the Water Licence include (see also Table 2-1 and Figure 1-3 in the Volume 3 main report):

• MH-13 - is located on the mainstem of False Canyon Creek in a beaver/wetland complex approximately 10 km downstream of the Reclaim Pond (Laberge 2012). Laberge (2015) notes that the water levels here were higher in 2014 than any previous sampling event and the regular

⁸ We note that all Camp Creek stations were included in the sensitive taxa analysis to look at overall trends; however, emphasis was placed on comparing MH-13 results to the MH-30 reference station, and the two nearest Camp Creek stations MH-11 and CC-Confl to determine comparability between the receiving environments (see Section 7.2.3 for details).

sampling area could not be accessed; as such, one small section of running water was sampled for benthic invertebrates in 2014.

- MH-16 is located on the mainstem of False Canyon Creek approximately 22 km downstream of the Reclaim Pond. The channel is moderately well confined and appears stable with wellvegetated banks. This site has changed very little over time since being included as an alternate sampling location for MH-14. Laberge (2015) notes that the water was slightly turbid at this station in 2014.
- MH-18, MH-19 and MH-24 although prescribed in the Water Licence, these stations have never been sampled due to lack of access.
- MH-20 is located on the mainstem of False Canyon Creek, 33 km downstream of the Reclaim Pond and 13 km upstream of the confluence with the Frances River. The physical characteristics of this station have remained unchanged since the monitoring program commenced in 1992, with the exception that several downed trees fell into the stream in 2008 and most of the woody debris had been washed away in 2014. The regular site was inaccessible for helicopter landing in 2014 due to high water; the site was re-located approximately 75 m upstream, which had the same physical characteristics as the original site.

Benthic data were available for MH-13, MH-16 and MH-20, and were therefore used in this LOE.

7.2.2. Methods

Collection Methods and Laboratory Methods

The 2014 environmental monitoring program was conducted on August 23rd and 24th, 2014; all sites were accessed by helicopter. Laberge (2015) describes the field collection and laboratory methods, which have been consistent over the many years of sampling:

"Benthic invertebrates were sampled at three similar locations per site and labeled A, B and C. The samples were collected from an undisturbed, fast flowing, gravel strewn riffle habitat at each of the sites where possible. Collections were made with a Surber sampler (area = 0.0929 m²) which had a 300 ⁹micron mesh net. The bed material within the frame was cleaned and washed by hand, with the fast flowing current carrying the disturbed bottom fauna and detritus into the collection bag. The level of effort for each sample and at each site was comparable. The captured invertebrates and detritus were placed in one-litre Nalgene bottles, preserved in 10% formalin, and shipped to Cordillera Consulting in Summerland, B.C., for sorting, identification and enumeration."

As well, Laberge (2015) reports the following summary on laboratory methods:

⁹ Camp Creek sampling was conducted with a 400 µm mesh kick-net.

"At the lab, all samples were washed through two screens with mesh sizes 1 millimetre and 180 microns. All of the organisms retained by the coarse screen were counted and identified, whereas the organisms on the 180 micron screen were subsampled as necessary. A Folsom plankton splitter was used for the subsampling. The majority of the benthos was identified to the genus level."

Data Handling and Analysis

The following metrics are reported in Laberge (2015) for each sampling station and are used for this LOE:

- Total abundance (number of individuals in all three replicate samples^{10,11}) at the three monitoring locations overtime (1992-2014).
- Richness (reported as 'diversity' in the Laberge report; number of different taxonomic groups identified in all three replicate samples) at the three monitoring locations overtime (1992-2014).
- Total number of "sensitive" EPT taxa at the three monitoring locations overtime (1992-2014) "Sensitive" EPT represent only a portion of the total EPT groups. Specifically, Laberge has identified a total of 19 EPT taxa that are particularly sensitive to, or have a low tolerance for, chemical pollution based on Lehmkuhl, 1979¹². This metric was used specifically for the False Canyon Creek LOE (not Camp Creek) because this metric had been calculated by Laberge for the monitoring program (other more common EPT metrics were only calculated for 2014; see below).
- EPT taxa metrics EPT abundance, richness and the percentage of EPT organisms in the benthic community (based on abundance) at the three monitoring locations in the 2014 program specifically¹³. The Camp Creek benthic LOE also emphasized EPT indices because they provide a good indication of overall benthic invertebrate community health, given their sensitivity to metals and environmental changes.

Analysis of results were based on a gradient design, where the upstream station (MH-13), which is closer to the mine site and expected to have higher concentrations of metals in water and sediment, is compared to the downstream stations (MH-16 and MH-20), which have lower exposure concentrations.

Azimuth has used the benthic invertebrate community data as reported by Laberge (2015), and did not quantify any additional metrics for LOE analysis, with the exception of preparing a table showing the presence/absence of sensitive EPT taxa in False Canyon Creek compared to Camp Creek and reference stations.

¹⁰ A, B and C replicate data are in Appendix C of the Laberge (2015) report (see Appendix E).

¹¹ Density was also reported as number of individuals per m² and followed the same trend as abundance.

¹² Refer to Table A7-2 for further details on taxonomic groups.

¹³ These EPT metrics have not been calculated by Laberge for previous sampling events.

7.2.3. Results

Laberge (2015) provides results of the 2014 program; trends in some of the metrics are provided in Section 4.3.4 of their report (Appendix E). Laberge reports that due to precipitation events prior to sampling in 2014, water levels at all sites in 2014 were somewhat higher than experienced during past surveys. Surface water at MH-13 and MH-20 stations was clear, whereas MH-16 had turbid waters, which may be attributable to surface runoff. Key results are shown in the following:

- Figure A7-1 (below) shows abundance, richness and total number of sensitive EPT taxa over time (based on Table 10 from Laberge, 2015)
- Figure A7-2 (below) shows *average* abundance, richness, sensitive taxa in the three monitoring stations overtime, and EPT richness and EPT percentage of total abundance for 2014 only. These benthic data are also summarized in Table A7-1 along with supporting information to assess LOE attributes (see further description in Section 7.3.3 below).
- Table A7-2 compares presence and absence of the sensitive EPT taxa (Lehmkuhl 1979) in False Canyon Creek stations (particularly MH-13) and Camp Creek stations (particularly MH-11, and CC-Confl, located upstream of MH-13) and a nearby reference station (MH-30). These three comparator stations in Camp Creek were sampled at the same time as the False Canyon Creek stations, also by Laberge, but using the kick-net method (400 µm mesh size) as opposed to the Surber (300 µm mesh size). This was done to allow for comparison with the Camp Creek stations that were sampled in June (Section 6.2.2).
- Figure 7 in Section 4.3.2 of Laberge (2015; Appendix E) shows distributions of the major taxonomic groups at the three stations (results summarized in text below).

We have summarized the findings and overall trends of the Laberge's benthic invertebrate community study, based on Azimuth's interpretation and additional analyses, below¹⁴:

- Total abundance in 2014 and overtime is highest at MH-16 (middle station), closely followed by MH-13 (upstream) and quite a bit lower at MH-20 (downstream).
- Total richness (in 2014 and over time) is highest at MH-16, and slightly lower, but similar, at MH-13 and MH-20.
- Temporal trends in the number of sensitive taxa and EPT indices from 2014 are highest at MH-16 and MH-20 and lowest at MH-13 (Table A7-1). In other words, the sampling stations farthest downstream (MH-16 and MH-20) are dominated by sensitive EPT taxa, compared to the sampling station furthest upstream (MH-13). MH-13 is dominated by crustaceans (i.e., copepods and

¹⁴ We note that this section has more detail than other LOE results sections in this appendix largely because results are not reported or interpreted previously in any of the ERA reports.

- ostracods; seed shrimp), which tend to be more pelagic, preferring ponds and lakes; a large amount of ponded habitat is present at MH-13.
- EPT richness (2014 data) was similar at MH-13 (17 taxonomic groups, Table A7-1) in False Canyon Creek and MH-30 (18; reference), and lower than MH-11 (26) and CC-Confl (22) in Camp Creek (see Table A6-1 for reference and Camp Creek EPT richness). We note that caution should be applied when making this comparison because different sampling methodologies were applied. However, on a gross scale, these data show that MH-13 has comparable EPT richness to the MH-30 reference station. MH-13 did have lower EPT richness than MH-11 (and CC-Confl), but water and sediment chemistry are lower at MH-13 than MH-11, so the difference is unlikely chemistry-related.
- A basic comparison of the presence and absence of 19 total sensitive EPT taxa between MH-13 and MH-11/CC-Confl/MH-30 showed similar results to the EPT richness comparison (Table A7-2). In general, there was agreement or "overlap"¹⁵ in the presence/absence of 17 out of 19 taxa (89%) between the results for MH-13 and the results for at least one of the MH-11/CC-Confl/MH-30 comparator stations. There were only two taxa that were not present at MH-13, but were at the comparator stations (i.e., chlorperlidae and rhyacophilidae); however, both had been found at MH-13 in previous recent programs (2008-2012) and there did not appear to be a site-related upstream to downstream trend in presence/absence. Based on this qualitative evaluation of presence/absence, the only note-worthy results were for:
 - o Rhrithrogena sp. (Heptageniidae) this species was not detected at MH-13 or anywhere upstream in Camp Creek, but was present at MH-16 and MH-20. This group was also not present at MH-13 in recent (2008-2012) programs. However, this species was also not detected in 2014 at the MH-30 (or MH-29) reference stations, so the trend is unlikely site or chemistry-related.
 - Perlodidae this taxon was detected everywhere except MH-28 and MH-11 (water chemistry is highest at MH-11). It is possible but uncertain whether this trend is site-related (taxon is present at stations between MH-28 and MH-11); however, if site-related this trend does not extend to False Canyon Creek as this taxon is present at MH-13, MH-16 and MH-20.
 - Brachycentridiidae this taxon was not detected at MH-13, was present at CC-Confl, but no further upstream in Camp Creek; it was present at MH-16 and MH-20. The group was

¹⁵ "Overlap" was based on a comparison of the presence/absence of a sensitive taxon at MH-13, relative to the presence/absence of this taxon at the Camp Creek (MH-11, and CC-Confl) and reference (MH-30) comparator stations. For example, Ephemerellidae was present at MH-13, as well as MH-11, CC-Confl, MH-30; this is considered an 'overlap'. Chloroperlidae was not present at MH-13, but was at MH-11, CC-Confl and MH-30; these results do not 'overlap'. To overlap, MH-13 results need to match only one of the comparator stations. See Table A7-2 for more details.

detected at MH-13 in 2012. However, this species was also not detected at the MH-30 (or MH-29) reference stations, so the trend is unlikely site or chemistry-related.

In general, there is much more variability overtime in metrics such as abundance and total number of sensitive EPT taxa at the MH-13 station, relative to MH-16 and MH-20. In some years (e.g., 2008) the number of sensitive EPT taxa at MH-13 matches that of MH-16 and MH-20, but in other years (e.g., 2010) this metric is much lower at MH-13 than the downstream stations. We note that water chemistry has been fairly consistent at these stations overtime (Figure A-9 in Azimuth 2014d), so the variability in EPT does not appear related to metals exposure from the Site. Benthic invertebrates have frequently been difficult to sample at MH-13 due to unconfined channels, deep pools, and altered watercourses due to beaver activity (Laberge, 2012 and 2015). The authors attribute the variation in abundance and the number of sensitive taxa across years at MH-13 to fluctuations in the stream habitat characteristics along this reach of the stream and the lack of clean washed gravel with high velocity flow that is considered suitable habitat for EPT taxa. In contrast, the physical characteristics and benthic communities at MH-16 and MH-20 have been stable overtime (Laberge, 2012).

7.3. LOE Attributes

7.3.1. Data Quality

Acceptable – Standard procedures were applied to the degree possible to ensure consistency when counting and weighing organisms, including reviewing taxonomy relative to invertebrate guide books and having two staff involved with taking measurements as a QA check. No data quality issues were identified. There has been consistency overtime with the sampling and laboratory methods for the False Canyon Creek stations (MH-13, MH-16, and MH-20), as well as sampling personnel and analytical laboratory. As mentioned above, caution should be applied when comparing the False Canyon Creek benthic invertebrate community data with samples collected in 2014 from Camp Creek because of differences in collection methods and mesh sizes.

7.3.2. Ecological Relevance

High – The field measurements target the assessment endpoint for benthic invertebrates, specifically the structure and ecological function of the invertebrate community.

7.3.3. Magnitude

Approach

The approach of the effects assessment for False Canyon Creek differed somewhat from the Camp Creek study, because of the gradient design (i.e., the higher exposure upstream was compared to downstream stations, rather than reference). Like the Camp Creek study however, there was a focus on assessing changes to the benthic invertebrate community that may be a result of COPC exposure from the Site, rather than differences caused by habitat/physical characteristics. To this end, emphasis was placed on EPT taxa metrics (see Section 6.3.3).

The benthic invertebrate data described above in Section 7.2.3 were summarized along with supporting information that evaluates causality (water and sediment chemistry, and habitat characteristics) in Table A7-1; and presence of sensitive EPT taxa was compared between False Canyon Creek and Camp Creek in Table A7-2. These two tables were used to complete the LOE analysis of magnitude and causality (Table A7-3).

Magnitude Interpretive Framework

Table A7-3 rates magnitude of potential effects based on three comparisons, as follows:

- Upstream (MH-13) versus downstream (MH-16 and MH-20) trends in total abundance, richness and EPT metrics (number of sensitive EPT taxa, EPT richness and percent EPT abundance). If no difference (< 10%) in these metrics was observed at the upstream station, relative to downstream then potential effects were considered negligible:
 - Negligible = No difference (<10%) in total abundance, richness, EPT richness or percent EPT abundance, relative to the reference.

If there was a reduction in one of these metrics, the next step was used to determine the magnitude of effects rating.

- In the second step, the community composition metrics (specifically sensitive EPT taxa, EPT percent abundance, and EPT richness) were used to determine the magnitude of the effect ratings (regardless of effect sizes based on total abundance and richness) according to:
 - Negligible = Difference (>10%) in total abundance or richness, but no difference (<10%) in number of sensitive EPT taxa, EPT richness or percent EPT abundance at MH-13 relative to MH-16 and MH-20.
 - Low = MH-13 is between 10% and 20% lower in EPT metrics, relative to MH-16 and MH-20.
 - Moderate = MH-13 is between 20% and 50% lower in EPT metrics, relative to MH-16 and MH-20.
 - High = MH-13 is greater than 50% lower in EPT metrics, relative to MH-16 and MH-20.

The third comparison is more qualitative and was used as secondary supporting information for the magnitude rating. The comparison was intended to link results from the False Canyon Creek study to the Camp Creek study using a metrics (EPT richness and sensitive taxa presence) that were considered reasonably comparable between the two studies, which used different sampling methods.

3. Qualitative/semi-quantitative comparison of EPT richness and sensitive EPT taxa presence in MH-13 (False Canyon Creek) to results in Camp Creek, with particular emphasis on MH-30 (reference sampled at the same time as False Canyon Creek) and MH-11 and CC-Confl, (nearest stations to MH-13 in Camp Creek). Ratings were assigned according to:

- Negligible = EPT richness at MH-13 is similar to MH-30/MH-11/CC-Confl; there is good agreement/overlap¹⁶ (≥80%) of presence of sensitive EPT taxa between MH-13 and MH-30/MH-11/CC-Confl.
- Somewhat Different = EPT richness at MH-13 is lower than MH-30/MH-11/CC-Confl; there is moderate overlap (50-80%) in the presence of sensitive EPT taxa between MH-13 and MH-30/MH-11/CC-Confl.
- Different = EPT richness at MH-13 is lower than to MH-30/MH-11/CC-Confl; there is limited overlap (<50%) in the presence of sensitive EPT taxa between MH-13 and MH-30/MH-11/CC-Confl.

The integration of the results from these three comparisons is described in Table A7-3 and below in *Magnitude Rating*.

Magnitude Rating

Moderate – Total abundance and richness of benthic invertebrates are similar or higher at MH-13, relative to MH-16 and MH-20. However, EPT richness/percent abundance and sensitive taxa richness at MH-13 are lower than farther downstream in False Canyon Creek (MH-16 and MH-20); differences were in the moderate and high categories. The pattern for sensitive EPT taxa is based on long-term monitoring data since 1992, although there is some year-to-year variability in results for MH-13. A qualitative comparison between MH-13 and Camp Creek (MH-11/CC-Confl) and the MH-30 reference station, based on EPT richness and presence of sensitive EPT taxa, suggests MH-13 is not impaired relative to Camp Creek or the MH-30 reference. Because of the different methods, and the single sampling event for Camp Creek/MH-30, there is more uncertainty in this comparison. Overall, the various comparisons used to assess magnitude did not provide consistent results. While we recognize the there is some incongruity in the benthic invertebrate study results for False Canyon Creek (possible impairment observed) and Camp Creek (no impairment observed), the overall magnitude of effects for False Canyon Creek (MH-13) was rated as moderate, because there was a definite trend of lower EPT taxa in upstream versus downstream False Canyon Creek, which was given more weight than the more qualitative comparisons to Camp Creek.

Uncertainty About Magnitude

High – Although the False Canyon Creek study has a long-term data set, and the upstream to downstream trends have been fairly consistent overtime, there is high uncertainty in this assessment of magnitude, because (1) an outside reference is not included in the False Canyon Creek study; (2) comparisons to upstream Camp Creek and the MH-30 reference suggested that MH-13 is not impaired but were only qualitative because of the different methods used for sampling (i.e., kick net 'CABIN' protocol in Camp Creek, and Surber method in False Canyon Creek); and (3) effects to the benthic

¹⁶ See footnote 15 and Table A7-2 for more details.

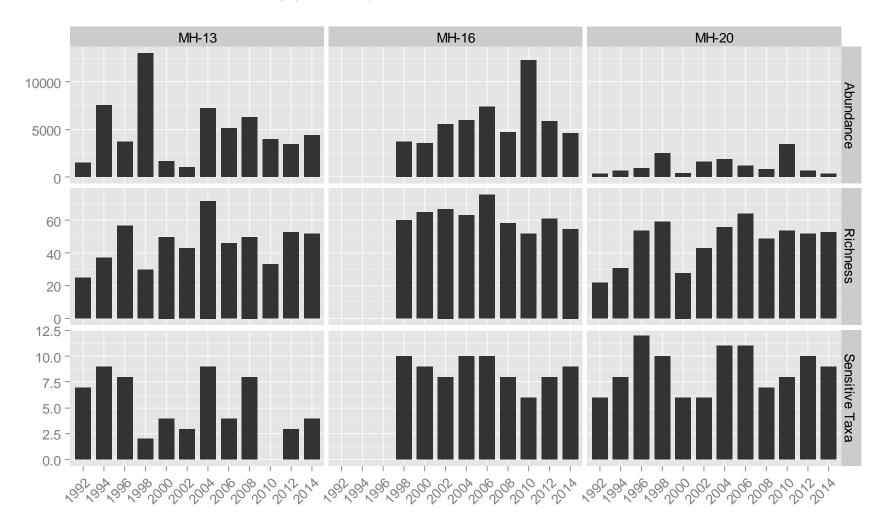
invertebrate community in Camp Creek were considered negligible to low at all stations (see Section 6), therefore effects due to metals further downstream of Camp Creek in False Canyon Creek are unlikely. Overall, there is a high likelihood that with additional data, or stronger comparisons with Camp Creek and/or an outside reference, the magnitude of effects rating for benthic invertebrates in False Canyon Creek, based on MH-13, would be lower (i.e., negligible to low).

7.3.4. Causality

Causality in the False Canyon Creek benthic invertebrate analysis was assessed in the same manner as the Camp Creek study (i.e., using upstream to downstream patterns in water chemistry exceedances, sediment chemistry exceedances and water toxicity information for each False Canyon Creek station; see ratings in Table A7-1 and further explanation in Section 6.3.4 above). In addition, this False Canyon Creek study evaluated differences in habitat characteristics between the three stations that may confound results or explain any trends in benthic invertebrate metrics (as reported by Laberge, 2015). Table A7-3 summarizes causality (strength of correlation) evaluations.

Causality - Strength of Correlation

Correlation (None); Supporting Evidence (N/A) – While there was an upstream to downstream trend in water and sediment chemistry (MH-13 had higher metals concentrations than the downstream stations [MH-16 and MH-20]), comparisons to water toxicity thresholds developed in the AERA suggest that concentrations of metals in water at MH-13 are in the "no-effect" range. Exceedances of guidelines were considered moderate for water and only low for sediment at MH-13; these comparisons were given less weight than comparisons to the toxicity benchmarks. Most importantly, Laberge (2015) document differences in habitat and physical stream characteristics between MH-13 and the downstream stations that are the most likely causes of differences in species composition between the study stations (i.e., lower EPT at MH-13).


Uncertainty About Causality

Moderate – Although the False Canyon Creek study is long-term, and upstream to downstream trends in benthic invertebrate metrics have been consistent overtime and are considered likely the result of habitat differences between MH-13 and the downstream stations (MH-16, MH-20), uncertainty in the assessment of causality is considered moderate, because (1) an outside reference is not included in the False Canyon Creek study; (2) trends in upstream to downstream water and sediment quality exist and could be contributing factors to differences in benthic invertebrate communities. Data enabling stronger comparisons to Camp Creek and/or an outside reference station (see *Uncertainty About Magnitude* above) would reduce uncertainty in assessment of potential risks to benthic invertebrates in False Canyon Creek.

Figure A7-1. Benthic invertebrate abundance, richness, and number of sensitive taxa in False Canyon Creek, 1992-2014.

Note: Abundance (# of organisms) is the sum of three replicates per station. The richness is the total number of taxa identified among the three replicates per station. Sensitive taxa are those with a pollution tolerance score of 0-1.5 according to Lehmkuhl (1979; taxa list adapted from Hilsenhoff [1977]). Sampling was not completed at MH-16 in 1992, 1994, or 1996. The benthic invertebrate data are shown in Laberge (2015; Table 10).

Figure A7-2. Benthic invertebrate metrics in False Canyon Creek monitoring stations, 1998 to 2014¹.

Note: The mean ± 1 standard deviation is shown for abundance, richness, and number of sensitive taxa. Refer to Figure A7-1 for a description of the abundance, richness, and sensitive taxa metrics. % EPT abundance is the proportion of each sample comprised of individuals from the orders ephemeroptera, plecoptera, and trichoptera. ETP richness is the number of taxa belonging to the orders ephemeroptera, plecoptera, and trichoptera (results are presented in Laberge [2015]).

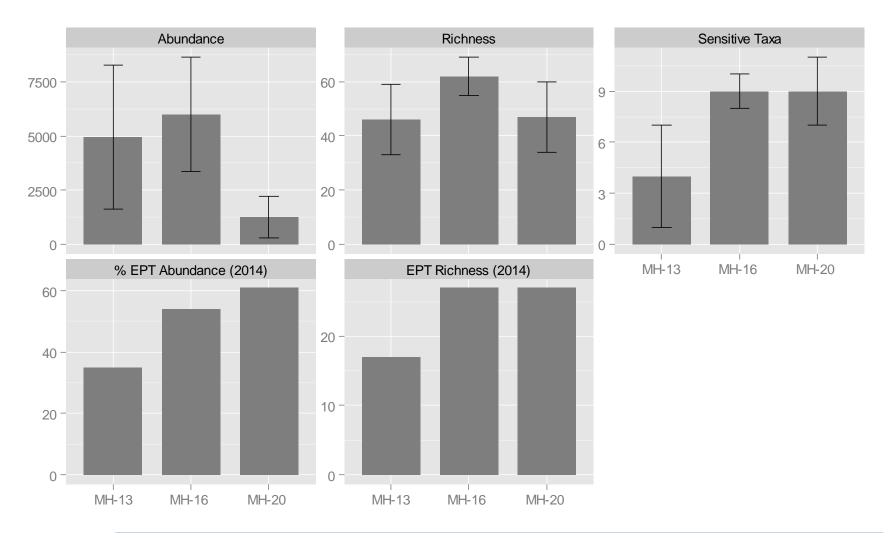


Table A7-1. Average benthic invertebrate metrics and supporting information in False Canyon Creek monitoring stations, 1998 to 2014¹.

	Average	Benthic Invertebra	te Metrics for Sup	porting Magnitud	de		Supporting Information for Assessing Causality					
Station	Total Abundance ² Mean (Stdev)	Richness ³ Mean (Stdev)	Sensitive Taxa ⁴ Mean (Stdev)	EPT Richness ⁵ 2014 only	% EPT ⁶ 2014 only	Water Chemistry versus Guidelines ⁷ 95% Percentile	Water Chemistry versus Toxicity ⁸ 95% Percentile	Sediment Chemistry versus Guidelines ⁹ 95% Percentile	Habitat Characteristics ¹⁰			
MH-13	4,940 (3336)	46 (13)	4 (3)	17	34.7	Moderate (Fe, Pb); Low (Al, Cd, Cr, Se)	Negligible/no-effects range (Figure A11-1, and Table A11-2 and A11-4 this appendix)	Low (As, Cd, Pb, Zn)	- Less conducive to EPT (lack of gravels, sluggish flow, proximity of beaver dams) - Ponded areas preferable for copepods, which wer dominant - Fluctuations in the stream habitat characteristics overtime			
MH-16	5,997 (2639)	62 (7)	9 (1)	27	53.6	Low (Al, Fe, Pb)	Negligible/no-effects range (Figure A11-1, and Table A11-2 and A11-4 this appendix)	Negligible	- Habitat conducive to EPT, dipterans - Stable channel/stream characteristics overtime			
MH-20	1,252 (965)	47 (13)	9 (2)	27	60.6	Negligible (Figure A-9 Azimuth 2014d)	Negligible/ no-effects range (Figure A-9 Azimuth 2014d)	Negligible	- Habitat conducive to EPT, dipterans - High water levels may have created bed scour - Wash out of large in-stream woody debris - Stable stream characteristics overtime			

Notes:

¹ MH-13 and MH-20 were monitored since 1992 (see Appendix E for data); however averages are based on 1998-2014 to be consistent between all three stations.

² Total abundance = the combined abundance (number of organisms) from three replicate surber samples per station; mean and standard deviation of 1998-2014.

³ Total number of taxa in three replicates surber samples per station; mean and standard deviation of 1998-2014.

⁴ Total number of sensitive taxa; based on specific taxa from the orders ephemeroptera, plecoptera, and trichoptera (based on Lehmkuhl [1979], as reported in Laberge [2015]); mean and standard deviation of 1998-2014.

⁵ Total number of EPT taxa, based on 2014 program only (statistics for previous years have not been calculated by Laberge).

⁶ Percent EPT abundance relative to overall benthic community (number of EPT/total number of organisms), based on 2014 program only (statistics for previous years have not been calculated by Laberge).

⁷ Based on Water Chemistry LOE (see Section 2 of the LOE Appendix A; also Azimuth 2014d). A low rating means 95%ile concentration is between 1-3 fold above guidelines, and moderate is 3-10 fold above guidelines.

⁸ Based on Water-Based Toxicity Testing LOE (see Section 11 of this LOE Appendix A; also Azimuth 2014d).

⁹ Based on Sediment Chemistry LOE (see Section 3 of this LOE Appendix A). A low rating means 95%ile concentration is between 1-3 fold above guidelines.

¹⁰ Key habitat and species preference information, as reported in Laberge (2015).

Table A7-2. Presence/absence of sensitive benthic invertebrates from the ephemeroptera, plecoptera, and trichoptera (EPT) taxon groups 1, in Camp Creek (2014) and comparison to recent years (August 2008-2012) data for MH-13 (False Canyon Creek).

							2014 Data							Past Years	Site-related	trends and	MH-13 overlap with Camp Creek (MH-11, CC-Confl) and reference (MH-
			<u> </u>	Creek			REF		Creek	REF		e Canyon (FCC			30)
TAXON¹	MH-04 Jun 2014	MH-12 Jun 2014	MH-27 Jun 2014	MH-28 Jun 2014	MH-28A Jun 2014	CC-03 Jun 2014	MH-29 Jun 2014	CC-Confl Aug 2014	MH-11 Aug 2014	MH-30 Aug 2014	MH-13 Aug 2014	MH-16 Aug 2014	MH-20 Aug 2014	MH-13 2008-2012	Overlap	Trend	Comments
Ephemeroptera								g _v	7 tang 20 1 1	7.4.g _ 0 · · ·	7.mg _0	7.0.g _0	7.mg _ 4.1.				
Ephemerellidae	-	-	+	-	+	-	-	+	+	+	+	+	+	Yes	Yes	No	Present at MH-13, MH-30, MH-11, CC-Confl
Ephemeridae	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Epeorus (Heptageniidae)	-	+	+	-	+	-	+	+	+	-	-	-	+	No	Yes	No	Not present at MH-13, MH-30; present at MH-11, CC-Confl; trend does not appear site-related
Rhrithrogena sp. (Heptageniidae)	-	-	-	-	-	-	-	-	-	-	-	+	+	No	Yes	POSSIBLE but not at reference	- associated with site, but not detected at reference
Paraleptophlebia (Leptophlebiidae)	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Polymitarcidae (Ephoron)	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Plecoptera																	
Capniidae	-	-	-	-	-	-	-	-	+	-	+	+	+	Yes	Yes	No	Present at MH-13, MH-11; not present at CC-Confl, MH-30
Chloroperlidae	+	+	+	+	+	+	+	+	+	+	-	+	+	Yes	<u>NO</u>	No	Not present only at MH-13; present at MH-11, CC-Confl, MH-30; presen in recent years at MH-13; trend does not appear site-related
Leuctridae	+	+	-	+	-	+	+	-	+	-	-	-	-	Yes	Yes	No	Not present at MH-13, MH-30, CC-Confl; present MH-11; more prevaler upstream in Camp Creek; trend does not appear site related
Nemouridae	+	+	+	+	+	+	+	+	+	+	+	+	+	Yes	Yes	No	Present at all stations
Perlidae	-	-	-	-	-	-	-	-	-	-	-	-	-	Yes	Yes	No	Not present at any stations (detected previously at MH-13)
Perlodidae	+	+	+	-	+	+	+	+	-	+	+	+	+	No	Yes	POSSIBLE for MH-11	Present at all stations except MH-28 and MH-11
Pteronarcidae	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Taeniopterygidae	-	-	-	-	-	-	-	-	-	-	-	+	-	Yes	Yes	No	Present at all stations except MH-16; present previously at MH-13
Trichoptera																	
Brachycentridiidae	-	-	-	-	-	-	-	+	-	-	-	+	+	Yes	Yes	POSSIBLE but not at reference	
Helicopsychidae	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Molannidae	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Philopotamidae	-	-	-	-	-	-	-	-	-	-	-	-	-	No	Yes	No	Not present at any stations
Rhyacophilidae	-	+	+	+	+	-	+	+	+	+	-	+	+	Yes	<u>NO</u>	No	Not present at MH-13; present in MH-11, CC-Confl, MH-30; present in recent years at MH-13; trend does not appear site-related
Total # of conciting EDT toys (of 40 (-1-1)	4	•					•	7	7	-	4		•	•	47 -5 40 /000	./\	
Total # of sensitive EPT taxa (of 19 total):	4	6	6	4	6	4	6	7	7	5	4	9	9	9	17 of 19 (89%	/oj	

Notes:

¹ A total of 19 EPT taxa are selected by Laberge as having with a low tolerance to chemical pollution based on Lehmkuhl, 1979. These taxa are those with low scores (0 to 1.5) in Table 4 of the Lehmkuhl reference. EPT taxa in Table 4 with scores of 2 or higher are not included in the "sensitive" group and include Baetidae, Baetiscidae, Caenidae, Stenonoma sp, Heptagenia sp, Leptophlebia sp, Siphlonuridae, Tricorythidae, Hydroptyilidae, Polycentropodidae.

[&]quot;Overlap" was based on a comparison of the presence/absence of a sensitive taxon at MH-13, relative to the presence/absence of this taxon at the Camp Creek (MH-30) comparator stations. For example, Ephemerellidae was present at MH-13, as well as MH-11, CC-Confl, MH-30; this is considered an 'overlap'. Chloroperlidae was not present at MH-13, but was at MH-11, CC-Confl and MH-30; these results do not 'overlap'. To overlap, MH-13 results need to match only one of the comparator stations.

Table A7-3. False Canyon Creek benthic invertebrate LOE - assessment of magnitude and causality.

	Effects A	Assessment		Exposure/Causality Assessment						
Metrics ¹	False Canyon Creek Upstream to Downstream Trends ²	Qualitative Comparison to Camp Creek Benthic Invertebrate Study ⁴	Water Chemistry versus Guidelines and Toxicity Benchmarks ⁵	Sediment Chemistry versus Guidelines ⁶	Habitat and Stream Characteristics ⁷					
Total	Negligible	Negligible	None	Weak, Positive	Explanatory					
Abundance		- Specific metrics are not directly comparable due to different sampling methods;	- There is an upstream to downstream trend in water quality in False Canyon Creek; (MH-13 is highest in metals and was	- There is an upstream to downstream trend in sediment chemistry Sediment chemistry was rated "low" at	 Differences in habitat between MH-13 and the downstream stations (MH-16 and MH- 20) can explain differences in benthic 					
Richness	Negligible	- EPT richness was similar at MH-13 and MH- 30 (reference), slightly lower than MH- 11/CC-Confl (but MH-13 has lower metals concentrations than MH-11);	•	MH-13, based on exceedances of 1-3 fold above guidelines.	invertebrate communities and composition, and are considered the likely explanatory variable (not metals), based on Laberge (2015).					
Sensitive	High (MH-13 is 53% lower than MH-16 and	- There was 89% overlap in presence of EPT	water, water concentrations of metals are							
Taxa	MH-20)	sensitive taxa between MH-13 and MH- 11/CC-Confl/MH-11; overall trends in presence/absence did not appear site-	in the "no-effect/negligible" range, and are not expected to cause effects to invertebrates in False Canyon Creek.							
EPT Richness	Moderate (MH-13 is 37% lower than MH- 16/20)	related; - Effects to the benthic invertebrate community in Camp Creek were considered negligible to low at all stations (therefore	, , , , , , , , , , , , , , , , , , , ,							
% EPT Abundance	Moderate (MH-13 is 22% lower than MH- 16/20)	effects due to metals in False Canyon Creek are considered unlikely)								
Overall Rating	EPT/sensitive taxa metrics are lower at Canyon Creek. Comparisons to the Camp relative to the reference station, but this	high uncertainty) MH-13 than downstream stations in False Creek study suggest MH-13 is not impaired scomparison was qualitative and given less ghting.	None (with moderate uncertainty) While there was an upstream to downstream trend in water and sediment chemistry (MH-13 had higher metals than downstream), comparisons to water toxicity thresholds developed in the AERA suggest that concentrations are in the "no-effect" range. Sediment exceedances were slightly above guidelines. Most importantly, Laberge (2015) document differences in habitat and physical stream characteristics between MH-13 and the downstream stations that are the most likely causes of differences in species composition between the study stations (i.e., lower EPT at MH-13).							

Notes

¹ See Table A7-1 for explanation of metrics.

 $^{^{\}rm 2}$ MH-13 (upstream) versus the average of MH-16 and MH-20 (downstream).

³ Based on Laberge, 2015.

⁴ See LOE Appendix Section 6; emphasis is placed on comparisons of EPT richness and presence of sensitive EPT taxa in MH-13 to MH-11 (nearest station in Camp Creek), and MH-30 (nearby reference station). Both of these stations (MH-11 and MH-30) were sampled at the same time as False Canyon Creek, but the comparison is qualitative due to differences in sampling protocols in Camp Creek and False Canyon Creek (see text for details).

⁵ Based on Water Chemistry LOE (see Section 2) and Water-Based Toxicity Testing LOE (see Section 11); summarized in Table A7-1.

⁶ Based on Sediment Chemistry LOE (see Section 3 of this LOE Appendix A). A low rating means 95%ile concentration is between 1-3 fold above guidelines.

⁷ See Table A7-1 for key habitat and species preference information, as reported in Laberge (2015).

8. FISH POPULATION SURVEY

8.1. LOE Description

Comparison of total and relative abundance of fish species collected from stations in Camp Creek, North Creek, and False Canyon Creek. This LOE is presented as a narrative and does not provide quantitative ratings for effect size and other metrics.

8.2. Narrative Summary

8.2.1. Overview

This LOE relies on the following data:

- Fish community surveys conducted by Azimuth in Camp Creek between stations MH-04 and MH-27 in late June 2014.
- Fish community surveys conducted by Laberge in the lower reaches of Camp Creek at MH-11 and False Canyon Creek at MH-13, MH-16, MH-20, and MH-30 in late August 2014.
- Historical fish community data collected at MH-13, MH-16, and MH-20 are assessed biennially by Laberge as a component of the routine monitoring program.
- Baseline fish presence/absence data from the Mt. Hundere Project IEE (SRK 1990). Spring and fall surveys were completed to assess the distribution and abundance of fish species in watercourses in the region surrounding the Site. Stations in close proximity to the AERA and Laberge monitoring stations were singled out for comparison.

While MH-29 and MH-30 are considered reference stations for exposure variables (water, sediment), they are not considered reference locations for fish populations. These stations are in close proximity to exposure locations and fish movement between these two areas cannot be discounted.

This LOE is considered qualitative and provides information on presence/absence of fish at the various sampling locations from upstream Camp Creek to downstream False Canyon Creek. General information on abundance at each area is provided but with variability in catch effort and timing, direct quantitative comparisons are not appropriate. Fish community characterized in previous years is used to assess temporal variability at some stations as part of routine monitoring.

8.2.2. Methods

Collection Methods

AERA / Monitoring Programs

A Smith Route model LR24 battery powered electro-fisher was the primary method used for determining fish presence. Shocking time (seconds) and settings used to collect fish were recorded for each sampling

Site. Angling (fishing rod with small spinner), G-minnow trapping (baited overnight), and seining (1.5 x 7 m seine net with 6.3 mm mesh size set in shallow water) were also employed as fish capture methods by Laberge at the far-field stations in False Canyon Creek (MH-13, MH-16, and MH-20) with limited success. Fishing method and effort are provided in Table A8-1. Suitable habitat was not identified at Access Creek (MH-29) and Portal Creek (MH-28) during the June 2014 survey by Azimuth, and as such, these stations were not shocked.

Captures were identified and measured for length (± 1mm) and weight (± 0.1gm). Weight was determined using an Ohaus Scout II digital scale. All fish were live released at site of capture except for five slimy sculpin from MH-30 and five slimy sculpin from MH-16, which were retained for tissue chemistry analysis. Fish tissue chemistry falls under a separate LOE and is presented in Section 4.

Baseline IEE (1989)

The spring fish population survey was completed June 27th to 29th, and focused on the distribution and abundance of recently emerged spring spawners (i.e., Arctic grayling). Fall sampling was completed in early September and focused on the location of fall spawning species (Dolly varden and whitefish). Sampling was done over approximately 50 m of stream reach at each station using a gas powered electroshocker. Fish were enumerated and identified in the field prior to release. The sampling efforts and catch results for each location are shown in Tables 2.19 and 2.20 of Volume IV of the IEE (SRK, 1990).

Of the stations sampled in the baseline survey, E4, E5, D4, and C1 were singled out for comparison with the current (2014) and long-term fish population data (from Laberge) based on their proximity to existing monitoring locations. According to the map provided in Volume IV (see Figure 2.18; SRK, 1990), station E4 corresponds to MH-04 on Camp Creek, E5 is near MH-13 on False Canyon Creek, D4 is near MH-16, and C1 is in the vicinity of MH-20.

Habitat Descriptions

Habitat was characterized at all near-field stations where fish populations were assessed in 2014. Habitat descriptions with site pictures can be viewed in **Appendix B** of the main report. Information on the habitat of the far-field False Canyon Creek station sampled by Laberge is contained in the various monitoring program reports (refer to Laberge 2008, 2010, 2012, and 2014 for more information). Lastly, habitat descriptions of False Canyon Creek and some tributaries were provided in Volume IV (Biophysical Evaluation of the Project Site) of the IEE (SRK, 1990). The available habitat information was used to provide context to the fish catch results, particularly in instances where no fish were captured.

8.2.3. Results

Catch results for the 2014 surveys (June and August) are presented in Table A8-1. Long-term average catch results for 1992 – 2012 compared to the 2014 and baseline IEE surveys are shown in Table A8-2.

Baseline Data (Initial Environmental Evaluation, 1989)

No fish were captured from E4 (upper Camp Creek) and E5 (~MH-13 on False Canyon Creek) in the June and September surveys. Overall, baseline fish catch results for slimy sculpin are lower relative to the average catch results from the long-term monitoring data collected by Laberge (Table A8-2). At MH-13 for example, the long-term average catch of slimy sculpin is 21.7 fish while the baseline survey catch of slimy sculpin at approximately the same location (E5) was 0 in the spring and fall surveys in 1989. Arctic grayling were prevalent in the lower reaches of False Canyon Creek, primarily in backwaters and eddies during the June survey, but upstream of MH-20 the catch was lower, with some small schools observed feeding at D4 (~MH-16). The catch/observation data for Arctic Grayling in the baseline IEE is similar to the long-term fish community data from Laberge dating back to 1992 (see Laberge 2015).

Fish catch in Tributary E during the IEE was limited to slimy sculpin in the June and September 1989 surveys. Five locations were sampled, two on the East Fork (E1 and E2), two on the West Fork (D1 and D2), and one the mainstem (D3) of Tributary E downstream from where the two branches join. No fish were captured on either of the West Fork stations in June or September, but slimy sculpin were captured from both stations on the East Fork in June and September. E1, the farthest upstream location, is situated in the area of the water quality station MH-12 based on the map provided in the SRK report (SRK 1990). Arctic grayling and sculpin were captured on the mainstem of Tributary E.

Azimuth June 2014 Survey - Camp Creek and North Creek

No fish were captured in the June survey conducted by Azimuth in Camp Creek or in North Creek at MH-12A. The absence of catch in Camp Creek is attributed mainly to habitat. As mentioned in the IEE, the upper reach of False Canyon Creek is characterized by meandering shallow glides and riffles, with relatively few pools of sufficient depth to provide cover (SRK, 1990). There are also numerous barriers to fish migration in False Canyon Creek, particularly near MH-13 (Laberge 2008). These observations are consistent with the habitat observed at location in upper and lower Camp Creek in 2014.

Slimy sculpin are known to rely on unembedded cobble and the surrounding interstitial spaces for cover (survival) and nesting sites (reproduction) (Edwards and Cunjak, 2007; Arciszewski et al., 2010). Unembedded cobble habitat was not observed at any of the stations in upper or lower Camp Creek. Furthermore, the downstream reach of Camp Creek (MH-28A to MH-27) is situated within a flat valley bottom and it appears that the stream is vulnerable to migration and streambed scour, a factor that can negatively affect the distribution and abundance of slimy sculpin (Edwards and Cunjak, 2007). The absence of slimy sculpin from Camp Creek in 2014 is consistent with the habitat preference of this species.

Artic Grayling are not expected to reside in Camp Creek, based on the IEE (SRK 1990) and long-term monitoring (Laberge 2015).

Laberge Survey Data - False Canyon Creek

Results from the August 2014 program at MH-13, MH-16 and MH-20 were generally consistent with previous monitoring programs at these locations (see Laberge 2014 for more information). Fish density was low at these three stations, as follows:

- Only four species were captured, including slimy sculpin, artic grayling, burbot and whitefish.
- Slimy sculpin were the dominant species present at all sampling locations. MH-13 only had one sculpin captured (and no other species) indicating extremely low densities at this site, and is lower than catch in recent years. Sculpin catch at MH-16 and MH-20 was similar to the historical average for these locations.
- Arctic grayling were caught at MH-16 and MH-20 by angling and electrofishing. Only one
 individual was caught per site by angling but numerous "strikes" were recorded.
- Two burbot were caught at MH-16, a species that has been documented in low numbers at MH-16 and MH-20 historically.
- Six whitefish were caught at MH-20, a higher density than in past years at this station.

Water levels at MH-13 were higher in 2014 compared to any of the previous surveys, and the ponds where the fisheries assessments have previously been completed were deeper and larger (Laberge 2015). In contrast to 2014, water levels in 2008 were noted as being "abnormally low" relative to previous years, which according to the authors, contributed to the capture of large numbers of sculpin (see Section 4.4.2 of Laberge [2015]). It's apparent that year-over-year changes in water levels at MH-13 are an important determinant of the sculpin catch. By comparison, sculpin catch was higher at MH-16 (13 fish) and MH-20 (11 fish) compared to MH-13, and near historic averages. Water levels at both locations were also noted as being higher in 2014 relative to previous years, but these areas of False Canyon Creek have more optimal habitat for fish colonization (i.e., good cover in the form of deep pools, overhanging vegetation, and accumulations of woody debris [Laberge 2015]). Overall, fish distribution and catch comparisons sampled in 2014 generally indicate little to no change in the dominant fish types or their relative abundance when compared to historic surveys.

MH-30/CC-Confl and MH-11 were sampled by Laberge for fish for the first time in 2014. Five slimy sculpin were caught by electroshocker at MH-30¹⁷. No other species were caught and no other capture methods were employed at this site. MH-30 is the furthest upstream station to be confirmed as fish-bearing. No fish were captured at MH-11. The habitat at MH-11 is similar to the stations sampled by Azimuth in June 2014 where no sculpin were observed (Appendix B; Photos 13 and 14). Poor habitat quality for slimy sculpin is likely the reason for the absence of fish at this location.

¹⁷As discussed in Section 4, some fish caught at MH-30 were captured closer to the confluence of Camp Creek and False Canyon Creek (station CC-Confl).

8.2.4. Summary

Camp Creek and North Creek – The upper reaches of Camp Creek and North Creek do not appear to be fish-bearing, as there was no catch during the 2014 survey. The baseline IEE survey in 1989 also failed to document fish presence in upper Camp Creek, likely due to lack of suitable habitat. Station MH-30/CC-Confl (start of False Canyon Creek) appears to be the furthest upstream fish-bearing site. Fish were document downstream in Tributary E during the baseline survey, but there are no operation fisheries data available for comparison.

False Canyon Creek – Several fish species are present in False Canyon Creek. While the absolute number of captured fish varies from year to year, the species composition continues to be consistent and indicative of a stable fish community. Low density populations of slimy sculpin are supported at all sites as far upstream on False Canyon Creek as MH-30/CC-Confl.

This LOE is included qualitatively in the WOE risk characterization (see Table 3-2 and Section 3.1.3 in the Main Report).

Table A8-1. Fish catch data for the 2014 program in Camp Creek and False Canyon Creek.

					C	atch			Total Catch per
	Site	Method ¹	Effort	Arctic Grayling	Burbot	Slimy Sculpin	Whitefish	Observations ²	Station
	MH-04	Electro	111 sec	0	0	0	0		0
Azimuth Program (June 2014)	CC-3	Electro	158 sec	0	0	0	0		0
Azimuth Program Iune 2014	MH-28A	Electro	120 sec	0	0	0	0		0
Az Prc Jun	MH-27	Electro	74 sec	0	0	0	0		0
•	MH-12	Electro	185 sec	0	0	0	0		0
	MH11	Electro	327 sec	0	0	0	0		0
	MH13	MNT	21.0 hrs	0	0	0	0		1
	INIUT2	Electro	766 sec	0	0	1	0		
am 4)		MNT	21.0 hrs	0	1	0	0		
ogr 201	MH16	Electro	627 sec	1	1	13	0	6 sculpin + fry	17
Laberge Program (August 2014)		Angling	15 min	1	0	0	0	4 grayling strikes	
erg		MNT	20.5 hrs	0	0	0	0		_
Lab (/	MH20	Electro	723 sec	1	0	11	1	6 sculpin + fry	18
	MHZU	Seine	30 m2	0	0	0	5		18
		Angling	20 min	0	0	0	0	3 grayling strikes	
	MH30	Electro	723 sec	0	0	5	0		5

¹Electro = electrofishing, MNT = minnow trap

²Fish observed visually or by fishing rod strike, but not captured

Table A8-2. Fish catch data from the baseline investigation relative to the operational/closure phase.

	0	perational/Closure	Period ¹		Baseline (1989)	3
Species	Licence Station	1992 to 2012 ² (Average)	2014 (Total)	IEE Sample Station ⁴	Spring Sampling (June 27-28)	Fall Sampling (Sept 8-9)
	MH13	21.7	1	E5	0	0
Slimy sculpin	MH16	12.1	13	D4	0	1
	MH20	14.7	11	C1	1	2
	MH13	0	0	E5	0	0
Arctic grayling	MH16	3.3	2	D4	Obs ⁵	1
	MH20	4.3	1	C1	1	6
	MH13	0	0	E5	0	0
Burbot	MH16	0.9	2	D4	0	0
	MH20	0.8	0	C1	0	0
	MH13	0	0	E5		
Whitefish sp.	MH16	0	0	D4	NR^6	NR
	MH20	0.7	6	C1		
	MH13	0	0	E5		
Lake chub	MH16	0	0	D4	NR	NR
	MH20	0.1	0	C1		
	MH13	0	0	E5	0	0
Char sp.	MH16	0	0	D4	0	0
	MH20	0.1	0	C1	0	0

Notes:

¹ Presented in Laberge (2015; Table 13)

² Note that site MH16 was not sampled during the 1992, 1994 and 1996 surveys.

³ Presented in SRK (1990; Volume 4, Table 2.19).

⁴ Stations in the Initial Environmental Evaluation (IEE) correspond approximately to the monitoring locations in the Water Licence:

E5 = MH-13; D4 = MH-16; C1 = MH-20

⁵ Obs = species observed, but not captured

⁶ NR = species not reported

9. AMPHIBIAN SURVEY

9.1. LOE Description

The amphibian survey LOE was intended to compare species presence, abundance, condition and other endpoints in relation to habitat quality and COPC gradients in soil. However, as no amphibians were located during the survey, it did not inform on these metrics.

This LOE applies to amphibians.

9.2. Data Analysis

This LOE is based on a field survey conducted by Martin Gebauer in August 2014 (Gebauer 2014, included as Appendix B of Azimuth 2015b):

The two amphibian species on the list of ecological receptors of concern at the Sä Dena Hes Site are Wood Frog (Rana sylvatica) and Western Toad (Anaxyrus boreas; listed). Potential habitats for Wood Frog include wetland habitats such as marshes, creeks, and riparian areas, while Western Toad could occur anywhere on the Site, including terrestrial habitats. Wood Frogs have only been observed incidentally in 2012 in the north tailings pond and between the north and south tailings ponds. No other amphibians were observed, despite extensive informal presence over a wide area at site in 2013 and 2014.

Time-constrained surveys were conducted by one or two observers at several [terrestrial] locations at the Sä Dena Hes Mine in 2014 to further determine if amphibians are present and in what abundance (see Figure 2-10 in Volume 1 PF Addendum [Azimuth 2015a]). Sampling locations were targeted based on availability of amphibian habitat (e.g., lower elevation areas on-Site and areas with marshy or nearby aquatic habitats). Searches were time-constrained (i.e., not area-constrained) and involved walking slowly through potentially suitable habitat at a target site, and where appropriate, turning over cover objects such as rocks and coarse woody debris. Rocks and wood were returned to their original location.

Amphibians were not observed on any of the encounter surveys (see Table A9-1), but the August timing may not have been ideal for encountering amphibians. This is consistent with results of informal surveys in 2012 and 2013. Overall, the lack of amphibians observed suggests that if they are present, they occur in low abundance or are more easily observed in other seasons or habitats.

9.3. Narrative Interpretation

Overall, the field survey did not locate any amphibians on-Site, nor provide any quantitative information to evaluate this LOE. Based on information from the wildlife biologist, the expectation is that amphibians would be present on-Site (possibly at low abundance), but likely were not observed due to the timing of the field survey. This LOE is included qualitatively in the WOE risk characterization (Table 3-2 in main Volume 3 report).

Table A9-1. Results of Amphibian Encounter Surveys Conducted at the Sä Dena Hes Mine, August 2014.

Date	Location ¹	Survey Length (man hours)	Results
06 Aug 2014	1 - TPN	2	No amphibians
06 Aug 2014	 Between former north tailings and south tailings ponds 	1	No amphibians
07 Aug 2014	3 - North of TPN	1	No amphibians
07 Aug 2014	07 Aug 2014 4 - Mill Site		No amphibians
07 Aug 2014	07 Aug 2014 5 - NC-Ref		No amphibians
07 Aug 2014	6 - FF-Ref1	0.25	No amphibians

¹See Figure 2-10 in Volume 1 PF Addendum (Azimuth 2015a).

10. AMPHIBIAN SOIL TOXICITY THRESHOLDS

10.1. LOE Description

This LOE compares soil lead concentrations from the Site to effects-based amphibian thresholds from the literature.

This LOE applies to amphibians.

10.2. Data Analysis

This LOE relies on the following data:

- Soil-based toxicity tests using lead conducted on red-backed salamander (*Plethodon cinereus*)
 reported in Bazar et al., 2010 were used to derive effect-size ratings (amphibian benchmarks).
- Soil data for terrestrial Areas of Environmental Concern (AECs; see Azimuth 2015a and 2015b) provided by Golder based on 2014 site conditions (Golder, 2015a) were screened into various effect-size rating categories based on lead concentrations. Soil data are reported in Golder 2015a and discussed in more detail in Azimuth 2015a and 2015b¹⁸.

10.2.1. Literature Search

A literature search on the effects to amphibians from exposure to key COPCs (lead and zinc) in soil at the Sä Dena Hes Mine was conducted using Google Scholar and TOXLINE (part of TOXNET) databases on September 4, 2014. Searches were conducted using a combination of key words: "amphibians" and "lead" or "zinc" and "soil". The first two pages of results for Google Scholar and approximately 43 results from TOXLINE were reviewed for relevance; abstracts from 15 papers were reviewed in more detail. Overall, most articles were not considered relevant, many experiments were done on water-based exposures to amphibian larvae/tadpoles, others reported on exposure (tissue based concentrations), but not corresponding effects. In the end, only one study, Bazar et al., 2010, which explored potential toxicity to red-backed salamanders from lead contaminated soils, was considered relevant for assessing potential risks to amphibians from soil contamination at the Site, and is used as the basis for this LOE. Other studies of note include:

Bazar et al., 2009 was a soil-exposure study that explored toxicity from copper. Although copper
was a COPC at Sä Dena Hes Mine, soil concentrations of copper were much lower relative to
standards than lead; so the lead study was used as the LOE and provides a more conservative
assessment of potential risks.

¹⁸ Reclamation activities (i.e., capping and recontouring) were carried out within the Mill Site, Jewelbox Hill, Boneyard, and TMF AECs in 2015. Soil lead concentrations used in the LOE are reflective of conditions prior to completing capping in these areas.

• Salice et al., 2009 was a feeding study exploring lead toxicity in lizards. However, reptiles are not present at the Site due to its Northern location.

10.2.2. Surrogate Receptor

Soil data for the Site were compared to literature-based toxicity values for the red-backed salamander. The red-backed salamander is used as a surrogate for the terrestrial life stage of the western toad (a species considered to be potentially present on-Site). Western toad was identified as a ROC in the PF, and although it has not been confirmed on-Site, wood frogs were observed on-Site in the Tailings Ponds in 2013. The Site is at the northern edge of the western toad's range, but if present on-Site, the toad may inhabit many terrestrial habitats, including the subalpine and alpine areas (COSEWIC, 2012). The red-backed salamander is exclusively terrestrial, primarily resides in soil, preys on soil invertebrates, and has a small home range, relatively long life span, and thin integument (skin), and was considered a suitable surrogate for the western toad.

10.2.3. Toxicity Test Methods

Salamanders were exposed to lead contaminated soils (or control soils) for 28 days with a 4 week acclimatization period. Soils included laboratory soils amended with lead acetate, or field collected soils from arms and skeet ranges. Of importance, this study exposed salamanders to contaminated soil only (exposure via dermal absorption); salamanders were fed uncontaminated food (wingless fruitflies). Toxicity testing studies for other soil COPCs at the Sä Dena Hes Site were not found in the literature (a similar study was conducted using copper, which was not a COPC in soil).

10.2.4. Toxicity Test Results

Table A10-1 summarizes the results of the study. For lead amended soils, the following effects were observed:

- 15% mortality, inappetence (i.e., lack of appetite), and 32% reduction in white blood cell count (WBC) was observed at 4,700 mg/kg dw lead
- 80% mortality (as well as overt signs of toxicity), inappetence, 15% lower body weight gain (relative to control), and 22% reduction in WBC was observed at the 9,167 mg/kg dw treatment level.
- The authors report the 1,700 mg/kg dw lead treatment level as a no-observed-adverse-effect-level (NOAEL) (the 11% reduction in WBC was not significant, although this is an endpoint that is not usually considered in ERA, the authors suggest that large reductions in WBC could have adverse health effects).

For the field soils contaminated by lead shot, minor effects were only observed at the 16,967 mg/kg dw lead treatment level (7.4% lower growth over 28 weeks and soil avoidance). The authors attribute the difference between treatment types to reduced bioavailability in the arms and skeet range soils.

10.3. LOE Attributes

10.3.1. Data Quality

Acceptable – Soil data used for screening against effect-size ratings were provided by Golder (2015a) and data quality is considered acceptable based on QA/QC measures that were in place during site characterization. Samples for which data quality was questionable were excluded from the data set (XRF data for some COPCs [see Azimuth 2015a for details] and 2012 duplicate data for the NC-Ref sample [see Azimuth 2014a]). The literature study is considered to have acceptable data quality – it had multiple treatments, a control for each soil exposure type, a sufficient number of organisms for each treatment (10-20), evaluated relevant toxicity endpoints, and was published in a peer reviewed journal.

10.3.2. Ecological Relevance

Moderate – Soil samples are collected from the site and represent site-specific exposures. Potential effect levels are inferred based on benchmarks from laboratory toxicity tests specific to amphibians (so has higher relevance than chemistry LOEs based on generic soil standards), but effects are not directly assessed (e.g., so has lower ecological relevance than a field survey). Overall, this LOE is considered to have moderate ecological relevance for predicting risks to amphibians.

10.3.3. Magnitude

10.3.3.1. Degree of Contamination/Effects and Spatial/Temporal Scale

Ratings were based on the following general categories used in the Interim ERA (Azimuth 2014c).

- Negligible (<10% sublethal effect size)
- Low (10-20% sublethal effect size)
- Moderate (20-50% sublethal effect size)
- High (>50% sublethal effect size or >20% lethal effect size)

Based on the results of laboratory toxicity tests conducted by Bazar et al., 2010, and the general effects categories listed above, we have applied the following effect-size ratings to lead concentrations in soil for rating magnitude for terrestrial amphibians:

- Negligible Effects: Less than 1700 mg/kg dw lead in soil
- Low Effects: 1700 to 4700 mg/kg dw lead in soil (11% reduction in WBC)
- Moderate Effects: 4700 to 9167 mg/kg dw lead in soil (15% mortality; 32% reduction in WBC)
- High Effects: Above 9167 mg/kg dw lead in soil (80% mortality; 15% lower body weight gain)

Figure A10-1 shows individual soil samples screened into various effect-size rating categories based on lead soil concentrations. Overall effect-size ratings by AEC are provided in Table A10-2, and summarized below.

- Burnick Zone (AEC 2): Current and Post-reclamation: Low potential effect-size and localized spatial extent Most samples were below 1,700 mg/kg dw lead; only one exceeded. All soil samples in the 1300 Portal were below 1,700 mg/kg (low level) benchmark; potential effects here would be considered negligible. These ratings apply to current and post-reclamation conditions (no further remediation planned in this AEC).
- Jewelbox/Main Zone (AEC 1/9)
 - Current: High potential effect-size and widespread spatial extent The Jewelbox, Main Zone and 1380 Gully sub-AECs had maximum and 95% upper confidence limit of the mean (UCLM) lead concentrations above 9,167 mg/kg dw lead (except Jewelbox, the 95% UCLM was 3,258 mg/kg dw in the low range). All soil samples in the 1250 Portal were below 1,700 mg/kg (low level) benchmark; potential effects here would be considered negligible. Based on Figure A10-1, the overall extent of contamination in AEC 1/9 is considered widespread.
 - Post-reclamation: High potential effect-size and moderate spatial extent Remediation of the Jewelbox waste rock bench and portion of the Main Zone bench (i.e., application of a soil cover over the re-contoured area; see Figure 1-3 in Azimuth 2015a) is expected to improve lead concentrations in soil under post-reclamation conditions. However, some residual contamination is expected to remain on the periphery of the Jewelbox AEC (downgradient of the waste rock piles) and in the Main Zone and 1380 Gully AECs. Under post-reclamation, potential effect-sizes are still considered high, but spatial extent would be reduced and is considered moderate. There is some uncertainty with this rating, based on predicting future conditions.

Mill Site (AEC 3)

- Current: Moderate potential effect-size and moderate spatial extent Although two samples (maximum 18,018 mg/kg were above 9,167 mg/kg dw lead [high]), the 95% UCLM was in the "low" category. Based on Figure A10-1, extent of contamination is considered moderate within the AEC. The haul road sub-AEC is in the 'negligible' category.
- Post-reclamation: Low potential effect-size and limited spatial extent Completion
 of a soil cover over soils from the Mill Site disturbed area is underway. Based on Figure
 A10-1, this would result in concentrations of lead in almost all soils to drop below the 1,700
 mg/kg dw "low" threshold, so potential effects are considered low under post-reclamation
 conditions.
- Tailings Management Facility (AEC 8)
 - Current and Post-reclamation: Low potential effect-size and limited spatial extent

 Most of the Tailings Management Facility disturbed area was covered with clean till in 2014 (not TPN, TPN-West Berm, and the marsh area) (Figure A10-1). Concentrations of lead in most soils are below the 1,700 mg/kg dw "low" threshold, with a few minor exceedances.
- Other areas: Negligible potential effect-size with no exceedances This rating applies to the boneyard, Outside AEC, Outside AEC 1 & 9, and Reference categories. Although there was one exceedance of the 'low' threshold in the Outside AEC 1 & 9 area, the remaining soil samples

were in the negligible category. All other areas had no exceedances of the 1700 mg/kg dw 'low' benchmark.

Temporal extent of contamination is long-term – With the exception of areas identified as undergoing further remediation/reclamation, soil data collected between 2012 and 2014 are considered representative of long-term conditions (without active remediation). Information documented in Azimuth 2014d and 2015a suggests the terrestrial environment is fairly stable. Post-closure soil chemistry in the AECs is anticipated to improve where remedial works are planned, according to the information and assumptions provided above.

Uncertainty About Magnitude

High – Uncertainty related to extrapolating this LOE to effects to amphibians at the Site is considered high because it does not incorporate multiple COPCs, cumulative (e.g., dietary) exposures (see below) nor assess direct measures of effects to the amphibian species themselves (i.e., based on field studies). However, it does target one of two main COPCs in the terrestrial environment at the Site – lead, and is based on amphibian-specific toxicity information.

One major source of uncertainty is that this LOE only addresses toxicity from direct soil contact (dermal absorption); potential risks from the food chain pathway are not addressed. This uncertainty could underestimate overall exposure and risks to amphibians because a key exposure pathway is not covered (i.e., invertebrates and plants at the Site have higher levels of lead than reference areas, so amphibians feeding on-Site would be exposed to additional lead). Based on the search conducted for this LOE, we did not find any literature looking at dosing amphibians lead through the dietary route (which could be used to develop a TRV for the food chain model).

10.3.4. Causality

Causality - Strength of Correlation

Correlation (N/A); **Supporting Evidence (Plausible)** – This LOE identifies elevated exposure at three AECs relative to effects-based benchmarks from a toxicity study reported in the literature. Because the underlying study is effects-based, it provides plausible supporting evidence for potential toxicity. However, this LOE does not provide evidence of causality for actual effects.

Uncertainty Related to Causality

High – While the mechanism of action is supported by the soil benchmark, this LOE does not incorporate site-specific information on effects to assess strength of relationships/causality.

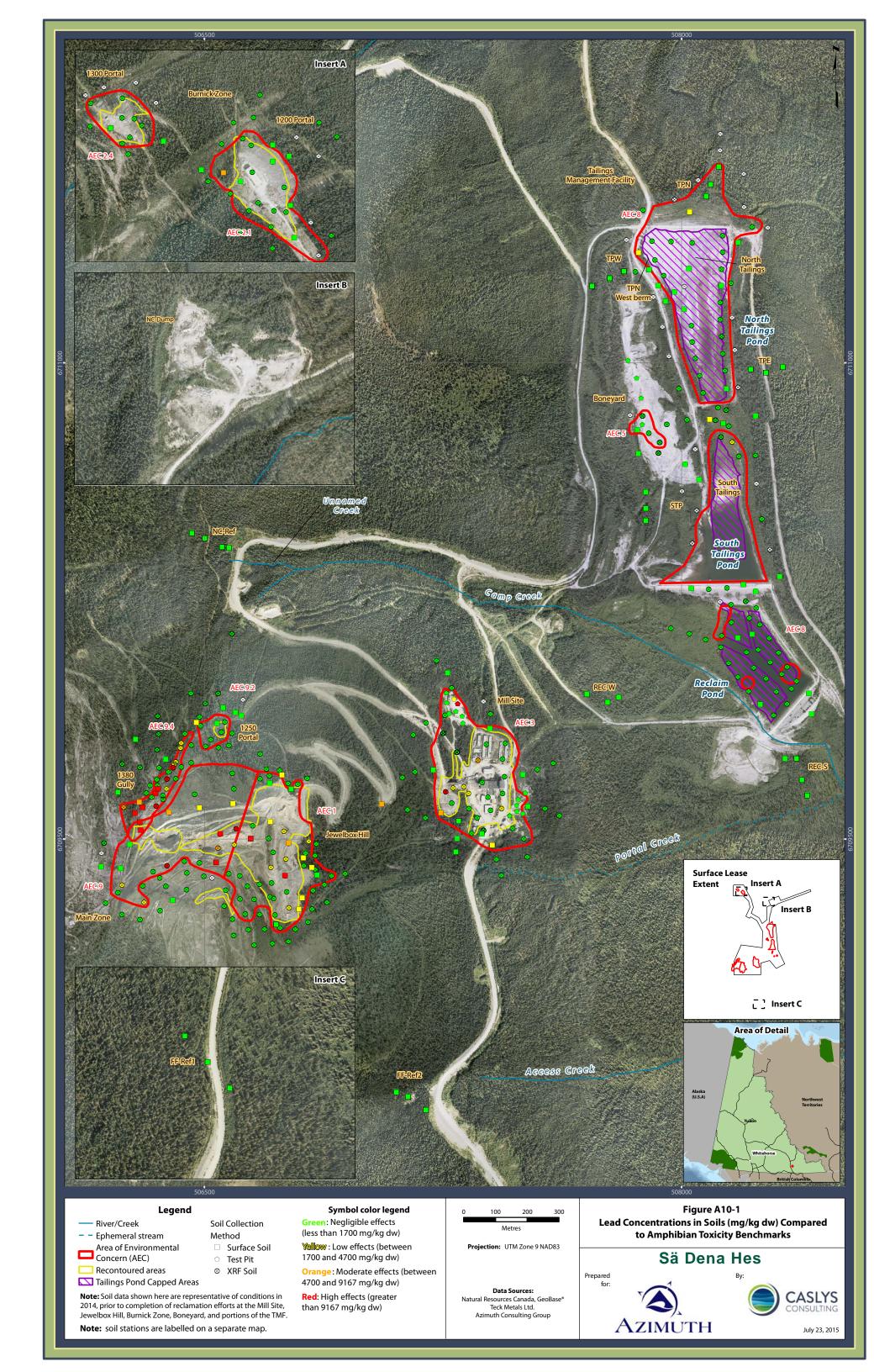


Table A10-1: Summary of salamander 28-day soil toxicity testing reported in Bazar et al., 2010.

			Day 28 Body					Reduction in White	
	Lead Soil	No. Per	Weight (Percent	Body Weight		Signs of Lead		Blood Cell Count	
Soil Type/	Concentration	Treatment	Change from Day	(Difference from		Toxicity/Soil		(WBC), Relative to	
Treatment	(mg/kg dw)	Group	0)	Control)	% Mortality	Avoidance	Inappetence	Control	Notes
ead Amended ¹ La	boratory Soils								
Control	14	20	12.6	n/a	~0%	None	Not observed	~0%	Exact mortality not reported
500	553	20	13.4	n/a	~0%	None	Not observed	7%	Exact mortality not reported
1500	1,700	20	15.0	n/a	~0%	None	Not observed	11%	Exact mortality not reported; WBC not statistically significant
4500	4,700	20	10.8	n/a	15%	None	Observed	32%	Mortality not statistically significant
9000	9,167	20	-2.3	15%	80%	Lethargy, un- responsiveness to touch, inability to right	Observed	22%	WBC not statistically significant
ield Collected Soi	ls (Arms and Skeet	: Ranges)							
TAFB 1 (REF)	11	10	2.3	n/a	0%	Not observed	Not observed	n/a	
TAFB 2	1,430	10	-1.9	n/a	0%	Not observed	Not observed	n/a	
TAFB 3	2,710	10	3.4	n/a	0%	Not observed	Not observed	n/a	
APG 1 (REF)	28	10	0.8	n/a	0%	Not observed	Not observed	n/a	
APG 2	260	10	-0.3	n/a	0%	Not observed	Not observed	n/a	
APG 3	16,967	10	-6.6	7.4%	0%	Soil avoidance	Not observed	n/a	

Notes:

Effects less than 10% or secondary endpoint (e.g., WBC count)

Effects above 10% for primary endpoints

 $^{^{1}\ \}mbox{\sc Amended}$ with lead acetate, but concentrations reported based on elemental lead.

Table A10-2: Lead concentrations in soils from AECs, relative to amphibian benchmark screening levels.

	_		n in Soil (mg/kg dw)		
AEC	Area	n	Maximum	Upper 95% UCLM	Spatial Extent
AEC 1	Jewelbox	59	22,200	3,258	Moderate extent
AEC 2.1	Burnick Waste Rock Pile	18	7,460	1,751	Localized
AEC 2.4	1300 Portal	9	1,247	829	No exceedances
AEC 3	Mill Site	66	18,018	2,031	Moderate extent
AEC 3.9	Haul Road	20	1,690	599	No exceedances
AEC 5	Boneyard	8	47	37	No exceedances
AEC 8	Tailings and Reclaim Ponds	107	3,180	311	Limited extent
AEC 9.0	Main Zone Waste Rock Dump	24	42,600	11,457	Widespread
AEC 9.2	1250 Portal	7	1,122	855	No exceedances
AEC 9.4	1380 Gully	35	45,700	12,818	Widespread
N/A	Outside AEC	124	617	84	No exceedances
N/A	Outside AECs 1 & 9	90	4,089	487	Limited extent
N/A	Reference	24	569	195	No exceedances

Notes:

UCLM = Upper confidence limit of the mean

Effect-size Ratings:

Negligible
Less than 1700 mg/kg dw lead is considered negligible; Spatial extent=no exceedances

Low; Localized

1700 mg/kg dw to 4700 mg/kg dw is considered low; Spatial extent=limited or localized exceedances

Moderate; Moderate

4700 mg/kg dw to 9167 mg/kg dw is considered moderate; Spatial extent=moderate

High; Widespread

Above 9167 mg/kg dw is considered high; Spatial extent=widespread

11. WATER-BASED TOXICITY TESTING

11.1. LOE Description

This LOE compares the water-based toxicity test results for aquatic plants, aquatic invertebrates and fish against the available water chemistry data from selected stations downstream of the Site.

This LOE assessment is applicable to aquatic plants, invertebrates, and fish.

11.2. Data Analysis

11.2.1. Overview

The following toxicity test data are available for use in the LOE assessment of each receptor group:

Aquatic Plants

<u>Dilution Series</u>: Comparison of growth in 72-hr *Pseudokirchneriella subcapitata across* a
gradient of COPC exposure in water (dilution series compared to upstream water and
laboratory control).

Aquatic Invertebrates

- <u>Dilution Series</u>: Comparison of 7-day *Ceriodaphnia dubia* survival and reproduction across a
 gradient of COPC exposure in water (dilution series compared to upstream water and
 laboratory control; acclimation included in study design).
- Water effect ratio (WER): Comparison of acute toxicity testing endpoints for *C. dubia* between parallel toxicity tests using laboratory water and site water to determine whether
 the site water characteristics modify contaminant bioavailability and potential toxicity.

Fish

 Quarterly Rainbow Trout Test: Survival of rainbow trout (96-hr static test using rainbow trout [O. mykiss]) exposed to Mine Site source water (MH-6A or MH-6B) collected as part of Teck's Water License.

Toxicity test results for the *P. subcapitata* and *C. dubia* tests were compared to water quality data either collected synoptically with the toxicity test samples or measured during toxicity testing (Table A11-1 [Dilution Tests]; Table A11-4 [WER Test]). To our knowledge, there are no synoptic water chemistry data available for the rainbow trout LC50 tests carried out as part of the Water Licence. Water chemistry data from the Reclaim Pond (MH-06A) are summarized (95th percentile 2004-2013) in Section 11.2.4 and compared to the long-term water quality results from MH-11 over the same time period to provide context to the toxicity test results. MH-11 was chosen for comparison because the results at this station tended to be the most conservative (Table A11-2).

The toxicity test results were also compared with predicted future concentrations of cadmium, lead, and zinc developed by SRK for expected and conservative scenarios (SRK 2014d). SRK generated model predictions for each metal by month (SRK 2014d), but for the purpose of comparison with the site-specific chemistry results, the concentrations shown in the tables listed above are those for the worst case month for each station and COPC combination. Toxicity test results (response and concentrations) are shown for available stations and relevant COPCs in Table A11-2 (*C. dubia* Dilution Tests), Table A11-3 (*P. subcapitata* Dilution Tests), and Table A11-4 (*C. dubia* WER test).

Laboratory reports from Nautilus Environmental for the dilution series and WER toxicity tests are provided in **Appendix F**. Quarterly rainbow trout toxicity test results are included each year with the annual report for the Water Licence, and the most recent LC50 toxicity test results are presented in SRK (2014d).

Specifics of the Dilution Series, WER, and rainbow trout LC50 tests, including methods and data analysis and handling, are provided in the following sections.

11.2.2. Dilution Series Toxicity Test (Aquatic Plants and Invertebrates)

Test Method

Two dilution series tests were conducted to evaluate the response of 7-day *C. dubia* (survival and reproduction) and 72-h *P. subcapitata* growth inhibition (cell yield) to different concentrations (dilutions) of site water:

- MH-04 Dilution Series: Water collected from MH-04 in Camp Creek to assess the potential toxicity of up-gradient water on-Site. There are some exceedances of guidelines at this station, and it is downgradient of mine waste (Main Zone pit/1380 Gully; see Section 6.2.1.1 of Volume 1 [Azimuth 2014d]).
 - Three MH-04 concentrations were tested for their effect on the organism response: 10%, 50% and full-strength MH-04 surface water. The dilutions were prepared with laboratory control water diluted with Perrier water to achieve water hardness similar to the MH-04 sample (\sim 160 mg/L as CaCO₃).
- 2. Mixture Dilution Series: Water collected from MH-25 (adit water) was mixed with water from MH-04 at varying concentrations to develop a "concentration-response relationship" or CRR by assessing the response of *C. dubia* and *P. subcapitata* over a concentration gradient that represents metals concentrations throughout Camp Creek, False Canyon Creek, and Tributary E based on 2004-2013 water quality data (see Section 2.3.1 for information on the water quality data analysis).

The full-strength mixture (i.e., 100% Mixture) was made up of 85% MH-04 and 15% MH-25, and was the highest concentration tested. The 100% Mixture was further diluted using MH-04 surface water to 30%, 10%, 3%, 1%, 0.3% and 0.1%, resulting in seven concentrations of the mixture. MH-04 (100% dilution) was also used as a site water control for this test.

Surface water from Camp Creek (MH-04) and site water from the 1380 Portal (MH-25, adit source) was collected by Azimuth during the June 2014 site visit. Twenty liters of unfiltered water from each station were collected into plastic carboys using an electric pump and submitted to Nautilus environmental for toxicity testing. Synoptic water samples were collected at each location and submitted to ALS for analysis of total and dissolved metals, anions and nutrients, organic carbon (total and dissolved), total suspended and dissolved solids, turbidity, and other physical tests (conductivity, pH, and hardness).

Data Handling and Analysis

Nominal metal concentrations were calculated for all dilution series treatments using data for MH-04 and MH-25 samples that were collected by Azimuth synoptically with the toxicity testing water¹⁹. Data were screened against the CCME guidelines and Yukon CSR aquatic life standards

Due to the different dilution waters (laboratory water for the MH-04 dilution series and MH-04 for the Mixture dilution series), the LC50 and ICxx toxicity test endpoints for the MH-04 and Mixture series were analyzed as independent datasets. The MH-04 dilution series was compared to the laboratory control (hardness-adjusted) while the test organism response in the Mixture dilution series was compared to the 100% MH-04 treatment.

Nominal metal concentrations in the Mixture and MH-04 tests were evaluated in each dilution (%v/v) to identify the list of metal(s) of interest to carry forward when assessing causality for reduced *C. dubia* survival and reproduction and *P. subcapitata* cell yield in the various tests. These metal(s) of interest were then compared against the water quality data (95th percentile [Table A2-1]) for selected stations within Camp Creek, False Canyon Creek, and Tributary E to determine if metal concentrations associated with effects in the tests are reflective of water chemistry data downstream from the Site. The predicted concentrations from SRK were also evaluated relative to the Dilution series tests.

Results

The following metal(s) of interest were identified in the nominal water quality screening data shown in **Table A11-1** for the *C. dubia* and *P. subcapitata* tests:

Cadmium and zinc exceeded screening criteria in a number of dilutions; however, cadmium
exceedances did not correspond with the response in the toxicity tests for both test organisms.
For this reason, and based on correspondence with Nautilus, cadmium was not carried forward
into a more detailed examination of causality and comparison against the site-specific water
quality data and predicted concentrations from SRK.

¹⁹ Nautilus also collected water from the dilution series and submitted these samples to ALS Laboratories for analysis. However detection limits (DL) were elevated in the Nautilus samples relative to the water quality screening criteria, resulting in "less than DL" concentration results for many metals, except zinc. Hardness-adjusted control water re-submitted by Nautilus for low-detection limit analysis was used in the nominal water concentration calculation for the dilution series treatments.

Zinc concentrations were observed to be associated with adverse effects in the Mixture toxicity tests, and zinc was carried forward for more detailed analysis in the Nautilus report [Appendix F]).

Toxicity test response results for *C. dubia* and *P. subcapitata* are presented in **Table A11-2** and **Table A11-3**, respectively. The tabulated results show the endpoint(s) for each test organism relative to the concentration of zinc in each treatment. The MH-04 and Mixture dilution series test results are shown in **Figure A11-1** for the *C. dubia* and **Figure A11-2** for *P. subcapitata*²⁰.

Discussion of the dilution series toxicity test results as a LOE in the AERA is presented in Section 11.3.3 below.

11.2.3. WER Toxicity Test (aquatic invertebrates)

WER testing was conducted to develop site-specific water quality objectives (SSWQO) for potential use in renewal of the Water Licence (see Section 1.1 of Volume 3). Site specific objectives are meant to account for: (1) the physico-chemical properties of the site water that may alter the toxicity of the chemical; or (1) the differences in biological communities between the site and those used to derive the CCME guidelines or CSR aquatic life standards.

In the case of WER testing, the test procedure provides a direct means of modifying generic water quality guidelines/standards to account for the unique characteristics of the site (BC MOE 2013). WER tests were conducted on seven metals identified as COPCs at the Site for which WER testing was considered potentially beneficial for developing SSWQO (see Azimuth 2014f): aluminum, cadmium, chromium, copper, iron, lead, and zinc. Selenium was not considered a candidate COPC for WER testing because dietary exposure, not direct surface water contact, is the primary exposure pathway for sensitive ROCs (i.e., egg laying vertebrates).

Test Method

Surface water was collected from MH-04 on June 27th, 2014 and shipped to Nautilus for toxicity testing using the *C. dubia* 48-hr acute test method. Tests were conducted as follows:

Seven metal treatments were prepared with MH-04 water spiked with each of the seven metals.
 Five concentrations were tested in each treatment, plus a control. Subsamples of each concentration were collected at test initiation for measurement of the spiked metal (total and

A-77

²⁰ The *P. subcapitata* MH-04 dilution test exhibited decreased cell yield in the MH-04 dilution series relative to the hardness adjusted control; however, the laboratory reported that relative to the normal laboratory control treatment, there was no effect on growth in any of the MH-04 dilutions. The hardness-adjusted water appears to have had a stimulatory effect on the control treatment, with a mean cell yield of 359×10^4 cells/mL compared to 55×10^4 cells/mL in the standard laboratory control water. A similar stimulatory effect was noted for all MH-04 dilution concentrations relative to the normal laboratory control (Figure A11-2; refer to the Nautilus report in Appendix F for more information).

dissolved). Subsamples were also collected at the end of the test for measurement of the total metals concentration.

- Laboratory controls were run concurrently with each treatment. The control water was modified to match the hardness of MH-04 (approximately 140 mg/L).
- Toxicity test end-points (LC50 and WER) were calculated on the basis of measured total metal concentration, with the exception of aluminum, which was calculated based on the concentration of dissolved metal (Table A11-4).

The WER was calculated by dividing the LC50 in each treatment by the LC50 in the laboratory control treatment.

- WER > 1: increased survival in site water relative to the laboratory control
- WER ≈ 1 : no ameliorating effect of site water on survival
- WER < 1: reduced survival in the site water relative to the laboratory control

A full description of the WER test method is provided in the Nautilus laboratory report in Appendix F.

Data Handling and Analysis

The WER concentrations were compared against the water quality data (95th percentile) for selected stations within Camp Creek, False Canyon Creek, and Tributary E to determine whether concentrations associated with effects in the treatments are similar to water chemistry data downstream from the Site (Table A11-4). Predicted future concentrations for expected and conservative scenarios are also shown in this table for cadmium, lead, and zinc (SRK 2014d).

Results

Survival results, test endpoints (LC50 and WER) and measured metals concentrations are shown in Table A11-4. Measured concentrations in the Site receiving water were compared to the WER toxicity tests results, and zinc at MH-11 was the only metal that occurred at concentrations reported to cause effects in the test.

Discussion of the WER toxicity test results as a LOE in the AERA is presented in Section 11.3.3 below.

11.2.4. Quarterly Rainbow Trout Toxicity Testing

Quarterly rainbow trout toxicity tests are required for discharge to False Canyon Creek as specified in the Effluent Quality Standards (Part D) of the Water Licence. The Water Licence requires that any water discharged into False Canyon Creek must meet an LC50 value of 100% effluent concentration. Tests are conducted on water samples taken from the Reclaim Pond at either MH-06A during discharge or MH-06B when there is no discharge from the Reclaim Pond.

The most recent rainbow trout toxicity testing results for 2014 are presented in SRK (2014d). No effects on trout survival have been recorded in any of the quarterly tests dating back to 2002 (refer to Section

4.2.2 of Volume 1 (Azimuth 2014d). For comparative purposes, the 95th percentile (mg/L) of the water quality data from the LC50 sampling location at the Reclaim Pond is shown relative to MH-04, MH-11, MH-08, and MH-13 for the 2004-2013 dataset:

	MH-06A	MH-04	MH-11	MH-08	MH-13
COPC	Reclaim Pond Outflow	Upper Camp Creek	Lower Camp Creek	Burnick Creek / Tributary E	False Canyon Creek
Aluminum	0.060	0.11	0.15	0.45	0.077
Cadmium	0.00025	0.00038	0.00075	0.000172	0.00028
Chromium	0.0010 (max)	0.001	0.0015 (max)	0.0081	0.0010
Copper	0.0029	0.0017	0.0034	0.0043	0.0043
Iron	0.18	0.20	0.42	0.38	0.93
Lead	0.0054	0.020	0.046	0.0063	0.0069
Selenium	0.0014	0.0010	0.0009	0.0017	0.00142
Silver	0.00002	0.00002	0.00004	0.00002	0.00002
Zinc	0.046	0.032	0.14	0.024	0.013

Notes:

The following formatting was used to compare the surface water concentrations at MH-06A where LC50 samples are collected to concentrations in stations representative of Camp Creek, Tributary E, and False Canyon Creek:

No fill	< 2 fold higher than the MH-06A concentration
	2-5 fold greater than the MH-06A concentration
	> 5 fold the MH-06 concentration

To our knowledge, water chemistry data has not been collected synoptically with the LC50 tests, so it is unknown where in the distribution of concentrations that the LC50 water samples fit relative to the long-term dataset for MH-06A. The 95th percentile concentrations reported at MH-11 are generally higher than those at MH-06A, but with the exception of lead, the concentrations at MH-06A are within a factor of 5 of those at MH-11. MH-04, MH-08, and MH-13 water quality data is similar to MH-06A for most COPCs. The absence of any reported effects precludes a more formal LOE assessment, and as such, the risks to fish based on the toxicity testing LOE are considered "negligible" for all receiving environments. There is uncertainty whether the results from MH-06A can be extrapolated to other locations downstream from the Site: uncertainty is considered high for Camp Creek because concentrations of metals such as lead and zinc at MH-11 are higher than MH-06A; uncertainty is considered moderate for False Canyon Creek and Tributary E based water chemistry that is more similar to MH-06A. The uncertainty ratings also incorporate extrapolating this acute lethality test to chronic exposures and sublethal endpoints. Because there was no toxicity in the MH-06A location, it is likely that LC50 tests on water from North Creek, and False Canyon Creek would produce similar no-effect results, and possible, but more uncertain, for Camp Creek (MH-11).

11.3. LOE Attributes

This section applies to aquatic plants and invertebrates. Based on information presented in **Section 11.3.3** risks to fish based on toxicity testing are considered "negligible" and are not assessed further.

11.3.1. Data Quality

Acceptable – Dilution and WER tests were conducted by in accordance with standard test methods, and Nautilus has indicated tests met all control acceptability criteria. The 72-hr holding time was exceeded for the dilution toxicity tests due to logistical challenges of collecting and shipping samples from Site. Any potential effects on the results were considered minor and there are no issues with the results that negatively affect the quality of the data (Appendix B). Raw data reports for the 96-hr acute rainbow trout tests were not available for review; however, the data quality is inferred as acceptable given the results have been previously reported in compliance with Water Licence.

11.3.2. Ecological Relevance

Moderate – The organisms used in the toxicity tests are considered broadly representative of the diversity of taxa that may be exposed in receiving environments downstream from the Site. Some resident species could be more sensitive to metals than the organisms used in the toxicity tests; however, adaptation and site-specific variables that affect exposure can mean that organisms at the Site may be less sensitive than the laboratory organisms used in the toxicity tests. The use of Site water in the dilution and WER tests incorporates some of the site-specific water quality characteristics in the exposure assessment. Overall, the toxicity tests are considered a moderately sensitive LOE.

11.3.3. Magnitude

Magnitude Interpretive Framework

An effect size ratings for each station in Camp Creek (MH-04, MH-27, MH-11), False Canyon Creek (MH-13, MH-16), and Tributary E (MH-08, MH-12) was assigned based on results of the dilution and WER toxicity tests. The dilution series was relevant for determining effect sizes to all stations for both aquatic plants and invertebrates; the WER tests are only applicable to the aquatic invertebrate receptor group.

Magnitude of effect ratings were assigned to each stations as follows:

Step 1: a rating was applied to each dilution in the tests (see Table A11-2 [*C. dubia*], Table A11-3 [*P. subcapitata*], and Table A11-4 [*C. dubia* WER]) based on the following framework:

- Negligible = < 10% reduction in the measurement endpoint
- Low = between 10% and 20% reduction in the measurement endpoint
- Moderate = between 20% to 50% reduction in reduction in the measurement endpoint
- High = greater than 50% reduction in the measurement endpoint

Step 2: As zinc was identified as a potential cause of toxicity in the toxicity tests (see Results in Section 11.2.2), the station-specific water chemistry data (95th percentile or maximum concentration) was compared to the test concentrations in both WER and dilution toxicity tests to determine the appropriate magnitude of effect rating (same as above) to apply at each station, for each test endpoint.

Step 3: A more in-depth analysis of the CRRs was undertaken *if* moderate to high effects were predicted at the 95th percentile concentrations for a given station. The analysis involved determining the proportion of water samples at a given site that correspond to each risk rating (i.e., negligible, low, moderate, and high), and then examining temporal and seasonal distribution of the risk ratings.

The spatial extent of the potential effect(s) for each receptor group was qualitatively defined by assessing the effects ratings at each station relative to other stations within each receiving environment.

Magnitude of effects ratings are summarized below for each receptor group by receiving environment.

Camp Creek

- Fish Survival Negligible effect (see Section 11.2.4 above).
- Aquatic Invertebrates
 - Survival Low effect (Mixture Dilution test); Limited Spatial Scale MH-11 was the only location in the Camp Creek receiving environment where inferred effects on survival were greater than negligible or low based on the results of the toxicity tests. Based on the WER test, the magnitude of effect was considered high (> than 50% reduction in survival) for MH-11. The magnitude of effect for MH-11 in the mixture dilution test was considered low. For the overall magnitude rating, the results from the Mixture dilution test were weighted higher because the test was more ecologically relevant (i.e., the mixture dilution test was based on dilutions of MH-25 and MH-04 site water compared with the WER tests where MH-04 was spiked with increasing concentrations of zinc).
 - Reproduction High effect (Mixture Dilution test); Limited Spatial Scale MH-11
 was the only location in the Camp Creek receiving environment where inferred effects on
 reproduction were greater than negligible (rated as high) based on the results of the toxicity
 tests.

Aquatic Plants

o Upper Camp Creek: Negligible-to-low effect; limited spatial scale – Moderate-level effects to algal cell growth were predicted based on comparing the 95th percentile zinc concentration at MH-04 to the CCR developed from the Mixture dilution toxicity test (Figure A11-3). The 95th percentile concentration slightly exceeds the IC20 concentration (moderate), and a comparison of the water quality data from 1999 to 2014 shows that 96% of the samples collected from MH-04 have zinc concentrations in the negligible-to-low effects range for predicted effects to *P. subcapitata* cell growth (Table A11-5; Figure A11-4). In total, four of 66 samples have zinc concentrations that exceed the negligible risk rating at MH-04 dating back to 1999 (Figure A11-5). Seasonal analysis of the results substantiates the conclusion that zinc concentrations pose negligible-to-low risks to algae in Upper Camp Creek.

Lower Camp Creek: Negligible-to-high effect; Limited Spatial Scale – Adverse effects to cell yield were predicted as high at MH-11 and low at MH-27 when the 95th percentile concentrations were compared against the CCR (Table A11-3 and Figure A11-3). A more detailed examination of the risk ratings by season shows higher concentrations of zinc in the winter months are primarily responsible for the high risk ratings predicted at MH-11 (Figure A11-5). After freshet in June, the predicted risks are within the negligible-to-moderate range; a high proportion of the samples are predicted as having negligible risk to algal cell growth. Ecologically, the post-freshet season is considered most critical for algal growth. A magnitude rating encompassing the range of data at MH-11 (negligible-to-high) was applied; the highest risk prediction for the growing season (post-freshet) was used (i.e., moderate potential effects in the WOE risk characterization (Section 3.1.1 of the Main Report).

False Canyon Creek

- Fish Negligible effect (see Section 11.2.4 above).
- Aquatic Invertebrates Negligible Effect no adverse effects to aquatic invertebrates were
 determined based on the survival or reproduction results from the mixture toxicity tests
 compared to the site-specific water quality data for MH-13 and MH-16. Similarly, no adverse
 effects were reported in the WER tests at concentrations corresponding to the 95th percentile at
 MH-13 and MH-16.
- Aquatic Plants Negligible Effect no adverse effects to aquatic plants were determined based on the cell yield response results from the Mixture tests on *P. subcapitata* compared to the site-specific water quality data for MH-13 and MH-16.

Tributary E

- Fish Negligible effect (see Section 11.2.4 above).
- Aquatic Invertebrates
 - Survival Negligible Effect no adverse effects to aquatic invertebrates were determined for MH-08 and MH-12 based on the survival endpoint in the mixture dilution test or WER tests.
 - Reproduction Low Effect (Mixture Dilution test); Limited Spatial Scale Effects on *C. dubia* reproduction were rated low at MH-08 (Burnick Creek). A negligible effect rating was applied to MH-12 on North Creek based on the available water quality data relative to the Mixture test.
- Aquatic Plants Low Effect; Limited Spatial Scale The magnitude of effect on aquatic
 plants at MH-08 was considered low, as the concentration was less than IC25. The magnitude of
 effect at MH-12 indicated negligible risk to aquatic plants, so the spatial scale of the potential
 effect is considered limited.

Uncertainty About Magnitude

Most receptors, receiving environments and endpoints - Moderate – Uncertainty about magnitude is considered moderate as toxicity tests are not always representative of conditions in site receiving environments for the following reasons: some of the species used in the toxicity tests (*C. dubia*) would not necessarily be found in streams; laboratory organisms are often bred in water with very low metal concentrations and are often more sensitive to metals such as zinc than organisms in the field which can be acclimated to higher metals concentrations. Additionally, effects at each station were inferred from toxicity tests.

Aquatic Plants in False Canyon Creek and Tributary E - Low – In cases where negligible or low effects are predicted using the toxicity testing LOE, uncertainty was considered low because the laboratory-based toxicity LOE tends to be a conservative measure of potential effects in the field due to the higher sensitivity of laboratory reared organisms to metals. Therefore, it is unlikely that potential effects in the field would be underestimated based on this LOE.

Fish in Camp Creek - High – Uncertainty is considered high for Camp Creek because concentrations of metals such as lead and zinc at MH-11 are higher than the MH-06A LC50 monitoring location.

11.3.4. Causality

Causality - Strength of Correlation

Plants and Invertebrates - Correlation (High, Positive) – The CCR for zinc provides convincing evidence that zinc is responsible for the observed effects in the toxicity tests on *P. subcapitata* and *C. dubia.*

Fish - Correlation (N/A) – Effects were not observed in the acute fish toxicity tests; causality is not applicable.

Uncertainty Related to Causality

Plants and Invertebrates - Moderate – Consultation with Nautilus confirmed the likelihood that zinc is the cause of the observed effects in the toxicity tests (Dilution series [Mixture] and WER test). However, extrapolating these results to the field is considered to have moderate uncertainty.

Fish - N/A - Effects were not observed in the acute fish toxicity tests; causality is not applicable.

Figure A11-1. *Ceriodaphnia dubia* survival and reproduction test results from the MH-04 and Mixture dilution toxicity tests.

Notes: Refer to the text and Table A11-1 for information on the dilution concentrations for each test.

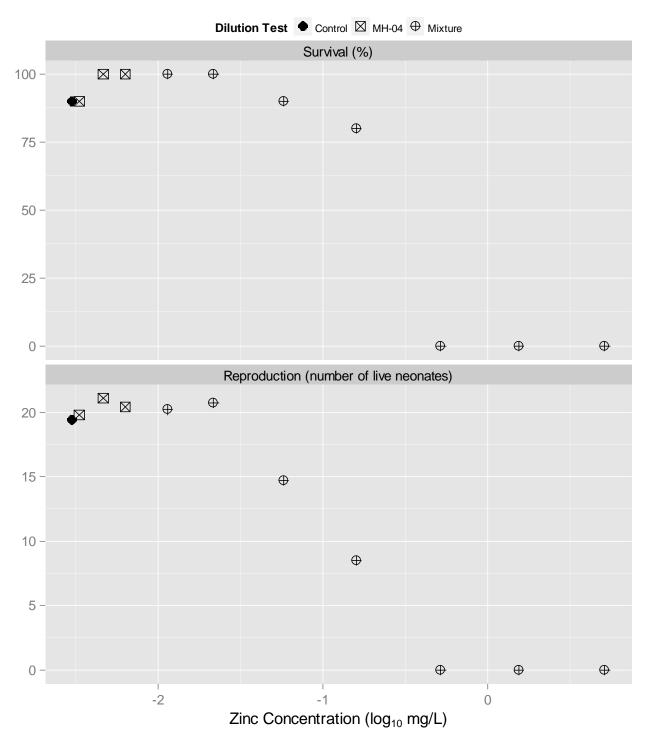


Figure A11-2. *Pseudokirchneriella subcapitata* toxicity test results from the MH-04 and mixture dilution toxicity tests.

Notes: Refer to the text and Table A11-1 for information on the dilution concentrations for each test.

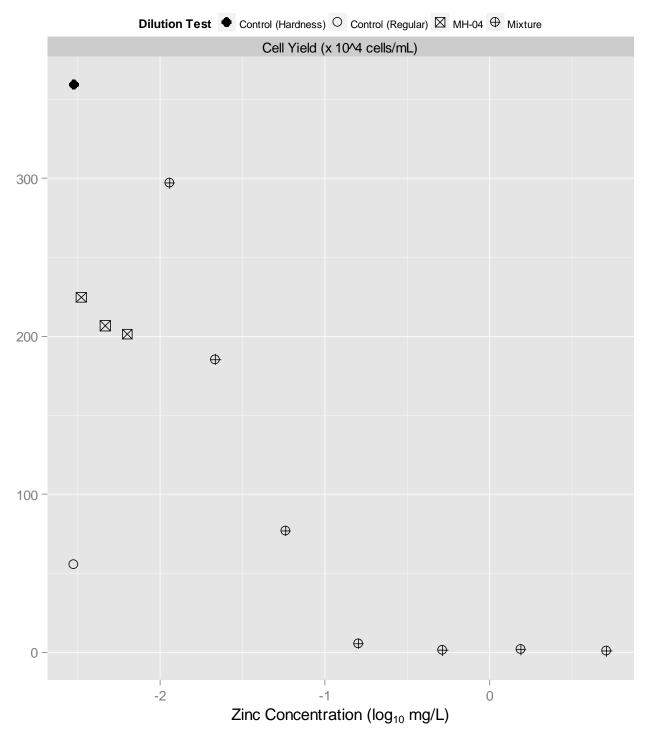


Figure A11-3. Normalized response results for *C. dubia* (survival and reproduction) and *P. subcapitata* (cell yield) in the mixture dilution toxicity test.

BchYg`FYgi`hg`UfY`bcfa U`]nYX`hc`h\Y`%\$\$I 'A <!\$(`X]`i hjcb`Ug`h\Y`Í Wdbhfc`ì 'Zcf`h\Y`A]I hi fY`X]`i hjcb`hcl]MjmihYgh'`9ZZYMg` WdbWbhfUhjcbg`fB7Ł`UfY`XYZjbYX`Ug`BY[`][]V`Y`fD97%\$LZ`@ck 'fB7%\$`hc`97&\$LZ`A cXYfUhY`fB7&\$`hc`97) \$L`UbX`<][\`fD 97) \$L'UbX`<][\`fD 97) \$L'UbX`<][\`f

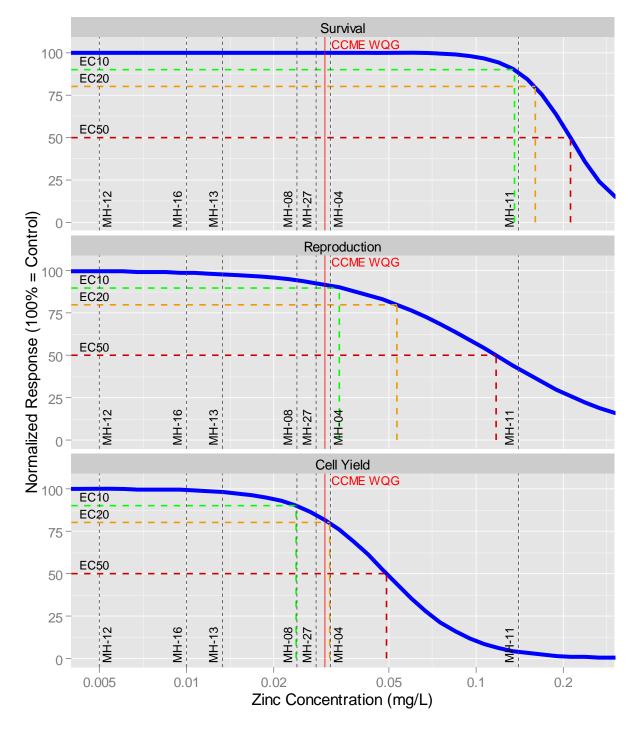


Figure A11-4. Proportion of water quality samples assigned to each risk category when comparing the site-specific zinc concentration against the *P. subcapitata* mixture dilution toxicity test concentration response relationship.

Notes: See Figure A11-3 for information on the risk categories.

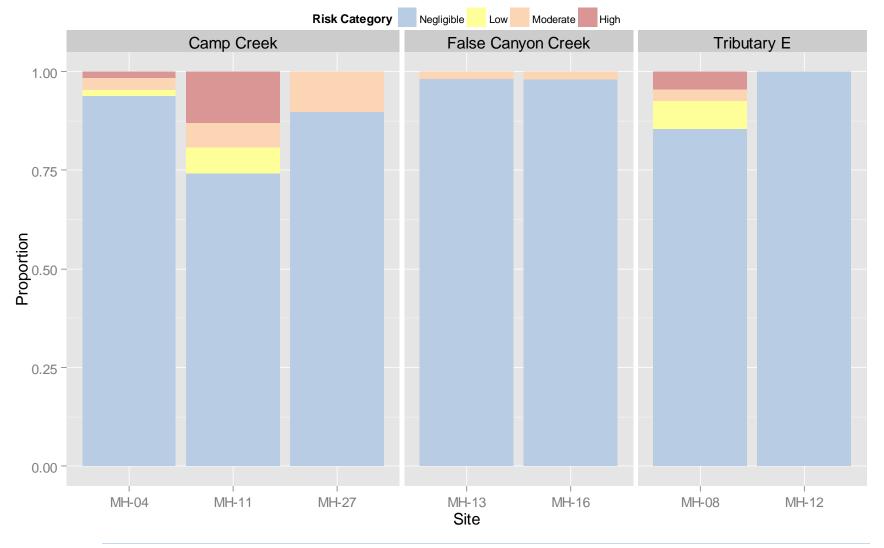


Figure A11-5. Predicted effects to *P. subcapitata* cell yield based on site-specific zinc concentrations, 1999-2013.

Notes: Predicted temporal (year) and seasonal (month) effects based on the dose-response for cell yield and zinc concentration in the Mixture dilution toxicity test.

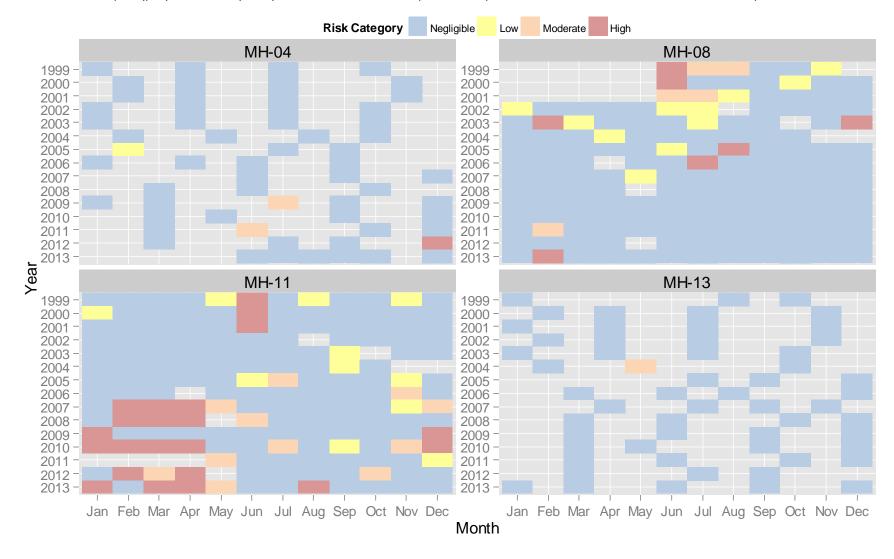


Table A11-1. Toxicity test results and water quality data for the C. dubia and P. subcapitata tests compared against the CCME and YK CSR water quality screening criteria.

	Source Wate	er, Dilution Water, a	nd Mixture Water	Concentrations			-	MH-04 Toxicit	y Test (nomina	concentrations	and tox results)	Mixture Toxicity Tests (nominal concentrations)											
	MH-25 (1380 Portal)	MH-04 (Camp Creek)	Lab Dilution Water ¹	Mixture Water ²	Screeni	ng Criteria ³	MH-04 T	reatment Conc	entrations	C. dubia	P. subca	pitata ⁴		Mix	xture Treatmen	nt Concentration	ns (MH-04 diltu	iion)			C. dubia		P. subco	apitata ⁴
	Lab Results	Lab Results	Lab Results	(85% MH-04, 15% MH-25)	Yukon CSR	ССМЕ	10% MH-04 90% Dilution	50% MH-04 50% Dilution	100% MH-04	LC50 & IC25 / IC50 >100% MH-04	IC25 >10% MH-04	IC50 >100% MH-04	0.1% Mixture 99% MH-04	0.3% Mixture 99.7% MH-04	1% Mixture 99% MH-04	3% Mixture 97% MH-04	10% Mixture 90% MH-04	30% Mixture 70% MH-04	100% Mixture	LC50 4.1% Mixture 95.6% MH-04	IC25 0.9% Mixture 99.1% MH-04	IC50 2.3% Mixture 97.7% MH-04	IC25 0.49% Mixture 95.1% MH-04	
Physical Tests (mg/L)	412	267	212	280			308	200	267	267	308	267	267	267	267	269	260	274	200	269	267	268	267	267
Conductivity Hardness (as CaCO ₃)	413 164	267 154	312 163	289 156			162	290 159	267 154	267 154	162	267 154	267 154	154	154	268 154	269 154	154	289 156	268 154	154	268 154	267 154	267 154
pH (units)	7.6	8.2	8.3	8.1		6.5 - 9.0	8.3	8.3	8.2	8.2	8.3	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.1	8.2	8.2	8.2	8.2	8.2
Total Suspended Solids	26.0	<3.0	<3.0	6.5			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.1	3.3	4.0	6.5	3.1	3.0	3.1	3.0	3.0
Total Dissolved Solids	294	158	198	178			194	178	158	158	194	158	158	158	158	159	160	164	178	159	158	158	158	158
Turbidity	4.5	0.21	0.97	0.85			0.89	0.59	0.21	0.21	0.89	0.21	0.21	0.21	0.22	0.23	0.27	0.40	0.85	0.24	0.22	0.22	0.21	0.22
Anions and Nutrients (mg/L)																								
Alkalinity, Bicarbonate (as CaCO ₃)	38.8	138	110	123			113	124	138	138	113	138	138	138	138	138	137	134	123	137	138	138	138	138
Alkalinity, Carbonate (as CaCO ₃)	<2.0	<2.0	<1.0	2.0			1.1	1.5	2.0	2.0	1.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Alkalinity, Hydroxide (as CaCO ₃)	<2.0	<2.0	<1.0	2.0			1.1	1.5	2.0	2.0	1.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Alkalinity, Total (as CaCO ₃)	38.8	138	110	123			113	124	138	138	113	138	138	138	138	138	137	134	123	137	138	138	138	138
Ammonia (as N) (see footnote 4)	<0.0050	<0.0050	<0.050	0.005			0.046	0.028	0.005	0.005	0.046	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Chloride (CI)	<0.50	<0.50	10.5	0.50			9.5	5.5	0.50	0.50	9.5	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Fluoride (F)	0.076	0.11	0.067	0.11	0.30	0.12	0.072	0.090	0.11	0.11	0.072	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Nitrate (as N) Nitrite (as N)	0.25 <0.0010	0.13 <0.0010	0.85 0.008	0.14 0.001	0.02 - 0.1	3.0 0.060	0.78 0.007	0.49 0.005	0.13 0.001	0.13 0.001	0.78 0.007	0.13 0.001	0.13 0.001	0.13 0.001	0.13 0.001	0.13 0.001	0.13 0.001	0.13 0.001	0.14 0.001	0.13 0.001	0.13 0.001	0.13 0.001	0.13 0.001	0.13 0.001
Total Kjeldahl Nitrogen	0.084	0.090	<0.050	0.001	0.02 - 0.1	0.000	0.054	0.005	0.001	0.001	0.007	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Orthophosphate-Dissolved (as P)	<0.0010	0.002	<0.0010	0.002			0.001	0.070	0.090	0.090	0.034	0.090	0.002	0.090	0.090	0.090	0.090	0.090	0.002	0.090	0.090	0.090	0.002	0.090
Phosphorus (P)-Total Dissolved	<0.0020	<0.0020	0.003	0.002			0.003	0.001	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Phosphorus (P)-Total	0.023	<0.0020	<0.0020	0.005			0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.005	0.002	0.002	0.002	0.002	0.002
Silicate (as SiO ₂)	5.9	5.1	4.8	5.2			4.8	5.0	5.1	5.1	4.8	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.2	5.1	5.1	5.1	5.1	5.1
Sulfate (SO ₄)	168	10.6	15.7	34.2	100		15.2	13.2	10.6	10.6	15.2	10.6	10.6	10.7	10.8	11.3	13.0	17.7	34.2	11.6	10.8	11.1	10.7	10.8
Organic / Inorganic Carbon (mg/L) Dissolved Organic Carbon Total Organic Carbon	<0.50 <0.50	1.2 1.6	1.2 1.7	1.1 1.5			1.2 1.7	1.2 1.7	1.2 1.6	1.2 1.6	1.2 1.7	1.2 1.6	1.2 1.6	1.2 1.6	1.2 1.6	1.2 1.6	1.2 1.6	1.2 1.6	1.1 1.5	1.2 1.6	1.2 1.6	1.2 1.6	1.2 1.6	1.2 1.6
Total Organic curbon	10.50	1.0		1.5			±.,	2.7	1.0	1.0		1.0	2.0	1.0	1.0	110	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0
Total Metals (mg/L)																								
Aluminum (footnote 5)	0.22	0.010	0.003	0.041		0.10	0.004	0.006	0.010	0.010	0.004	0.010	0.010	0.010	0.010	0.011	0.013	0.019	0.041	0.011	0.010	0.010	0.010	0.010
Antimony	0.001	0.0001	<0.00010	0.0003	0.020		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0003	0.0001	0.0001	0.0001	0.0001	0.0001
Arsenic	0.0008	0.0003	<0.00010	0.0004	0.005	0.005	0.0001	0.0002	0.0003	0.0003	0.0001	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003
Barium	0.014	0.019	0.013	0.018	1.0		0.013	0.016	0.019	0.019	0.013	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.018	0.019	0.019	0.019	0.019	0.019
Beryllium Bismuth	<0.00050 <0.0025	<0.00010 <0.00050	<0.00010 <0.00050	0.0002 0.0008	0.005		0.0001	0.0001 0.0005	0.0001 0.0005	0.0001 0.0005	0.0001 0.0005	0.0001 0.0005	0.0001	0.0001	0.0001 0.0005	0.0001 0.0005	0.0001	0.0001 0.0006	0.0002 0.0008	0.0001	0.0001 0.0005	0.0001 0.0005	0.0001	0.0001 0.0005
Boron (footnote 6)	<0.0025 <0.050	<0.010	0.023	0.016		1.5	0.0005 0.022	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005 0.010	0.0005 0.010	0.0005	0.0005	0.0005 0.011	0.0006	0.0008	0.0005 0.010	0.0005	0.0005	0.0005 0.010	0.0005
Cadmium (footnote 7)	0.36	0.0002	<0.00010	0.054	0.00006	0.00023 - 0.00024	0.00003	0.0001	0.0002	0.0002	0.00003	0.0002	0.0003	0.0004	0.0008	0.002	0.006	0.012	0.054	0.010	0.0007	0.010	0.0005	0.0007
Calcium	61.5	55.5	61.8	56.4	0.00000	0.00023 0.00024	61.2	58.7	55.5	55.5	61.2	55.5	55.5	55.5	55.5	55.5	55.6	55.8	56.4	55.5	55.5	55.5	55.5	55.5
Chromium (footnote 8)	<0.00050	0.0002	0.0004	0.0003	0.001	0.001	0.0003	0.0003	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002
Cobalt	0.005	<0.00010	<0.00010	0.0008	0.0009		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0003	0.0008	0.0001	0.0001	0.0001	0.0001	0.0001
Copper (footnote 7)	0.003	<0.00050	<0.00050	0.0008	0.007		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0006	0.0008	0.0005	0.0005	0.0005	0.0005	0.0005
Iron	1.0	0.013	<0.010	0.16		0.30	0.010	0.012	0.013	0.013	0.010	0.013	0.013	0.013	0.015	0.018	0.028	0.058	0.16	0.019	0.014	0.016	0.014	0.014
Lead (footnote 7)	0.61	0.0005	0.00006	0.092	0.006	0.003 - 0.0036	0.0001	0.0003	0.0005	0.0005	0.0001	0.0005	0.0006	0.0008	0.001	0.003	0.010	0.028	0.092	0.004	0.001	0.003	0.0010	0.001
Lithium	<0.0025	0.001	0.002	0.001			0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Magnesium	2.0	2.6	2.2	2.5			2.2	2.4	2.6	2.6	2.2	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.5	2.6	2.6	2.6	2.6	2.6
Manganese	0.18	0.0005	0.0001	0.028	4.0	0.070	0.0002	0.0003	0.0005	0.0005	0.0002	0.0005	0.0006	0.0006	0.0008	0.001	0.003	0.009	0.028	0.002	0.0008	0.001	0.0007	0.0008
Molybdenum	0.0004	0.0006	0.0005	0.0006	1.0	0.073	0.0005	0.0005	0.0006	0.0006	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
Nickel (footnote 7) Phosphorus	0.003 <0.050	<0.00050 <0.050	<0.00050 <0.050	0.0008 0.050	0.11	0.133 - 0.138	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0006 0.050	0.0008 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050	0.0005 0.050
Potassium	0.49	0.39	0.37	0.41			0.37	0.38	0.39	0.39	0.030	0.030	0.39	0.39	0.39	0.39	0.39	0.39	0.41	0.39	0.39	0.030	0.39	0.030
Selenium	0.005	0.0005	0.003	0.001	0.001	0.001	0.003	0.002	0.0005	0.0005	0.003	0.0005	0.0005	0.0005	0.0005	0.0005	0.0006	0.0007	0.001	0.0005	0.0005	0.0005	0.0005	0.0005
Silicon	4.3	2.7	2.2	2.9			2.2	2.4	2.7	2.7	2.2	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.9	2.7	2.7	2.7	2.7	2.7
Silver (footnote 7)	0.0004	<0.000010	<0.000010	0.00007	0.002	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00003	0.00007	0.00001	0.00001	0.00001	0.00001	0.00001
Sodium	0.46	0.71	5.2	0.67			4.7	2.9	0.71	0.71	4.7	0.71	0.71	0.71	0.71	0.71	0.71	0.70	0.67	0.71	0.71	0.71	0.71	0.71
Strontium	0.065	0.18	0.29	0.16			0.28	0.23	0.18	0.18	0.28	0.18	0.18	0.18	0.18	0.18	0.18	0.17	0.16	0.18	0.18	0.18	0.18	0.18
Sulphur	59.2	3.9	5.2	12.2			5.1	4.5	3.9	3.9	5.1	3.9	3.9	3.9	3.9	4.1	4.7	6.3	12.2	4.2	3.9	4.0	3.9	3.9
Thallium	<0.000050	<0.000010	<0.000010	0.00002	0.0003	0.0008	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001
Tin	<0.00050	<0.00010	0.0006	0.0002	0.40		0.0006	0.0004	0.0001	0.0001	0.0006	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001
Titanium	<0.050	<0.010	<0.010	0.016	0.10 0.30	0.015	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.011	0.012	0.016	0.010	0.010	0.010	0.010	0.010
Uranium Vanadium	0.00010 <0.0050	0.0006 <0.0010	0.001 <0.0010	0.0006 0.002	0.30	0.015	0.001 0.001	0.001 0.001	0.0006 0.001	0.0006 0.001	0.001 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.002	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001	0.0006 0.001
Zinc (footnote 7)	34.2	0.006	<0.0030	5.1	0.090	0.030	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.16	0.52	1.5	5.1	0.001	0.001	0.001	0.001	0.001
Dissolved Metals (mg/L)	-0.0050	0.000	0.000	0.000		0.10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aluminum (footnote 5)	<0.0050	0.002	0.003	0.002	0.020	0.10	0.003	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Antimony	<0.00050 <0.00050	0.0001 0.0003	<0.00010	0.0002 0.0004	0.020	0.005	0.0001 0.0001	0.0001 0.0002	0.0001 0.0003	0.0001 0.0003	0.0001	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0002 0.0004	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003	0.0001 0.0003
Arsenic Barium	<0.00050 0.010	0.0003	<0.00010 0.013	0.0004	1.0	0.005	0.0001	0.0002	0.0003	0.0003	0.0001 0.014	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003
Beryllium	<0.00050	<0.00010	<0.0010	0.002	0.005		0.0014	0.0001	0.020	0.020	0.0014	0.020	0.020	0.020	0.020	0.020	0.020	0.019	0.018	0.020	0.020	0.020	0.020	0.020
Bismuth	<0.0025	<0.00010	<0.00010	0.0002	2.005		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001
Jishina Cir													5.5005	0.0003								5.5555		
Boron (footnote 6)	<0.050	<0.010				1.5	0.025	0.019	0.010	0.010	0.025	0.010	0.010	0.010	0.010	0.010	0.011	0.012	0.016	0.010	0.010	0.010	0.010	0.010
Boron (footnote 6) Cadmium (footnote 7)			0.027 <0.000010	0.016 0.050	0.00006	1.5 0.00023 - 0.00024	0.025 0.00003	0.019 0.0001	0.010 0.0002	0.010 0.0002	0.025 0.00003	0.010 0.0002	0.010 0.0003	0.010 0.0004	0.010 0.0007	0.010 0.002	0.011 0.005	0.012 0.015	0.016 0.050	0.010 0.002	0.010 0.0007	0.010 0.001	0.010 0.0005	0.010 0.0006
	<0.050	<0.010	0.027	0.016	0.00006																			
Cadmium (footnote 7)	< <u>0.050</u> 0.33	< <u>0.010</u> 0.0002	0.027 <0.000010	0.016 0.050	0.00006 0.001		0.00003	0.0001	0.0002	0.0002	0.00003	0.0002	0.0003	0.0004	0.0007	0.002	0.005	0.015	0.050	0.002	0.0007	0.001	0.0005	0.0006

Table A11-1. Toxicity test results and water quality data for the C. dubia and P. subcapitata tests compared against the CCME and YK CSR water quality screening criteria.

	Source Wate	Source Water, Dilution Water, and Mixture Water Concentrations						MH-04 Toxicit	ty Test (nomina	l concentrations	and tox result	s)					Mixture	Toxicity Test	s (nominal conc	entrations)				
	MH-25 (1380 Portal)	MH-04 (Camp Creek)	Lab Dilution Water ¹	Mixture Water ²	Screenii	ng Criteria ³	MH-04 T	reatment Conc	entrations	C. dubia	P. subc	apitata ⁴		Mi	xture Treatmer	nt Concentratio	ns (MH-04 diltu	ion)			C. dubia		P. subc	capitata ⁴
	Lab Results	Lab Results	Lab Results	(85% MH-04, 15% MH-25)	Yukon CSR	ССМЕ	10% MH-04 90% Dilution	50% MH-04 50% Dilution	100% MH-04	LC50 & IC25 / IC50 >100% MH-04	IC25 >10% MH-04	IC50 >100% MH-04	0.1% Mixture 99% MH-04	0.3% Mixture 99.7% MH-04	1% Mixture 99% MH-04	3% Mixture 97% MH-04	10% Mixture 90% MH-04	30% Mixture 70% MH-04	100% Mixture	LC50 4.1% Mixture 95.6% MH-04	1C25 0.9% Mixture 99.1% MH-04	IC50 2.3% Mixture 97.7% MH-04	IC25 0.49% Mixture 95.1% MH-04	
Copper (footnote 7)	<0.0010	<0.00020	0.0005	0.0003	0.007		0.0004	0.0003	0.0002	0.0002	0.0004	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002
Iron	<0.010	<0.010	< 0.010	0.010		0.30	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
Lead (footnote 7)	0.047	0.0003	<0.000050	0.007	0.006	0.003 - 0.0036	0.00007	0.0002	0.0003	0.0003	0.00007	0.0003	0.0003	0.0003	0.0003	0.0005	0.0010	0.002	0.007	0.0005	0.0003	0.0004	0.0003	0.0003
Lithium	<0.0025	0.001	0.002	0.001			0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Magnesium	1.8	2.7	2.2	2.6			2.2	2.4	2.7	2.7	2.2	2.7	2.7	2.7	2.7	2.7	2.7	2.6	2.6	2.7	2.7	2.7	2.7	2.7
Manganese	0.092	0.0002	0.0001	0.014			0.0001	0.0002	0.0002	0.0002	0.0001	0.0002	0.0002	0.0002	0.0003	0.0006	0.002	0.004	0.014	0.0008	0.0003	0.0005	0.0003	0.0003
Molybdenum	<0.00025	0.0006	0.0005	0.0006	1.0	0.073	0.0005	0.0005	0.0006	0.0006	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006
Nickel (footnote 7)	<0.0025	<0.00050	<0.00050	0.0008	0.11	0.133 - 0.138	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0006	0.0008	0.0005	0.0005	0.0005	0.0005	0.0005
Phosphorus	<0.050	<0.050	<0.050	0.050			0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
Potassium	0.49	0.37	0.37	0.39			0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.39	0.37	0.37	0.37	0.37	0.37
Selenium	0.005	0.0006	0.003	0.001	0.001	0.001	0.003	0.002	0.0006	0.0006	0.003	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0008	0.001	0.0006	0.0006	0.0006	0.0006	0.0006
Silicon	3.2	2.8	2.2	2.8			2.2	2.5	2.8	2.8	2.2	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Silver (footnote 7)	<0.000050	<0.000010	<0.000010	0.00002	0.002	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001
Sodium	0.38	0.72	4.8	0.67			4.4	2.7	0.72	0.72	4.4	0.72	0.72	0.72	0.72	0.72	0.72	0.71	0.67	0.72	0.72	0.72	0.72	0.72
Strontium	0.061	0.18	0.29	0.16			0.28	0.24	0.18	0.18	0.28	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.16	0.18	0.18	0.18	0.18	0.18
Sulphur	58.1	3.9	5.2	12.0			5.0	4.5	3.9	3.9	5.0	3.9	3.9	3.9	4.0	4.1	4.7	6.3	12.0	4.2	3.9	4.1	3.9	3.9
Thallium	<0.000050	<0.000010	<0.000010	0.00002	0.0003	0.0008	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001
Tin	<0.00050	<0.00010	0.0006	0.0002			0.0005	0.0003	0.0001	0.0001	0.0005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001
Titanium	<0.050	<0.010	< 0.010	0.016	0.10		0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.011	0.012	0.016	0.010	0.010	0.010	0.010	0.010
Uranium	<0.000050	0.0006	0.001	0.0005	0.30	0.015	0.001	0.001	0.0006	0.0006	0.001	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006
Vanadium	<0.0050	<0.0010	<0.0010	0.002			0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001
Zinc (footnote 7)	30.4	0.005	0.004	4.6	0.090	0.030	0.004	0.004	0.005	0.005	0.004	0.005	0.009	0.018	0.050	0.14	0.46	1.4	4.6	0.19	0.046	0.11	0.027	0.042

N----

 $^{^{\}rm 1}$ Diluted Perrier water (hardness 160 mg/L CaCO $_{\rm 3})$ was used for in the toxicity tests.

² Mixture concentrations reported here are based on nominal concentrations calculated using the chemistry data from MH-04 and MH-25 collected at the same time as the water for toxicity testing was collected.

Note: Analytes in MH-25 and MH-04 source water that were < DL were set = to the DL when calculating the concentration in the Mixture.

 $^{^{\}rm 3}$ Screening criteria applied in the AERA are:

i) Yukon Contaminated Sites Regulation, Schedule 3 - Generic Numerical Water Standards. The Yukon CSR aquatic life standard assumes a minimum dilution factor of 1:10. The values shown here were derived by dividing the standards by 10 in accordance with Protocol 6 (Yukon CSR 2002).

ii) CCME (Canadian Council of Ministers of the Environment) Canadian Water Quality Guidelines for the Protection of Aquatic Life.

 $^{^4\,}$ P. subcapitata growth inhibition (ICxx) was calculated using hardness adjusted control water.

⁵ The CCME Guideline and Yukon CSR Standard for ammonia is temperature and pH-dependent. Screening was done using a water temperature of 10°C.

 $^{^{\}rm 6}\,$ The CCME aluminum guideline is pH-dependent.

⁷ The CCME boron guideline is applied seperately for short term exposure (29 mg/L) and long term exposure (1.5 mg/L). The long-term guideline was used fro screening in the AERA.

⁸ The CCME Guideline and Yukon CSR Standards are hardness dependent for the following metals: cadmium, copper, lead, nickel, silver (Yukon CSR only), and zinc (Yukon CSR only).

Note: the range (minimum and maximum) of the CCME hardness-dependent guideline values was derived using the nominal hardness values calculated for each toxicity test concentration.

Chromium guideline is for Cr(VI).

¹⁰ The CCME uranium guideline is applied seperately for short term exposure (0.033 mg/L) and long term exposure (0.015 mg/L). The long-term guideline was used fro screening in the AERA.

Bold values indicate the concentration exceeds the Yukon CSR Aquatic Life Standard.

Shaded cells indicate the concentration exceeds the CCME guideline value.

Table A11-2. Ceriodaphnia dubia effects sizes for the MH-04 and mixture dilution series toxicity tests.

	Tes	t Endpoint	3			Wa	ter Chemistry	y Data Compa	red to the Mix	ture Dilution S	eries Test Res	ults
				Nominal								
	Survival	Repro	duction	Zinc ⁴			Camp Creek		False Can	yon Creek	Tribu	ıtary E
Treatment	(%)	Mean	SD	(mg/L)		MH-04	MH-27	MH-11	MH-13	MH-16	MH-08	MH-12
Laboratory Control	90	19.4	5.1	<0.003	Measured Zinc Concentra	ation (mg/I) ⁴						
Laboratory Control	30	13.1	3.1	10.003	95th Percentile [Zn]	0.032	0.028	0.139	0.013	0.010	0.024	0.005 (max)
MH-04 Dilution Series ¹					Mean [Zn]	0.011	0.018	0.035	0.0088	0.0075	0.011	0.005 (max)
10% MH-04	90	19.8	7.2	0.003								(,
50% MH-04	100	21.1	2.1	0.005	SRK WQ Predictions for Z	inc (mg/L) ⁵						
100% MH-04	100	20.4	20.4	0.006	Expected (average) ⁴	0.016	N/A	0.039	0.011	0.006	0.006	0.007
					Conservative ⁴	0.115	N/A	0.061	0.017	0.009	N/A	0.023
Mixture Dilution Series ²							·				•	
0.1% mixture	100	20.2	20.2	0.011	Potential Effects? ⁶							
0.3% mixture	100	20.7	20.7	0.022	Survival							
1% mixture	90	14.7	14.7	0.058	95th Percentile [Zn]	Negligible	Negligible	Low	Negligible	Negligible	Negligible	Negligible
3% mixture	80	8.5	8.5	0.16								
10% mixture	0	0	0	0.52	Reproduction							
30% mixture	0	0	0	1.5	95th Percentile [Zn]	Negligible	Negligible	High	Negligible	Negligible	Negligible	Negligible
100% mixture	0	0	0	5.1								
Mixture Dilution Series Ef	fects Concentra	ations (mg/	/L) ⁷									
Survival (LC50)				0.22								
Reproduction (IC25)				0.052								
Reproduction (IC50)				0.12								

³ The following effect size ratings were applied when interpreting the Mixture Dilution Series Testing results relative to the Laboratory Control:

Negligible effect	<10% reduction in survival or mean reproduction
Low effect	10-20% reduction in survival or mean reproduction
Moderate effect	20-50 % reduction in survival or mean reproduction
High effect	> 50 % reduction in survival or mean reproduction

⁴ The following formatting was applied to the nominal (i.e., calculated) total zinc concentrations, the station-specific 95th percentile concentrations, and the SRK WQ predictions:

Regular text concentration exceeds the CCME guideline value (0.03 mg/L).

¹ The MH-04 dilution series effects size are compared against the laboratory control (adjusted to MH-04 hardness).

 $^{^{2}}$ The Mixture dilutions series are compared against the 100% MH-04 treatment.

⁵ Post-closure water quality predictions were developed by SRK (2014d). Zinc concentrations shown for the expected and conservative case scenarios are for the worst-case month (i.e., highest concentration).

⁶ <u>Potential effects ratings</u> are defined by comparing the site-specific water chemistry data (95th percentile and mean) at each station to the concentration-response relationship in the Mixture Dilution Series. The ratings listed above are then applied to the survival and reproduction endpoints for each Station.

⁷ Presented in **Table A11-1**.

Table A11-3. Pseudokirchneriella subcapitata growth inhibition for the MH-04 and mixture dilution series toxicity tests.

	Test En	dpoint ³			Wa	ter Chemistr	y Data Compa	red to the Mix	ture Dilution S	eries Test Re	sults
			Nominal								
	Cell Yield (x 1	.0 ⁴ cells/mL)	Zinc ⁴			Camp Creek		False Can	yon Creek	Trib	utary E
Treatment	Mean	SD	(mg/L)		MH-04	MH-27	MH-11	MH-13	MH-16	MH-08	MH-12
Laboratory Control	55	10.3	<0.003	_			_				_
Hardness-adjusted Control	359	36.5	< 0.003	Measured Zinc Concent	ration (mg/L)	4					
				95th Percentile [Zn]	0.032	0.028	0.139	0.013	0.010	0.024	0.005 (max)
MH-04 Dilution Series ¹				Mean [Zn]	0.011	0.018	0.035	0.0088	0.0075	0.011	0.005 (max)
10% MH-04	225	12.0	0.003								
50% MH-04	207	11.5	0.005	SRK WQ Predictions ⁵							
100% MH-04	202	25.2	0.006	Expected (average) ⁴	0.016	N/A	0.039	0.011	0.006	0.006	0.007
				Conservative ⁴	0.115	N/A	0.061	0.017	0.009	N/A	0.023
Mixture Dilution Series ²						,				,	
0.1% mixture	297	31.3	0.011	Potential Effects to Cell	Yield? ^{6,7}						
0.3% mixture	186	23.5	0.022	95th Percentile [Zn]	Moderate	Low	High	Negligible	Negligible	Low	Negligible
1% mixture	77	14.1	0.058								
3% mixture	5.5	3.8	0.16								
10% mixture	1.25	1.9	0.52								
30% mixture	1.75	0.5	1.5								
100% mixture	0.75	1.0	5.1								
Mixture Dilution Series Effect	s Concentrations	(mg/L) ⁸									
Growth (IC25)			0.031								
Growth (IC50)			0.048								

³ The following effect size ratings were applied when interpreting the Mixture Dilution Series Testing results relative to the Laboratory Control:

Negligible effect	<10% reduction in cell yield
Low effect	10-20% reduction in cell yield
Moderate effect	20-50 % reduction in cell yield
High effect	> 50 % reduction in cell yield

⁴ The following formatting was applied to the nominal (i.e., calculated) total zinc concentrations, the station-specific concentrations (95th percentile and average), and the SRK WQ predictions:

Regular text concentration exceeds the CCME guideline value (0.03 mg/L).

¹ The MH-04 dilution series effects size are compared against the hardness-adjusted laboratory control.

 $^{^{2}}$ The Mixture dilutions series are compared against the 100% MH-04 treatment.

⁵ Post-closure water quality predictions were developed by SRK (2014d). Zinc concentrations shown for the expected and conservative case scenarios are for the worst-case month (i.e., highest concentration).

⁶ Potential effects? are defined based on a comparison of the site-specific water chemistry data (95th percentile and mean) at each station to the concentration-response relationship in the Mixture Dilution Series test.

⁷ Refer to Table A11-5 for details on the percentage of data in the various effect size categories.

⁸ Presented in Table A11-1.

Table A11-4. Water effect ratio (WER) test results for the 48-hr Ceriodaphnia dubia survival tests.

COPC Control Survival Control Survival Control Contr		La	boratory Wat	er	Site	Water (MH-	04)			Water	Chemistry Da	ta Compared to	the WER Test	Results	
Concentration Concentratio		Conce	ntration	Survival	Concentra	tion (µg/L)	Survival ³			Camp Creek		False Can	yon Creek	Tribu	tary E
Aluminum Substitution Substitu	СОРС	Nominal	Measured		Nominal	Measured		Summary ¹	MH-04	MH-27	MH-11	MH-13	MH-16	MH-08	MH-12
Muminum (dissolved play 1000 312 0 Footnote 282 0 1000 312 0 329		Control	<200	100		1.6	100	Measured Concentrations							
Classified 100 312 0 329 0 344 0 399 0 0 0 0 0 0 0 0 0		250	172	45		171	55	Concentration (Max) ²	25.4	5.3	6.2	6.0	5.6	7.3	21.4
Measured Concentrations Measured Concent	Aluminum	500	301	0	Footnote 5	282	0	Potential effects ⁴	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
		1000	312	0	1 dottriote 3	329	0		0 0		0 0	0 0	0 0	0.0	0 0
Mathematical Registration	•	2000	320	0		344	0								
Control Cont	11-07-17	4000	344	0		399	0								
Control Color Co		LC50	~ 1	72		~ 1	71								
Cadmium 1.25 1.25 1.00		WER			~1.0										
12.5 12.5 10.0		Control	<0.05	100	Control	0.2	90	Measured Concentrations							
Cadmium Cad		6.25	6	100	25	22.9	100	Concentration (95th)	0.38	0.22	0.74		0.17	0.17	0.074 (max)
Sol								Potential effects	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
100 87.3 0 400 387 0 410 387 0 Conservative 2.8 N/A 0.4 0.3 0.1 0.2 0.18 0.2 0.2 0.18 0.2								,							
Control 40.5 10.0 41.5 21.9 10.0 41.5 31.0 41.5	(total [μg/L])							•							
The content of the															
Control Chromium A175 A13 100 Footnote 5 100 A181 0.36 (max)			19.4 (17	.2-21.9)		46.1 (39	.3-54.0)	Conservative	2.8	N/A	1.0	0.5	0.1	N/A	0.2
Chromium 175 178.5 91.3 100 1181 0.0 100 0.10 1.5 0.95 0.10					2.4										
Chromium 175 178.5 95 70 178.5 95 70 181 0 175 178.5 95 734 0 175 178.5 95 734 0 175 178.5 95 734 0 175 178.5 95 734 0 175 178.5 95 734 0 175 178.5 95 175 178.5 95 178.5										0.40		0.05	0.40		0.05/
Chromium (total [µg/L]) 350 357.5 0 353 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 353 0 357.5 0 361.8 (Sa.3 - 5.6)								, ,							, ,
Clotal [μg/L] 350 357.5 0 353 0 700 732.5 0 734 0 0 0 0 0 0 0 0 0	Chromium				Footnote 5			Potential effects	Megligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
Total To															
LCS0	(τοται [μβ/ ε]/														
Control Control Control Control Control Control Control Control Control Concentration C					LC50										
1.56 3.15 100		WER		-	0.3										
Signature Sig		Control	<0.5	100		<0.5	100	Measured Concentrations							
Copper (total [μg/L]) 6.25 5.91 95 Footnote 5 (total [μg/L]) 8.89 (total [μg/L]) 12.5 (total [μg/L]) 12.5 (total [μg/L]) 12.5 (total [μg/L]) 12.5 (total [μg/L]) 10.8 (total [μg/L]) 0.02 (total [μg/L]) 95 (total [μg/L]) Measured Concentrations Concentration (95th) 0.2 (total [μg/L]) 0.42 (total [μg/L]) 0.93 (total [μg/L]) 0.85 (total [μg/L]) 0.38 (total [μg/L]) Negligible (total [μg/L]) <td></td> <td>1.56</td> <td>3.15</td> <td>100</td> <td></td> <td>2.97</td> <td>100</td> <td>Concentration (95th)</td> <td>1.7</td> <td>1.7</td> <td>3.4</td> <td>4.3</td> <td>1.5</td> <td>4.3</td> <td>0.82 (max)</td>		1.56	3.15	100		2.97	100	Concentration (95th)	1.7	1.7	3.4	4.3	1.5	4.3	0.82 (max)
Copper 6.25 5.91 95 8.89 100 11.5 10.8 0 15.8 40 25 22.8 0 28.8 10 1.5 10.8 0 15.2 12.8 1.9		3.13	3.31	100	Footpoto F	4.7	100	Potential effects	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
25 22.8 0 28.8 10	Copper	6.25	5.91	95	Footilote 3	8.89	100								
LC50 7.8 (7.3 - 8.2) LC50 15.2 (12.8 - 18.1)	(total [μg/L])	12.5	10.8	0		15.8	40								
Control 0.05 100 1.09 2.5 0.1 90 2.1 100 Concentrations Concentration 95th 0.2 0.16 0.42 0.93 0.85 0.38 0.30 (max)															
Control 0.05 100 0.02 90 Measured Concentrations			7.8 (7.3	3 – 8.2)		15.2 (12.	8 – 18.1)								
2.5 0.1 90 4.6 (3.1 – 6.6) 2.1 100 Concentration (95th) 0.2 0.16 0.42 0.93 0.85 0.38 0.30 (max) Concentration (95th) 0.2 0.16 0.42 0.93 0.85 0.38 0.30 (max) Potential effects Negligible					1.9										
S 3.8 65 Footnote 5 4.9 65 Potential effects Negligible Negligibl															
Iron 10 9.1 20 Footnote 5 9.2 5 (total [mg/L]) 20 18.1 10 19.5 5 40 37 0 37.3 0 LC50 4.6 (3.1 - 6.6) LC50 5.7 (4.8 - 6.9)								, ,							
(total [mg/L]) 20 18.1 10 19.5 5 40 37 0 37.3 0 LC50 4.6 (3.1 – 6.6) LC50 5.7 (4.8 – 6.9)	Iron				Footnote 5			Potential effects	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
40 37 0 37.3 0 LC50 4.6 (3.1 – 6.6) LC50 5.7 (4.8 – 6.9)															
LC50 4.6 (3.1 – 6.6) LC50 5.7 (4.8 – 6.9)	(total [IIIg/L])														
			_		1050										
		WER	(512	5.01		J., (410	3.5,								

Table A11-4. Water effect ratio (WER) test results for the 48-hr Ceriodaphnia dubia survival tests.

	La	boratory Wat	er	Site	Water (MH-0	04)			Water	Chemistry Dat	a Compared to	the WER Test	Results	
	Conce	ntration	Survival	Concentra	tion (µg/L)	Survival ³			Camp Creek		False Can	yon Creek	Tribu	tary E
СОРС	Nominal	Measured	(%)	Nominal	Measured	(%)	Summary ¹	MH-04	MH-27	MH-11	MH-13	MH-16	MH-08	MH-12
	Control	<0.05	100		0.29	100	Measured Concentrations							_
	62.5	28.6	100		40.5	100	Concentration (95th)	19.7	34.7	46.1	6.9	7.0	6.3	1.6 (max)
	125	61.8	100	Footnote 5	47.1	100	Potential effects	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible	Negligible
Lead	250	133	100	roothote 3	188	100								
(total [µg/L])	500	301	85		244	70	SRK WQ Predictions							
	1000	329	0		623	0	Expected (average)	7.0	N/A	8.0	2.0	2.0	6.0	7.0
	LC50	294 (273.5	5 – 316.1)	LC50	325.4 (287.	8 – 367.9)	Conservative	23	N/A	13	3.0	3.0	N/A	2.0
	WER			1.1										
	Control	<3.0	100		7.0	100	Measured							_
	50	41.4	90		44.4	90	Concentration (95th)	31.5	28.1	139	13.3	10.0	24.4	5.0 (max)
	100	73.9	80	Footnote 5	81.2	65	Potential effects	Negligible	Negligible	High*	Negligible	Negligible	Negligible	Negligible
Zinc	200	158.5	40	roothote 3	152	20								
(total [µg/L])	400	332.5	25		330	0	SRK WQ Predictions							
	800	638.5	0		671.5	0	Expected (average)	16	N/A	39	11	6.0	6.0	7.0
	LC50	146.7 (108.	4 – 198.6)	LC50	97.7 (78.5	- 121.5)	Conservative	115	N/A	61	17	9.0	N/A	23
	WER	•		0.7	•	•								

LC50 = the concentration resulting 50% lethality in the test.

WER = Site Water LC50 ÷ Laboratory Water LC50

Negligible effect <10% reduction in survival or mean reproduction

Low effect 10-20% reduction in survival or mean reproduction

Moderate effect 20-50 % reduction in survival or mean reproduction

High effect > 50 % reduction in survival or mean reproduction

¹ The summary section outlines the concentration (µg/L) and statistic (Max or 95th percentile) used to compare against the results of the WER tests for each COPC.

² The maximum concentration was calculated for each site because of the limited amount of data (i.e., dissolved aluminum was only available for 2013).

³ The following effect size ratings were applied when interpreting the survival data results relative to the control treatment for each COPC:

⁴ Potential effects ratings are defined by comparing the site-specific water chemistry data at each station to the concentration-response relationship in the Site Water (MH-04) test. The ratings listed above are then applied to each station.

^{*} The MH-11 zinc concentration is between a moderate and high effect rating, so the station concentration was compared to the zinc LC50 results to help inform the magnitude rating (>LC50 of 97.7 µg/L = "High effect").

⁵ Nominal concentration same as the laboratory water test.

⁶ Post-closure water quality predictions were developed by SRK (2014d) for cadmium, lead, and zinc. Concentrations shown for the expected and conservative case scenarios are for the worst-case month (i.e., highest concentration). N/A = no water quality predictions available for the station/COPC combination.

Table A11-5. Predicted risk ratings for site-specific water quality data compared to the concentration response relationship for effects to *P. subcapitata* cell yield from zinc.

				Risk	Ratings ¹	
Drainage	Station	N	Negligible	Low	Moderate	High
	MH-04	66	94	2	3	2
Camp Creek	MH-27	10	90	0	10	0
	MH-11	171	74	6	6	13
Falso Canyon Crook	MH-13	58	98	0	2	0
False Canyon Creek	MH-16	52	98	0	2	0
Tributan, F	MH-08	159	86	7	3	4
Tributary E	MH-12	2	100	0	0	0

 $^{^{\}mathrm{1}}$ Water chemistry data from 1999 to 2013 compared to the CCR for the mixture dilution toxicity test.

12. PERIPHYTON COMMUNITY TOXICITY THRESHOLDS

12.1. LOE Description

This LOE compares surface water zinc concentrations from the Site to a literature-based concentration-response relationship for periphyton. It applies to the aquatic plant receptor group and was added to the WOE assessment after the Updated PF (Azimuth 2014d) was issued in September 2014. To support this LOE, Azimuth conducted a literature review on the effects of aqueous zinc exposure to periphyton communities. Similar to derivation procedures for guidelines, we evaluated the publications for ecological relevance, the range of exposure concentrations tested/measured, and data quality. Five studies²¹ were identified in the literature review and carried forward for a more thorough analysis of their potential use in this LOE. Of 5 papers reviewed, Hill et al., 2000 was considered the most relevant for incorporating into the WOE assessment for the following reasons:

- 1. The study was conducted a watershed influenced by mining-related contamination in the Rock Mountains,
- 2. Effects endpoints were measured on the resident periphyton community inhabiting the stream (i.e., ecologically relevant receptor),
- 3. Zinc concentrations spanned the range of concentrations observed downstream from Sä Dena Hes, and
- 4. There was a dose-response relationship between zinc exposure and effects measured in the periphyton endpoints, meaning the study endpoints were sensitive enough to detect effects at concentrations representative of those observed downstream from Sä Dena Hes.

12.2. Data Analysis

This LOE relies on field data presented by Hill et al., 2000 on effects to the stream periphyton community in the Eagle River, a mining impacted river in central Colorado, USA. The periphyton community was assessed in 1991 and 1992 using assemblage information (taxa richness, community similarity) and other measures (biomass, chlorophyll-a autotrophic index²²) from periphyton samples collected from artificial substrates at 12 locations, two upstream of mine influence and 10 downstream. Water chemistry data was collected from each of the locations and analyzed for dissolved metals and other routine water quality parameters.

Table A12-1 presents the periphyton endpoint results and dissolved metals concentrations from the Hill et al., 2000 study. The authors noted that dissolved cadmium, iron, manganese, and zinc showed clear

A-96

²¹ Admiraal et al., 1999; Blanck et al., 2003; Hill et al., 2000; Pandy et al., 2015; Paulsson et al., 2000. The studies are listed in the reference section of the main report (Volume 3).

²² The autotrophic index is the ratio of biomass: chlorophyll-a.

spatial trends in the study as the Eagle River flowed past mining-impacted areas. For the purpose of the AERA, metals showing an upstream to downstream increase in concentration were screened against the CCME WQG to determine which metals are likely linked to the effects observed in the periphyton endpoints. Cadmium and zinc consistently exceeded the CCME WQGs at the downstream locations in 1991, but only zinc was greater than 10-times the reported detection limits. In the 1992 study, the DL for cadmium dropped from 0.0003 mg/L to 0.0005 mg/L, and only two of the downstream stations had cadmium concentrations above the DL. Zinc exceed the CCME WQG at 9 of the 10 downstream locations in 1992, with concentrations ranging from <0.008 mg/L upstream of mine influence to 0.51 mg/L near the source (i.e., mine tailings). By comparison, the zinc concentrations (95th percentile) downstream from Sä Dena Hes are lower and range between 0.01 mg/L at MH-16 in False Canyon Creek to 0.14 mg/L at MH-11.

The spatial distribution of zinc exceedances reported in Hill et al., 2000 provide convincing evidence that any observed effects to the periphyton community in Eagle Creek were likely due zinc. For this reason, zinc was the only contaminant used to develop the CCR with the periphyton endpoints (i.e., any effects measured were attributed to zinc). The CCR between periphyton endpoints and zinc concentrations was developed in R using the drc package (Analysis of Dose-Response Curves [version 2.5-12]). The initial step in the analysis involved normalizing the downstream periphyton response data to the upstream reference results. Data were normalized by year using the lowest ash-free dry weight, chlorophyll-a, and autotrophic index and the highest richness of the two upstream reference locations. The normalized response data from 1991 and 1992 was then combined to develop the CCR for each endpoint shown in Figure A12-1. The two parameter log-logistic function from the drc package was used to fit the curve to each CCR. The slope and ICxx concentrations (mg/L) for each periphyton endpoint are shown below.

Endpoint	Slope	IC10	IC20	IC50
Ash-free dry wt	0.450	0.404	2.44	53.0
Autotrophic Index	2.022	0.305	0.455	0.903
Chlorophyll-a	1.859	0.113	0.174	0.368
Richness	0.524	0.078	0.365	5.2

12.3. LOE Attributes

12.3.1. Data Quality

Acceptable – The acceptability of the water chemistry data from the long-term dataset was discussed in **Section 2**. Water quality data and periphyton community data reported by Hill et al., 2000 was considered acceptable for use in developing CRRs.

12.3.2. Ecological Relevance

Moderate – Typically, a literature based LOE (including data supporting environmental quality guidelines) is given a "low" rating for ecological relevance. In this case, effect levels (ICxx) for the various periphyton endpoints are derived from a field survey where data were collected on the resident

periphyton community; endpoints are highly ecologically relevant. However, because data are from the literature (another site) and not from the Sä Dena Hes receiving environment, an overall rating of moderate is considered appropriate for the ecological relevance of this LOE.

12.3.3. Magnitude

Magnitude Interpretive Framework

To be protective, the effect-size ratings shown below were applied to the monitoring station with the highest zinc concentration in each drainage (based on 95th percentile): MH-08 for Tributary E, MH-11 for Camp Creek, and MH-13 for False Canyon Creek. Zinc concentrations at each of these stations were then compared to the CCR developed from the Hill et al., 2000 study as described above in Section 12.2. Risk ratings for the various stations were based on comparison of site-specific zinc concentration data (95th percentile) to the most sensitive of the endpoints: chlorophyll-*a* and species richness.

- Negligible Effects: zinc concentration is less than the IC10 concentration.
- Low Effects: Zinc concentration is between the IC10 and IC20 effects range for the periphyton endpoints.
- Moderate Effects: Zinc concentration is between the IC20 and IC50 effects range for the periphyton endpoints.
- High Effects: Zinc concentration is greater than the IC50 effects range for the periphyton endpoints.

Figure A12-1 shows the zinc concentration at MH-08, MH-11, and MH-13 plotted on the dose-response curves for the different periphyton endpoints. Magnitude of effect ratings for the primary producer community is summarized below by drainage.

Camp Creek

- Magnitude of Effect:
 - Low at MH-11 (reduced chlorophyll-a and species richness)
 - Negligible all other stations

The 95th percentile zinc concentration at MH-11 of 0.14 mg/L (140 μ g/L) was between the IC10 and IC20 effects range for reduced chlorophyll-a in the periphyton samples from the Hill et al., 2000 study. Low-level effects to species richness (structural changes) were also predicted for MH-11, which corresponds with the findings of the toxicity tests that showed reduced cell yield in P. subcapitata at zinc concentrations representative of MH-11 (Section 11.3.3). No effects to biomass (ash-free dry weight) were predicted at MH-11 or other locations in Camp Creek. The overall magnitude rating for this LOE assessing risks to periphyton communities in Camp Creek is considered low.

False Canyon Creek

• Magnitude of Effect:

Negligible – all stations

The conservative 95th percentile zinc concentration at MH-13 and MH-16 in False Canyon Creek are below the concentrations shown to cause effects to periphyton biomass, chlorophyll-*a* production, autotrophic index, and species richness in the Hill et al., 2000 study.

Tributary E

- Magnitude of Effect:
 - Negligible all stations

The conservative 95th percentile zinc concentration at MH-08 and maximum concentration at MH-12 are below the concentrations shown to cause effects to periphyton biomass, chlorophyll-*a* production, autotrophic index, and species richness in the Hill et al., 2000 study.

Uncertainty About Magnitude

High for Effects – Uncertainty related to extrapolating this LOE to effects to aquatic plants at the Site is considered high because it does not incorporate any site-specific information on local water characteristics, the mixture of COPCs specific to the Site (e.g., lead), or resident aquatic plant species themselves. However, it does target zinc, which is considered the main COPC in the aquatic environment at the Site, and is based on plant-specific toxicity information.

12.3.4. Causality

Strength of Correlation and Supporting Evidence

Correlation (N/A); Supporting Evidence (Plausible) – This LOE identifies slightly elevated exposure at the worst case water quality station in Camp Creek (but not False Canyon Creek or Tributary E drainages) relative to concentrations associated with low-level (10-20%) effect-sizes from a field study reported in the literature. Because the underlying study is effects-based, it provides plausible supporting evidence for potential toxicity. However, this LOE does not provide evidence of causality for actual effects.

Uncertainty Related to Causality

High – While the mechanism of action is supported by the underlying study, this LOE does not incorporate site-specific information on effects to aquatic plants to assess strength of relationships/causality.

Figure A12-1. Concentration response relationship for periphyton indices and zinc concentrations from Hill et al., 2000.

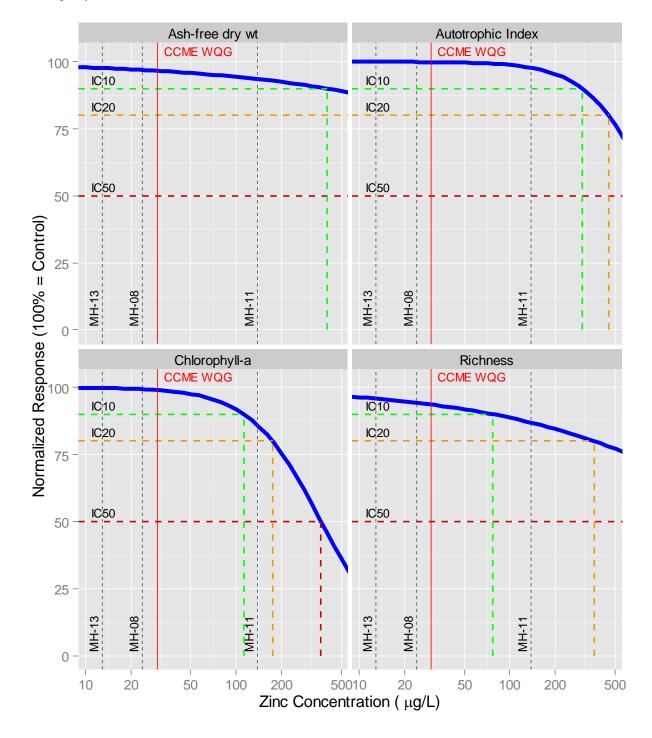


Table A12-1. Periphyton endpoints and metals concentrations reported in Hill et al., 2000.

	1991 Survey													
	Upstream	(Reference)		Downstream (Exposure)										
Measurement	E01A	E01	E03	E05	E10	E11	E12	E12A	E13	E13B	E20	E22		
Periphyton Endpoints														
Ash-free Dry Weight ¹	0.008	0.004	0.004	0.003	0.006	0.009	0.003	0.013	0.003	0.017	0.006	0.002		
Chlorophyll-a ²	0.107	0.091	0.135	0.068	0.082	0.046	0.021	0.058	0.043	0.024	0.064	0.059		
Autotrophic Index ³	71	48	33	85	72	191	172	216	82	1177	96	34		
Richness ⁴	10	12	11	13	12	ns	13	7	ns	2	17	15		
Concentrations (mg/L)														
Hardness	138	83	94	92	80	86	98	101	118	181	95	101		
Cadmium	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0003	0.0012	0.0012	0.0007	0.0007	0.0005	0.0003	< 0.0003		
Iron	0.10	0.15	0.13	< 0.019	0.15	0.49	0.16	0.18	0.03	0.19	0.02	< 0.019		
Manganese	0.004	0.017	0.034	0.20	0.17	0.92	1.1	0.51	1.3	2.6	1.4	1.2		
Zinc	0.010	0.009	0.017	0.25	0.22	0.70	0.80	0.45	0.52	0.75	0.39	0.32		

1992 Survey														
,	Upstream	(Reference)		Downstream (Exposure)										
Measurement	E01A	E01	E03	E05	E10	E11	E12	E12A	E13	E13B	E20	E22		
Periphyton Endpoints														
Ash-free Dry Weight ¹	0.011	ns	0.039	0.01	0.01	0.01	0.009	0.012	0.009	0.01	0.014	0.012		
Chlorophyll-a ²	0.232	ns	0.433	0.119	0.082	0.041	0	0.06	0.018	0	0.057	0.18		
Autotrophic Index ³	58	ns	89	101	149	312	nc	258	573	nc	247	118		
Richness ⁴	15	18	12	16	17	14	7	21	17	6	21	15		
Concentrations (mg/L)														
Hardness	120	68	66	67	61	71	66	75	105	107	81	84		
Cadmium	<0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	0.0006	<0.0005	<0.0005	<0.0005		
Iron	0.058	0.16	0.197	0.17	0.16	0.60	0.32	0.41	0.18	0.14	0.13	0.095		
Manganese	0.007	0.015	0.027	0.097	0.095	0.615	0.391	0.543	0.771	1.745	0.852	0.719		
Zinc	<0.008	<0.008	0.027	0.11	0.10	0.51	0.30	0.35	0.33	0.46	0.22	0.19		

ns = not sampled or sample lost.

nc = not calculated because chlorophyll a was absent.

Italicized values = less than the detection limit

Formatting for exceedances of the CCME aquatic life water quality guidelines WQG. No guideline for manganese; hardness-dependent for cadmium.

Shaded values > the CCME WQG

Bold values > the CCME WQG, but < 10-times the detection limit.

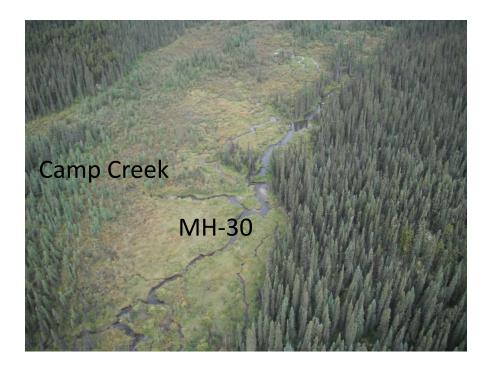
¹ (mg/cm²).

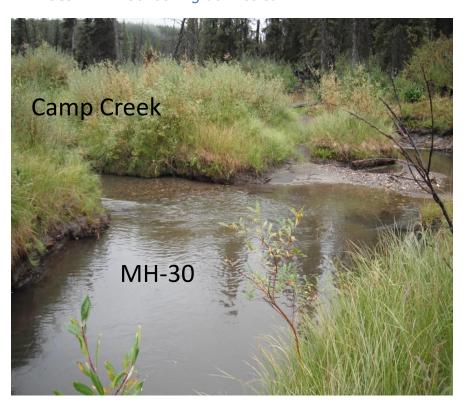
² Chlorophyll-α (μg/cm²).

 $^{^{\}rm 3}$ ash-free dry weight (mg/cm²)/ chlorophyll-a Chl (µg/cm²).

⁴ Taxa richness (No. of genera).

13. REFERENCES


See Main Report.


APPENDIX B Photos and Habitat Descriptions for the AERA

MH-30 – Downstream Reference Area

Photo 1. MH-30 confluence of CC with FCC

Photo 2. MH-30 looking downstream

Site Information

Sampled Aug 23, 2015 by Laberge. This station is 4.5 km downstream of the Reclaim Pond at the juncture with MH-30, and just up stream of a beaver complex. Moderate flow, 1.5 m wide stable channel, sinuous slow flow drains reference area; joins Camp Creek and flows as False Canyon Creek downstream.

The stream is open, with stable banks and non-overhanging riparian vegetation here. Moving upstream, the channel is increasingly choked by willow and alder. Water velocity is moderate dominated by runs, with some riffle.

Looking downstream from MH-30 to confluence with Camp Creek, east. Confluence station is just left of photo. Benthic invertebrates and sediment collected. Electrofishing completed for the fish community survey.

Bottom substrate consisted of fine gravel and sand with some cobble. No apparent barriers here at junction with MH-30. Fish were captured at this location, the furthest upstream that fish have been documented on False Canyon Creek.

MH-29 - Access Creek Near-field Reference Area

Photo 3. MH-29 Benthic sampling

Site Information

Sampled June 25, 2015 by Azimuth. Stream temperature was 4.1 C, pH 7.8, conductivity 285 $\mu\text{S/cm}$. Access Creek is a small tributary stream 1.2 km downstream of the TMF. The stream was sampled just upstream of its mouth at confluence with Camp Creek. Both streams are steep at this location with riffle/falls, 0.6 m wide and 0.5 – 0.7 m deep in a box-like profile, with steep, near-vertical sides. The stream flows through and around willow branches and roots and may have recently shifted within the valley bottom to establish itself here.

Photo 4. MH-29 Substrate

MH-29 substrate is dominated by compacted sand or silty/clay with woody debris, roots and 5-10% cobble. Channel is very narrow and confined, flowing tightly in and around willow riparian zone. Less than 1 m wetted width, moderate to high flow, non-depositional and variable flow path, both horizontally and vertically. Substrate and conditions are very heterogeneous; water quality was somewhat turbid at the time of sampling.

MH-04 – Camp Creek Upstream

Photo 5. MH-04 Substrate

Photo 6. MH-04 Benthic sampling

Site Information

Sampled June 24, 2015 by Azimuth. Stream temperature was 2.8 C, pH 7.9, conductivity 266 μ S/cm. MH-04 on Camp Creek is just downstream of CC-1 and PH-1, about 400 m from the stream origin via 2 springs. Stream width was about 2 m, 15 cm depth. Stable banks with willow riparian vegetation. Flow is ~0.8 m/s. Bottom substrate consists of cobble/gravel with embedded sand and silt.

MH-04 channel is braided upstream of above photo. No evidence of macrophytes. Early in growing season for periphyton. Habitat was considered very good with abundance benthic invertebrates observed during kick-netting.

CC-3 - Camp Creek near Reclaim Pond

Photo 7. CC-3 Benthic sampling

Site Information

Sampled June 24, 2015 by Azimuth. Stream temperature was 4.4 C, pH 8.1, conductivity 287 µS/cm. CC-3 is on Camp Creek downstream of MH-04 opposite (west) of the Reclaim Pond. A half culvert lines the east side of the stream to prevent against encroachment into the Reclaim Pond. Sparse riparian vegetation, open with little cover, no woody debris. Bottom substrate consists of cobble/gravel with embedded sand and silt.

Photo 8. CC-3 Substrate

CC-3 channel is 1.5 m wide and 10 – 15 cm deep at this location, running south past the Reclaim Pond. Mostly riffle/run. Downstream of this point, the stream cascades down a steep rocky chute. No visual evidence of macrophytes. Substrate is heterogeneous. Abundant invertebrate community observed. Electrofishing took place at this location.

MH-28A – Camp Creek u/s Portal Creek

Photo 9. MH-28A

Site Information

Sampled June 25, 2015 by Azimuth. Stream temperature was 7.9 C, pH 8.2, conductivity 320 µS/cm. This station is immediately upstream of Portal Creek, just to the right of the photo, downstream of samplers. MH-28A is 1.5 m wide, stable banks, willow riparian and riffle/run flow with moderate, consistent gradient. Water clarity was higher in Portal Creek than in Camp Creek, reflecting influence of dewaterng activities at the TMF.

Photo 10. MH-28A Substrate

Bottom substrate consists of cobble/gravel with some embedded sand and silt. There is no instream woody debris, although instream organics were abundant. Moving upstream from here, the stream became increasingly choked by overhanging willow. Benthic sampling and electrofishing took place at this location.

MH-27 - Camp Creek 1 km downstream of TMF

Photo 11. MH-27

Site Information

Sampled June 25, 2015 by
Azimuth. Stream temperature was
7.9 C and pH 8.2. This station is 1
km downstream of the Reclaim
Pond and 2 km upstream of MH11. The stream here is very narrow
(<1 m) and confined with steep
vertical sides and U shaped profile.
Gradient is steep and uniformly
riffle/rapid and non-depositional.
There are numerous small falls and
fish barriers. Flow is high enough
that flows over banks here and
there. Stream channel flows in and
around willow and white spruce.

Photo 12. MH-27 Substrate and kick area

Bottom substrate consists of sandy / gravel, with a hard compact bottom that was difficult to penetrate with the sampler. No depositional areas present. Instream organics were retained during kick net sampling. Water clarity was somewhat impaired Benthic sampling and electrofishing took place at this location.

MH-11 - Camp Creek 3 km downstream of TMF

Photo 13. MH-11 looking upstream

Photo 14. MH-11 looking downstream

Site Information

Sampled August 25, 2015 by Laberge. Stream temperature was 6.9 C and pH 8.2 and conductivity was 390 μ S/cm. This station is 3 km downstream of the Reclaim Pond and 2 km upstream of MH-11. About 1.5 km downstream of Access Creek (MH-29). Stream features at MH-11 are very similar to MH-27 with a narrow (<1 m), confined, U-shaped channel with steep sides and flat bottom. Gradient is steep and uniformly riffle with small barriers and falls. Discharge velocity is high with no depositional areas. Stream channel flows in and around willow and alder.

Bottom substrate consisted of mobile fine sand with some interspersed gravel areas. Instream organics were retained during kick net sampling. Water clarity was somewhat impaired Benthic sampling and electrofishing took place at this location.

North Creek at MH-12A, 4.5 km downstream of TMF

Photo 15. North Creek at MH-12A looking downstream

Site Information

Sampled June 24, 2015 by Azimuth. Stream temperature was 5.3 C and pH 8.2 and conductivity was 261 μ S/cm. This station is upstream from the water monitoring location MH-12 in suitable habitat for benthic invertebrate sampling. The sampling reach is open, with unstable banks and sparse stream-side vegetation. Water velocity is moderate dominated by riffle.

Photo 16. North Creek (MH-12A) substrate

Bottom substrate consisted of fine gravel and sand with some cobble. Benthic sampling and electrofishing took place at this location.

Photo 17. North Creek (MH-12A) periphyton

Visual evidence of green/brown periphyton colonization on cobble substrate.

APPENDIX C

ALS Laboratory Reports

AZIMUTH CONSULTING GROUP INC.

ATTN: Randy Baker

218 - 2902 West Broadway Vancouver BC V6K 2G8 Date Received: 27-JUN-14

Report Date: 29-AUG-14 10:00 (MT)

Version: FINAL

Client Phone: 604-730-1220

Certificate of Analysis

Lab Work Order #: L1478487

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 10-219431, 10-219435

Legal Site Desc:

13 Mack

Brent Mack Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1478487 CONTD.... PAGE 2 of 7 29-AUG-14 10:00 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478487-3 Sediment 24-JUN-14 09:00 MH-12	L1478487-4 Sediment 25-JUN-14 09:00 MH-28A	L1478487-5 Sediment 25-JUN-14 09:00 MH-29	L1478487-6 Sediment 24-JUN-14 09:00 MH-04	L1478487-7 Sediment 24-JUN-14 09:00 CC-3
Grouping	Analyte					
SOIL						
Physical Tests	pH (1:2 soil:water) (pH)	8.12	8.09	8.05	7.96	8.08
Particle Size	% Gravel (>2mm) (%)	<0.10	<0.10	<0.10	<0.10	<0.10
	% Sand (2.0mm - 0.063mm) (%)	63.8	59.0	14.6	46.4	37.8
	% Silt (0.063mm - 4um) (%)	32.6	36.6	77.4	49.0	52.6
	% Clay (<4um) (%)	3.61	4.41	8.00	4.65	9.61
	Texture	Sandy loam	Sandy loam	Silt loam / Silt	Sandy loam	Silt loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	1.58	1.65	6.61	4.07	2.70
Metals	Antimony (Sb) (mg/kg)	1.79	1.97	1.90	2.00	2.49
	Arsenic (As) (mg/kg)	16.8	16.5	24.9	17.3	18.9
	Barium (Ba) (mg/kg)	138	135	225	111	131
	Beryllium (Be) (mg/kg)	0.52	0.47	0.80	0.75	0.59
	Cadmium (Cd) (mg/kg)	1.26	5.38	7.51	7.11	4.27
	Chromium (Cr) (mg/kg)	24.1	25.3	32.0	28.3	25.6
	Cobalt (Co) (mg/kg)	7.45	8.55	11.3	10.7	9.89
	Copper (Cu) (mg/kg)	16.9	18.6	30.9	25.7	25.1
	Lead (Pb) (mg/kg)	50.4	527	107	219	384
	Mercury (Hg) (mg/kg)	<0.050	<0.050	0.053	<0.050	0.055
	Molybdenum (Mo) (mg/kg)	1.95	1.54	1.28	1.31	2.54
	Nickel (Ni) (mg/kg)	25.5	26.2	29.8	28.5	30.0
	Selenium (Se) (mg/kg)	0.61	0.74	2.22	1.25	1.26
	Silver (Ag) (mg/kg)	0.22	0.66	0.54	0.40	0.69
	Thallium (TI) (mg/kg)	0.134	0.126	0.186	0.180	0.179
	Tin (Sn) (mg/kg)	2.2	2.1	2.1	<2.0	3.9
	Uranium (U) (mg/kg)	0.890	0.878	1.01	1.18	1.16
	Vanadium (V) (mg/kg)	39.0	37.4	31.3	35.5	46.7
	Zinc (Zn) (mg/kg)	187	867	406	473	530

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478487 CONTD.... PAGE 3 of 7 29-AUG-14 10:00 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: **FINAL** L1478487-8 Sample ID Description Sediment Sampled Date 25-JUN-14 Sampled Time 09:00 MH-27 Client ID Grouping Analyte SOIL **Physical Tests** pH (1:2 soil:water) (pH) 8.07 **Particle Size** % Gravel (>2mm) (%) < 0.10 % Sand (2.0mm - 0.063mm) (%) 21.3 % Silt (0.063mm - 4um) (%) 67.7 % Clay (<4um) (%) 11.0 Texture Silt loam Organic / Total Organic Carbon (%) 3.82 **Inorganic Carbon** Metals Antimony (Sb) (mg/kg) 2.07 Arsenic (As) (mg/kg) 21.2 Barium (Ba) (mg/kg) 185 Beryllium (Be) (mg/kg) 0.55 Cadmium (Cd) (mg/kg) 6.33 Chromium (Cr) (mg/kg) 23.9 Cobalt (Co) (mg/kg) 10.5 Copper (Cu) (mg/kg) 23.0 Lead (Pb) (mg/kg) 418 Mercury (Hg) (mg/kg) < 0.050 Molybdenum (Mo) (mg/kg) 2.12 Nickel (Ni) (mg/kg) 29.9 Selenium (Se) (mg/kg) 1.34 Silver (Ag) (mg/kg) 0.72 Thallium (TI) (mg/kg) 0.135 Tin (Sn) (mg/kg) 3.6 Uranium (U) (mg/kg) 0.949 Vanadium (V) (mg/kg) 38.8 Zinc (Zn) (mg/kg) 848

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478487 CONTD.... PAGE 4 of 7 29-AUG-14 10:00 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478487-1 Tissue 26-JUN-14 09:00 JBX PIT W/R INVERTEBRATES	L1478487-2 Tissue 26-JUN-14 09:00 1408 W/R INVERTEBRATES	L1478487-9 Tissue 25-JUN-14 09:00 JBX-RBV-1	L1478487-10 Tissue 26-JUN-14 09:00 JBX RBV-2	L1478487-11 Tissue 24-JUN-14 09:00 1408 - RBV-1
Grouping	Analyte					
TISSUE						
Physical Tests	% Moisture (%)	71.0	73.3	77.7	76.5	71.9
Metals	Aluminum (AI)-Total (mg/kg wwt)	140	83.8	22.9	23.8	48.9
	Antimony (Sb)-Total (mg/kg wwt)	0.0135	0.0622	0.0070	0.0165	0.0672
	Arsenic (As)-Total (mg/kg wwt)	0.122	0.194	0.0353	0.0384	0.302
	Barium (Ba)-Total (mg/kg wwt)	1.83	7.63	10.0	5.62	2.93
	Beryllium (Be)-Total (mg/kg wwt)	0.0043	0.0128	<0.0020	<0.0020	0.0062
	Bismuth (Bi)-Total (mg/kg wwt)	0.0033	0.0196	0.0030	0.0061	0.0347
	Boron (B)-Total (mg/kg wwt)	0.28	0.24	0.38	0.37	0.61
	Cadmium (Cd)-Total (mg/kg wwt)	1.90	7.03	0.383	0.209	0.868
	Calcium (Ca)-Total (mg/kg wwt)	339	565	9780	8340	8320
	Cesium (Cs)-Total (mg/kg wwt)	0.0955	0.155	0.307	0.203	0.495
	Chromium (Cr)-Total (mg/kg wwt)	0.403	0.251	1.91	0.253	0.175
	Cobalt (Co)-Total (mg/kg wwt)	0.0851	0.136	0.0988	0.0792	0.141
	Copper (Cu)-Total (mg/kg wwt)	14.3	19.4	2.10	1.60	1.64
	Iron (Fe)-Total (mg/kg wwt)	243	223	88.7	90.3	175
	Lead (Pb)-Total (mg/kg wwt)	3.91	133	10.4	15.9	103
	Lithium (Li)-Total (mg/kg wwt)	0.29	0.12	<0.10	<0.10	<0.10
	Magnesium (Mg)-Total (mg/kg wwt)	465	539	413	374	395
	Manganese (Mn)-Total (mg/kg wwt)	18.9	25.9	13.6	11.2	19.9
	Molybdenum (Mo)-Total (mg/kg wwt)	0.117	0.117	0.345	0.131	0.266
	Nickel (Ni)-Total (mg/kg wwt)	0.331	0.303	1.34	0.301	0.555
	Phosphorus (P)-Total (mg/kg wwt)	2160	2660	6990	6480	6410
	Potassium (K)-Total (mg/kg wwt)	2850	2770	3430	3630	3200
	Rubidium (Rb)-Total (mg/kg wwt)	5.57	7.56	11.7	6.92	19.2
	Selenium (Se)-Total (mg/kg wwt)	0.219	0.763	0.192	0.219	0.273
	Sodium (Na)-Total (mg/kg wwt)	696	1110	1280	1070	1340
	Strontium (Sr)-Total (mg/kg wwt)	0.708	1.28	4.11	4.30	3.36
	Tellurium (Te)-Total (mg/kg wwt)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Thallium (TI)-Total (mg/kg wwt)	0.00910	0.00992	0.00378	0.00365	0.00410
	Tin (Sn)-Total (mg/kg wwt)	<0.020	<0.020	0.233	<0.020	<0.020
	Uranium (U)-Total (mg/kg wwt)	0.00611	0.0200	0.00171	0.00237	0.0813
	Vanadium (V)-Total (mg/kg wwt)	0.332	0.289	0.114	0.121	0.244
	Zinc (Zn)-Total (mg/kg wwt)	78.5	290	40.5	41.3	174
	Zirconium (Zr)-Total (mg/kg wwt)	0.061	0.043	<0.040	<0.040	<0.040

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478487 CONTD.... PAGE 5 of 7 29-AUG-14 10:00 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1478487-12 Tissue 24-JUN-14 09:00 1408 - RBV-2	L1478487-13 Tissue 24-JUN-14 09:00 1408 - RBV-3	L1478487-14 Tissue 25-JUN-14 09:00 1408 - RBV-4	L1478487-15 Tissue 26-JUN-14 09:00 1408 - RBV-5	
Grouping	Analyte					
TISSUE						
Physical Tests	% Moisture (%)	73.7	77.1	75.2	71.1	
Metals	Aluminum (Al)-Total (mg/kg wwt)	33.8	18.0	20.1	19.9	
	Antimony (Sb)-Total (mg/kg wwt)	0.0468	0.0130	0.0246	0.0479	
	Arsenic (As)-Total (mg/kg wwt)	0.120	0.0974	0.102	0.127	
	Barium (Ba)-Total (mg/kg wwt)	8.45	4.72	2.44	6.48	
	Beryllium (Be)-Total (mg/kg wwt)	0.0031	<0.0020	<0.0020	<0.0020	
	Bismuth (Bi)-Total (mg/kg wwt)	0.0354	0.0090	0.0135	0.0241	
	Boron (B)-Total (mg/kg wwt)	0.30	<0.20	0.34	0.34	
	Cadmium (Cd)-Total (mg/kg wwt)	0.828	0.411	0.243	0.437	
	Calcium (Ca)-Total (mg/kg wwt)	10500	8630	11200	8820	
	Cesium (Cs)-Total (mg/kg wwt)	2.70	1.83	0.333	0.318	
	Chromium (Cr)-Total (mg/kg wwt)	0.141	0.101	0.830	0.081	
	Cobalt (Co)-Total (mg/kg wwt)	0.0985	0.0597	0.0851	0.0810	
	Copper (Cu)-Total (mg/kg wwt)	2.22	2.20	1.63	1.96	
	Iron (Fe)-Total (mg/kg wwt)	120	87.0	98.3	106	
	Lead (Pb)-Total (mg/kg wwt)	74.5	29.8	43.3	45.4	
	Lithium (Li)-Total (mg/kg wwt)	<0.10	<0.10	<0.10	<0.10	
	Magnesium (Mg)-Total (mg/kg wwt)	434	375	445	361	
	Manganese (Mn)-Total (mg/kg wwt)	24.6	9.32	9.04	9.13	
	Molybdenum (Mo)-Total (mg/kg wwt)	0.134	0.119	0.252	0.156	
	Nickel (Ni)-Total (mg/kg wwt)	0.294	0.209	0.768	0.268	
	Phosphorus (P)-Total (mg/kg wwt)	7360	6580	8390	6370	
	Potassium (K)-Total (mg/kg wwt)	3920	3600	2890	3650	
	Rubidium (Rb)-Total (mg/kg wwt)	63.9	49.2	17.2	17.9	
	Selenium (Se)-Total (mg/kg wwt)	0.329	0.307	0.241	0.374	
	Sodium (Na)-Total (mg/kg wwt)	1150	1220	1560	1120	
	Strontium (Sr)-Total (mg/kg wwt)	4.59	2.89	3.71	3.39	
	Tellurium (Te)-Total (mg/kg wwt)	<0.0040	<0.0040	<0.0040	<0.0040	
	Thallium (TI)-Total (mg/kg wwt)	0.0136	0.00628	0.00195	0.00582	
	Tin (Sn)-Total (mg/kg wwt)	0.108	0.091	<0.020	0.088	
	Uranium (U)-Total (mg/kg wwt)	0.0114	0.00560	0.0272	0.0253	
	Vanadium (V)-Total (mg/kg wwt)	0.148	0.065	0.129	0.105	
	Zinc (Zn)-Total (mg/kg wwt)	81.4	40.9	64.7	57.1	
	Zirconium (Zr)-Total (mg/kg wwt)	<0.040	<0.040	<0.040	<0.040	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1478487 CONTD.... PAGE 6 of 7

29-AUG-14 10:00 (MT) Version: FINΔI

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Bismuth (Bi)-Total	DUP-H	L1478487-10, -11, -12, -13, -14, -15, -9
Duplicate	Chromium (Cr)-Total	DUP-H	L1478487-10, -11, -12, -13, -14, -15, -9
Duplicate	Tin (Sn)-Total	DUP-H	L1478487-10, -11, -12, -13, -14, -15, -9
Duplicate	Vanadium (V)-Total	DUP-H	L1478487-10, -11, -12, -13, -14, -15, -9

Qualifiers for Individual Parameters Listed:

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
C-TOT-ORG-LECO-SK	Soil	Organic Carbon by combustion method	SSSA (1996) p. 973

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

HG-200.2-CVAF-VA Mercury in Soil by CVAFS EPA 200.2/245.7

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-200.2-CCMS-VA Metals in Soil by CRC ICPMS EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-WET-CCMS-VA Tissue Metals in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is adapted from US EPA Method 200.3 "Sample Procedures for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues" (1996). Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with repeated additions of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

Metals in Tissue by HR-ICPMS Micro (WET) MET-WET-MICR-HRMS-VA Tissue EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on wet weight basis.

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

Reference Information

L1478487 CONTD....

PAGE 7 of 7

29-AUG-14 10:00 (MT)

Version: FINAL

MOISTURE-TISS-VA Tissue % Moisture in Tissues ASTM D2974-00 Method A

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction)

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PSA-PIPET+GRAVEL-SK Soil

Particle size - Sieve and Pipette

SSIR-51 METHOD 3.2.1

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

Reference:

Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

SK ALS ENVIR	
OR ALS ENVIR	ONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA ALS ENVIR	CONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

10-219431 10-219435

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

www.alsglobal.

Chain of Custody / Analyti Canada Toll Free: 1 8

L1478487-COFC

						·													
eport To				Report For	mat / Distribution	<u>. </u>									ct ALS t	o confir	m TAT)		
ompany: 4-	muth			Standard:						·			Times - B						
ontact: R	andy Baker				F 😕 Excel 🗡		Fax								ntact ALS				
ddress: 21	68-2902 NO	or Broad	wey .	Email 1:	rbaker Q	azimutha	roup.ca								e - Conta			m IAI	
Vancos		16K 2GE	<u> </u>	Email 2:	eFranza.	12 muth	group ca		Same D	ay or W	eekend				S to conf	III IAI			
	1 OHE 1-1-65	Fax:			· · · · · · · · · · · · · · · · · · ·		<u> </u>						nalys			E/D \			\top
	Same as Report ? (circle				oject Information				$\overline{}$		noicai	te Filte	ered or	Prese	erved,	<u>'''</u>	$\overline{\mathcal{A}}$	7	7
	Copy of Invoice with Rep	ort? (circle) (Yes	Or No	Job #:					\leftarrow	\leftarrow	\leftarrow	\leftarrow	$\overline{}$	-	+	-	+	<u>-</u> -	-
ompany:			<u> </u>	PO / AFE:				- 2	7 .	İ									ľ
ontact:				LSD:				metak (dru	.	- 7		3		1				i	2
ddress:				O				8	[دم	्र		. 7							aine
hone:		Fax:		Quote #:				125	ζ	metak		V	,						g ti
ab Work Ord	ier# (lab use only)		Section 18 Section 18	ALS Contact:		Sampler:		_	Moisture			_ ≤							o do
				Contact.	,			\$	0	五	्	Fram							<u>ā</u>
Sample #		Sample Ide			Date	Time	Sample Type	Total	Ž	Total	70C	\mathcal{B}	핂	.					Number of Containers
			ppear on the report)		(dd-mmm-yy)	(hh:mm)								_		\dashv	-		1
	JBX PH W	U/R Inv	erte bratel		26 Jun-14		JISSUR_	X	X		· ·			-+				+	
	1408 W/R	Invert	brates		26-Jun-14		TISSUE	X.	K					-	-				1
	MH-12				24-Jan-14	·	Sediment		Х	*	X	X.	X			+			2
	MH-28A				25-Jun-14		Sed, new		Х	K.	X	K	_x		·				2
	MH-29				25-Jun-14		Gediment		X	X	Υ	х	x						2
	MH-04				24 - Jun 14		Sediment		х	×	X	X	X						2
	CC-3				84 - Tun-14		Sediment		X	V	x	8	x						2
		<u> </u>			25 Jun-14		Samuel			x	X	X	X			\neg			Q
	MH-27					<u> </u>		.,		\sim		~		-		十	_		1
	JBX-RBU	<u>- l</u>			25- June 7		Tissue	*	Х							+	-	-	
	JBX-RBY.				26-June-H	<u> </u>	Tissue	K	ᅐ							_	+		+:-
	AVECED SCHOOL	43					Towne	-X-	×			\hookrightarrow	=	=	`=		_		<u> </u>
-	THE METERS						TVSOO	→	¥-	\cong						\cong	=	$\preceq \!$	}
· · · · · · · · ·	Special	Instructions / R	egulation with water or	land use (CCI	ME- Freshwater A	quatic Life/BC C	SR-Commercial/A	B Tier	1-Na	tural/l	ETC) /	Haza	rdous	Detai	ils				
		(on	tact Eric	, OC 1	Kanay	pila	Ju are	ノル	<u>45</u>	<u> </u>	,								
	•		Failure to complete																
	By t	he use of this fo	rm the user acknowledg	ges and agree	s with the Terms	and Conditions	as specified on th	e bac	k page										
· · · · · · · · · · · · · · · · · · ·	SHIPMENT RELEAS	SE (client use)		SH	IPMENT RECEPT	ION (lab use only	·				SHIPN			ICATI	ON (la			Theon	inna
Released by:		Date:	Time: Receiv	ed by:	Date:	Time:	Temperature:	Verif	fied by	:		Date	:		Time:			Observat Yes / No	
Syl) 	Tun 27	2:15 pm	ía.	27 7014	2:00	1)2,1 °C	:									I 1	f Yes add	
	,	[1	1						•							

Chain of Custody / Analytical Re Canada Toll Free: 1 800 668

L1478487-COFC

www.alsolobal.com

ALS	CHARJED EDS ANCHESS BE	😅 1				77 77 77 77															
eport To					Report Fo	rmat / Distribution		······································	Servic	e Requ	ខងស្បាក	ر عصد و الدا	, -		Cont	tact ALS	to conf	irm TAT	u)		
ompany:	Azinuth			;	Standard:	Other (sp	ecify):			Regulai	r (Stand	ard Tun	naround	Times -	Business	s Days)					
ontact:	see page	T for e	other In	fo	Select: PD	F Excel	Digital	Fax		Priority((2-4 Bus	iness D	ays)-50%	6 surcha	arge - Co	ontact AL	.S to cor	nfinn TA	<u>т</u>		
ddress:	- 				Email 1:											rge - Con	 		ārm TAT		
					Email 2:	····			<u> </u>	Same D	Day or V	Veekend				LS to cor		ř .	,		
none:		Fax:							_							quest					
voice To	Same as Report ? (circle)	·				oject Information			L_		(Indica	ate Filt	ered o	r Pres	served,	, F/P)) 			
	Copy of Invoice with Rep	ort? (circle) Yes	or No		Job #:			·						$\prec \downarrow$	\leftarrow	\prec	$\prec \downarrow$	4	4	-	
ompany:					PO/AFE:			<u> </u>	5	>					ı		1			.	
ontact:					LSD:				mdals (dru		i				.						တ
ddress:									1 −₹											1	iner
none:		Fax:			Quote #:				₹ }	(به ا						.				i	nta
ab Work O	Prder # (lab use only)	•			ALS Contact:		Sampler:		z/m	Morstur											Number of Containers
Sample #	(This	Sample Ider description will a		oort)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	70ta/	γo											Numb
	1408-RI	3v~1				24-JUN-14		Tissue_	*	X											Ţ
	1408-21					24-Jun-14		TISSUP	X	Х											1
	1408 - R!					24-Jun-14		TISSUE	X	4				į							1
	1408 - Ri					25-Jun-74		TISSUE	X	X				L							ţ
	1408 - RE					26-Jun-14		Tissue	Х	X					<u>i</u>						1
																					
			·																		
			·	<u> </u>														一			
												-									
	Special	Instructions / Re	egulation with w	vater or land	d use (CCI	ME- Freshwater Ac	quatic Life/BC	CSR-Commercial/A	B Tie	1-Na	tural/	ETC)	/ Haza	rdous	s Deta	lls					
					· · · · · · · · · · · · · · · · · · ·												•				
			Failure to o	complete all	portions (of this form may d	lelav analveis	Please fill in this f	orm []	EGIBI	Υ.						—		<u></u>		
	By ti	ne use of this fo			and agree	s with the Terms a	and Conditions	s as specified on th			of th										
	SHIPMENT RELEAS	SE (client use)				IPMENT RECEPTI						SHIP			FICATI	ION (la					
eleased by	The same of the sa	Date: June	Time:	Received t	oy:	Date: 27 Jun 14.	Time: ではいひ	Temperature:		fied by	ν:		Date	:		Time:		1	Obser Yes / N If Yes	No?	
I	1		, - \ - \ - \ \	•		1	1		· •									- 1			-

AZIMUTH CONSULTING GROUP INC.

ATTN: Randy Baker

218 - 2902 West Broadway Vancouver BC V6K 2G8 Date Received: 27-AUG-14

Report Date: 04-NOV-14 12:45 (MT)

Version: FINAL

Client Phone: 604-730-1220

Certificate of Analysis

Lab Work Order #: L1508860

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 1, 2

Legal Site Desc:

125 Mack

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1508860 CONTD.... PAGE 2 of 8 04-NOV-14 12:45 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1508860-1 Sediment 23-AUG-14 12:00 MH30	L1508860-2 Sediment 23-AUG-14 12:00 CC U/S CONFLUENCE	L1508860-3 Sediment 23-AUG-14 23:30 MH-11	
Grouping	Analyte				
SOIL					
Physical Tests	Moisture (%)	47.5	36.2	36.7	
,	pH (1:2 soil:water) (pH)	7.60	8.27	8.25	
Particle Size	% Gravel (>2mm) (%)	1.92	2.58	2.48	
	% Sand (2.0mm - 0.063mm) (%)	60.7	77.4	77.1	
	% Silt (0.063mm - 4um) (%)				
	% Clay (<4um) (%)	33.2	17.3	18.4	
	Texture	4.20	2.71	2.00	
Organic /	Total Organic Carbon (%)	Sandy loam	Loamy sand	Loamy sand	
Inorganic Carbon		2.67	1.36	1.45	
Metals	Aluminum (AI) (mg/kg)	7860	8770	10200	
	Antimony (Sb) (mg/kg)	1.04	1.82	1.38	
	Arsenic (As) (mg/kg)	7.41	12.8	15.3	
	Barium (Ba) (mg/kg)	283	137	135	
	Beryllium (Be) (mg/kg)	0.31	0.34	0.41	
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	
	Cadmium (Cd) (mg/kg)	1.14	2.05	3.11	
	Calcium (Ca) (mg/kg)	5890	10800	11200	
	Chromium (Cr) (mg/kg)	15.8	16.2	18.4	
	Cobalt (Co) (mg/kg)	6.31	7.14	8.28	
	Copper (Cu) (mg/kg)	15.8	18.2	15.4	
	Iron (Fe) (mg/kg)	18900	20800	22400	
	Lead (Pb) (mg/kg)	15.7	86.5	200	
	Lithium (Li) (mg/kg)	14.2	18.2	24.5	
	Magnesium (Mg) (mg/kg)	4660	7400	7900	
	Manganese (Mn) (mg/kg)	157	528	1510	
	Mercury (Hg) (mg/kg)	0.0720	0.0363	0.0189	
	Molybdenum (Mo) (mg/kg)	1.36	2.73	1.28	
	Nickel (Ni) (mg/kg)	24.1	25.1	23.2	
	Phosphorus (P) (mg/kg)	1130	1440	840	
	Potassium (K) (mg/kg)	580	540	490	
	Selenium (Se) (mg/kg)	1.42	1.18	0.88	
	Silver (Ag) (mg/kg)	0.29	0.42	0.27	
	Sodium (Na) (mg/kg)	<100	<100	<100	
	Strontium (Sr) (mg/kg)	29.1	48.8	44.1	
	Thallium (TI) (mg/kg)	0.120	0.089	0.079	
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	
	Titanium (Ti) (mg/kg)	68.3	148	286	
	Uranium (U) (mg/kg)	1.37	1.29	0.689	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1508860 CONTD.... PAGE 3 of 8

04-NOV-14 12:45 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1508860-1 Sediment 23-AUG-14 12:00 MH30	L1508860-2 Sediment 23-AUG-14 12:00 CC U/S CONFLUENCE	L1508860-3 Sediment 23-AUG-14 23:30 MH-11	
Grouping	Analyte					
SOIL						
Metals	Vanadium (V) (mg/kg)		23.6	27.5	25.9	
	Zinc (Zn) (mg/kg)		132	289	533	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1508860 CONTD.... PAGE 4 of 8 04-NOV-14 12:45 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1508860-4 Tissue 23-AUG-14 MH-16-1	L1508860-5 Tissue 23-AUG-14 MH-16-2	L1508860-6 Tissue 23-AUG-14 MH-16-3	L1508860-7 Tissue 23-AUG-14 MH-16-4	L1508860-8 Tissue 23-AUG-14 MH-16-5
Grouping	Analyte					
TISSUE						
Physical Tests	% Moisture (%)	79.2	79.2	77.8	77.4	75.7
Metals	Aluminum (AI)-Total (mg/kg)	43.9	119	129	136	58.5
	Antimony (Sb)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Arsenic (As)-Total (mg/kg)	0.432	0.393	0.462	0.481	0.391
	Barium (Ba)-Total (mg/kg)	21.4	24.6	32.2	23.1	28.6
	Beryllium (Be)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Boron (B)-Total (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Cadmium (Cd)-Total (mg/kg)	0.193	0.199	0.385	0.330	0.280
	Calcium (Ca)-Total (mg/kg)	49800	62300	80900	52100	60200
	Cesium (Cs)-Total (mg/kg)	0.0092	0.0160	0.0249	0.0172	0.0112
	Chromium (Cr)-Total (mg/kg)	0.083	0.228	0.221	0.325	0.132
	Cobalt (Co)-Total (mg/kg)	0.118	0.137	0.187	0.170	0.117
	Copper (Cu)-Total (mg/kg)	2.44	3.15	4.21	3.45	2.93
	Iron (Fe)-Total (mg/kg)	141	266	254	257	150
	Lead (Pb)-Total (mg/kg)	0.145	0.177	0.142	0.166	0.169
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	1590	1910	2070	1520	1820
	Manganese (Mn)-Total (mg/kg)	39.8	69.6	71.9	54.4	49.8
	Molybdenum (Mo)-Total (mg/kg)	0.095	0.124	0.120	0.099	0.083
	Nickel (Ni)-Total (mg/kg)	0.30	0.30	0.37	0.33	0.30
	Phosphorus (P)-Total (mg/kg)	33400	42300	52100	34900	39900
	Potassium (K)-Total (mg/kg)	13600	14100	13400	12800	12500
	Rubidium (Rb)-Total (mg/kg)	6.20	7.24	8.90	7.55	6.17
	Selenium (Se)-Total (mg/kg)	6.79	11.0	7.67	8.23	6.36
	Sodium (Na)-Total (mg/kg)	5720	5440	5230	4460	4240
	Strontium (Sr)-Total (mg/kg)	42.1	59.6	67.9	45.8	52.4
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	0.0111	0.0113	0.0173	0.0112	0.0100
	Tin (Sn)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Uranium (U)-Total (mg/kg)	0.0091	0.0141	0.0137	0.0133	0.0131
	Vanadium (V)-Total (mg/kg)	0.71	1.18	1.16	0.92	0.83
	Zinc (Zn)-Total (mg/kg)	135	118	117	108	118
	Zirconium (Zr)-Total (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1508860 CONTD.... PAGE 5 of 8 04-NOV-14 12:45 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1508860-9 Tissue 23-AUG-14 MH30-1	L1508860-10 Tissue 23-AUG-14 MH30-2	L1508860-11 Tissue 23-AUG-14 MH30-3	L1508860-12 Tissue 23-AUG-14 MH30-4	L1508860-13 Tissue 23-AUG-14 MH30-5
Grouping	Analyte					
TISSUE						
Physical Tests	% Moisture (%)	79.0	76.3	77.6	72.1	82.8
Metals	Aluminum (AI)-Total (mg/kg)	392	22.8	89.0	361	8.1
	Antimony (Sb)-Total (mg/kg)	0.049	<0.010	0.012	0.036	0.011
	Arsenic (As)-Total (mg/kg)	0.965	0.329	0.525	0.632	0.572
	Barium (Ba)-Total (mg/kg)	28.7	16.4	20.3	12.3	27.7
	Beryllium (Be)-Total (mg/kg)	0.016	<0.010	<0.010	<0.010	<0.010
	Bismuth (Bi)-Total (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Boron (B)-Total (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Cadmium (Cd)-Total (mg/kg)	0.968	0.412	0.483	0.729	0.800
	Calcium (Ca)-Total (mg/kg)	98600	27900	65000	17500	73400
	Cesium (Cs)-Total (mg/kg)	0.558	0.159	0.399	0.615	0.370
	Chromium (Cr)-Total (mg/kg)	0.565	0.063	0.183	0.572	<0.20
	Cobalt (Co)-Total (mg/kg)	0.252	0.115	0.114	0.139	0.076
	Copper (Cu)-Total (mg/kg)	3.86	2.65	2.94	2.78	2.30
	Iron (Fe)-Total (mg/kg)	514	128	196	438	157
	Lead (Pb)-Total (mg/kg)	8.10	0.904	1.55	5.22	2.48
	Lithium (Li)-Total (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Magnesium (Mg)-Total (mg/kg)	2140	1280	1650	1070	2400
	Manganese (Mn)-Total (mg/kg)	64.5	12.8	20.4	33.3	34.3
	Molybdenum (Mo)-Total (mg/kg)	0.131	0.083	0.113	0.100	OLB <0.070
	Nickel (Ni)-Total (mg/kg)	0.71	0.27	0.25	0.53	OLB <0.50
	Phosphorus (P)-Total (mg/kg)	59900	21600	42500	14700	34900
	Potassium (K)-Total (mg/kg)	13900	11600	12800	10100	17000
	Rubidium (Rb)-Total (mg/kg)	16.1	8.42	12.9	16.6	15.2
	Selenium (Se)-Total (mg/kg)	6.22	6.03	6.61	6.54	5.43
	Sodium (Na)-Total (mg/kg)	6210	4360	4590	3340	6390
	Strontium (Sr)-Total (mg/kg)	85.1	20.9	52.7	15.8	73.7
	Tellurium (Te)-Total (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	Thallium (TI)-Total (mg/kg)	0.0271	0.0151	0.0217	0.0181	0.0137
	Tin (Sn)-Total (mg/kg)	<0.10	<0.10	<0.10	<0.10	<0.10
	Uranium (U)-Total (mg/kg)	0.0506	0.0147	0.0194	0.0211	0.0196
	Vanadium (V)-Total (mg/kg)	2.13	0.50	1.07	1.56	0.71
	Zinc (Zn)-Total (mg/kg)	243	123	123	108	214
	Zirconium (Zr)-Total (mg/kg)	0.26	<0.20	<0.20	0.24	<0.20

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

FINAL

Version:

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Chromium (Cr)-Total	DLB	L1508860-13
Duplicate	Molybdenum (Mo)-Total	DLB	L1508860-13
Duplicate	Nickel (Ni)-Total	DLB	L1508860-13
Duplicate	Aluminum (AI)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Barium (Ba)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Cadmium (Cd)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Calcium (Ca)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Chromium (Cr)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Cobalt (Co)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Iron (Fe)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Lead (Pb)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Manganese (Mn)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Molybdenum (Mo)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Phosphorus (P)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Strontium (Sr)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Uranium (U)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Vanadium (V)-Total	DUP-H	L1508860-10, -11, -12, -4, -5, -6, -7, -8, -9
Duplicate	Aluminum (AI)-Total	DUP-H	L1508860-13
Duplicate	Barium (Ba)-Total	DUP-H	L1508860-13
Duplicate	Calcium (Ca)-Total	DUP-H	L1508860-13
Duplicate	Iron (Fe)-Total	DUP-H	L1508860-13
Duplicate	Lead (Pb)-Total	DUP-H	L1508860-13
Duplicate	Manganese (Mn)-Total	DUP-H	L1508860-13
Duplicate	Phosphorus (P)-Total	DUP-H	L1508860-13
Duplicate	Strontium (Sr)-Total	DUP-H	L1508860-13
Duplicate	Uranium (U)-Total	DUP-H	L1508860-13
Duplicate	Vanadium (V)-Total	DUP-H	L1508860-13
Duplicate	Antimony (Sb)	DUP-H,J	L1508860-1, -2, -3

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLB	Detection Limit was raised due to detection of analyte at comparable level in Method Blank.
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
DUP-H,J	Duplicate results outside ALS DQO, due to sample heterogeneity. Duplicate results and limits are expressed in terms of absolute difference.

Test Method References:

ALS Test Code Matri		Test Description	Method Reference**				
C-TOT-ORG-LECO-SK	Soil	Organic Carbon by combustion method	SSSA (1996) p. 973				

Total Organic Carbon (C-TOT-ORG-LECO-SK, C-TOT-ORG-SK)

Total C and inorganic C are determined on separate samples. The total C is determined by combustion and thermal conductivity detection, while inorganic C is determined by weight lass after addition of hydrochloric acid. Organic C is calculated by the difference between these two determinations.

Reference for Total C:

Nelson, D.W. and Sommers, L.E. 1996. Total Carbon, organic carbon and organic matter. P. 961-1010 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

Reference for Inorganic C:

Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/245.7

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is

Reference Information

L1508860 CONTD....

PAGE 7 of 8

04-NOV-14 12:45 (MT)

Version: FINAL

weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-200.2-CCMS-VA

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020A

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-DRY-CCMS-VA

Tissue

Metals in Tissue by CRC ICPMS (DRY)

EPA 200.3/6020A

This method is adapted from US EPA Method 200.3 "Sample Procedures for Spectrochemical Determination of Total Recoverable Elements in Biological Tissues" (1996). Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with repeated additions of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MET-DRY-MICR-HRMS-VA Tissue

Metals in Tissue by HR-ICPMS Micro (DRY)

EPA 200.3/200.8

Trace metals in tissue are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) modified from US EPA Method 200.8, (Revision 5.5). The sample preparation procedure is modified from US EPA 200.3. Analytical results are reported on dry weight basis.

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MOISTURE-TISS-VA

Tissue

% Moisture in Tissues

ASTM D2974-00 Method A

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

MOISTURE-VA

Soil

Moisture content

ASTM D2974-00 Method A

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA

Soil

pH in Soil (1:2 Soil:Water Extraction)

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PSA-PIPET+GRAVEL-SK Soil

Particle size - Sieve and Pipette

SSIR-51 METHOD 3.2.1

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

Reference:

Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Reference Information

L1508860 CONTD....

PAGE 8 of 8

04-NOV-14 12:45 (MT)

Version: FINAL

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

2

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody (COC) / Analytical Request Form

L1508860-COFC

	coc	Number:	14
--	-----	---------	----

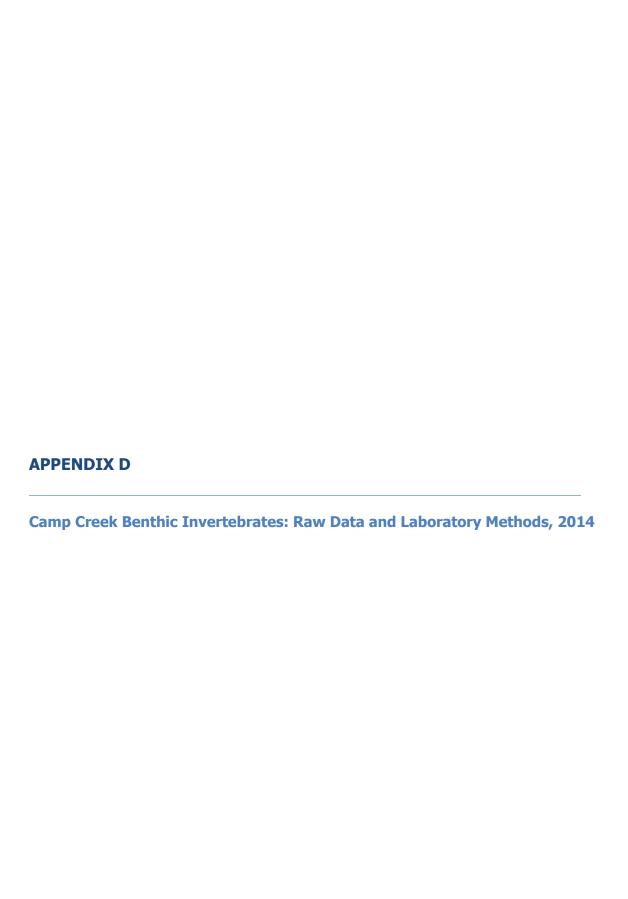
age <u>1</u> of <u>2</u>

Canada Toll Free: 1 800 668 9878

	www.alsglobal.co	m							C100000	_									•			
Report To							Report Form	at /		1		ielect S	ervice L	evel Bo	low (R	ा Jsh Tum	naround Ti	ime (TA7	i Isnot a	available	for all te	ists)
Company:	Azimuth					Select Report	Format: 🔽 PD	F DEXCEL	EDD (DIGITAL)	R							n - busine				10, 64.5	
Contact:	Randy Baker					Quality Contri	ol (QC) Report with	Report I₹ Y	=s FNo	P							50% sur			ALS to	T milno	'ΔΤ'
Address:	218-2902 West Broa	,				Criteria on Re	eport - provide details be	low if box checked		E	□ Er	nergeno	y (1-2 b	us, days	if recei	red by 3	pm) 1009	% surcha	rge - cor	ntact Al	5 to con	firm TAT
Dhana	Vancouver, BC V6K 2	2G8				Select Distrib			☐ FAX	E2							ct ALS to					
Phone:	604-730-1220						x rbaker@azimuth			Spec	cify Da	te Red	uired	for E2,	E or P	:						
las T-						Email 2	efranz@azimuth								A	naiysi	is Requ	est				
nvoice To	Same as Report To		₩ Yes			<u></u>		distribution		<u> </u>	lr	idicate F	litered (F), Pres	erved (F) or Filte	ered and F	reserve:	d (F/P) b	elow		
3	Copy of Involce with I	Report	✓ Yes	ΓNo		Select Involce		EMAI MAIL	☐ FAX	<u>L</u>	<u> </u>	<u>L.</u>										l
Company: Contact:						Email 1 or Fax	·			_								\top	T			
Joniaci,	Projec	t informs	otlon			Email 2			· · · · · · · · · · · · · · · · · · ·	4	İ			1	1	H						و
Project information ALS Quote #:				II and Gas Requir		use)	-			l		1							aine.			
ob#:						Approver iD: GL Account:		Cost Center:		4		ŀ		1				ļ		İ		ğ
O/AFE:						Activity Code:		Routing Code:	<u> </u>	-	ŀ		l			1 1				[o o
SD;						Location:				1												Number of Container
3.535574955		50740. 89	ENAMES.			Location,		T	<u> </u>	ङ्क		i			1							N L
ALS Lab Wo	ork Order# (lab use o	nly)	100277967	eview been	A Section	ALS Contact:		Sampler:		metals (dry)		<u>s</u>										
ALS:Sample#	Sa	mple ide	entificatio	n and/or Coor	dinates		Date	Time	T		a e	E E		Size	l		ł					
(lab use only)	ä	-		I appear on the			(dd-mmm-yy)	(hh:mm)	Sample Type	ego Ego	Moisture	Total metals	ပို	Grain	표							
	MH30						23-Aug-14	12:00	Sediment	 Γ	R	R	R	R	R			+	┼─┤		┌┼	
	CC u/s confluence	•					23-Aug-14	12:00	Sediment	\vdash	R	R	R	R	R		-	-	+-			2
100			W	H-11		·····	25-Aug-14	11:30	Sediment		R	R	R	R	R	┝╌┼	+	+	+		\vdash	1
Logical actions	MH-16-1						23-Aug-14		Tissue	R	R				 		_	+	+			
A Property	MH-16-2						23-Aug-14		Tissue	R	R				<u> </u>	十	\dashv		1-1		\neg	
	MH-16-3						23-Aug-14		Tissue	R	R						-	+	╀─┤			
	MH-16-4						23-Aug-14		Tissue	R	R							+	+-+	\dashv		
	MH-16-5						23-Aug-14		Tissue	R	R								 	-		
9 0 328	MH30-1						23-Aug-14		Tissue	R	R					\neg	+	1	+		-	
	MH30-2						23-Aug-14		Tissue	R	R					\neg		+		_	\dashv	
4775 FE			MH	30-3			23-Aug-14		Tissue	R	R						1	\top		-	_	
	MH30-4						23-Aug-14		Tissue	R	R						_	1	 			
Drinking	Water (DW) Samples ¹	¹ (client u	use)		Special In:	structions / Spec	ify Criteria to add o	n report (client Us	e)	a Vario	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		THE RESIDENCE	E CO			REÇEI					10 pt - 100 17 pt 18 pt
e samples take	en from a Regulated DW	System?	,	it won't let me	put an X ir	the analysis co	ell so l've put R as j	ust regular servic	es is regulad	Froze						SIF OL	oservati	anc	Yes		No	
ΓYe		_		Keep tissue s	emples froz	en until analyz	ed.	aoi regular aoi vio		Section 18	oks Ig Initi:	1.422.00		No		Custoc	dy seal i	ntact	Yes		No :	
e samples for I	human drinking water us	se?							·	(1000	Contraction of the Contraction o	EMPER	ĀTURE	390 I	a ezer A reliki	EIM	I COOL	ER TEM	DEDAT	LIBEO OF	08156 /An
ΓYe	≋ I7No		i	1						-1	31	12.			7.75K	19 14 18 14	eracion Visikas	1	<u>=0.:tEMi</u>	- CRAU	74E9.C	nesection.
	SHIPMENT RELEA	SE (clien	it use)			INITIALS	HIPMENT RECEP	ION (lab use on	V) PET GEN SENSENER		V• [2]		FINA) SHI	PMEN	TREC	EPTIO	M dek	ligo ar	2005 600		
eleased by:		Date:		Time:	Receive		o a compression	Date: A	Time:		ved by			-0.00 DOM -0.00 DOM -0.00 DOM			Date:	v (iau t	use on Time:			
EED TO BACK	PAGE FOR ALS LOCATE	0110 41:3			120			27/1/19	11:00											通数分割 加加数		
I ER TO BACK	FAGE FOR ALS LOCATE	ONS AND	SAMPLING	INFORMATION د	V =		WHI	TE - LABORATOR	COPY YELLO	W - CI	LIENT (COPY					NA-FM	0328 a v00 Fr	ont/04 Januar	v 201d	The second second second	Contract of the Land

ALS Environmen

Chain of Custody (COC) / Analytical Request Form


Canada Toll Free; 1 800 668 9878

L1508860-COFC

OC Number: 14 -

Page	2 of	2

	www.aisgiobai.com	<u> </u>				SA.								_						
Report To					Report Forma	t / Distribution							-		around Ti		-	available	for all t	ests)
Company:	Azimuth			Select Rep	ort Format: 🖸 POF	EXCEL .	EDD (DIGITAL)	Regular (Standard TAT if received by 3 pm - business days) P □ Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT												
Contact:	Randy Baker			Quality Cor	atrol (QC) Report with F	Report		P												
Address:	218-2902 West Broady	vay		Criteria o	s Report - provide details be			E Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT								TAT milno				
i	Vancouver, BC V6K 20	38 		Select Dist			□ FAX	E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge												
Phone:	604-730-1220			Email 1 or	Fax rbaker@azimuthg	roup.ca		Specify Date Required for E2,E or P:												
				Email 2	efranz@azimuthg	roup.ca							Α	nalys	is Req	uest				
invoice To	Same as Report To				Invoice D	Istribution		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (FIP) below]		
	Copy of Invoice with Re	eport		Select invo	ice Distribution:	EMAI 🔲 MAIL	☐ FAX							l						
Company:				Email 1 or	Fax			_		1	1		1							
Contact:				Email 2				╛	1				İ							e.
	Project	Information			Oll and Gas Require	d Fleids (client	use)		1		1	1		1		- 1				ie i
ALS Quote #:				Approver II) :	Cost Center:]			ŀ						1			l g
Job #:	···			GL Accoun	t	Routing Code:		7				1	ŀ				-1			ပ္
PO / AFE:				Activity Co	de:			7	1	1								1		Ì
LSD:	·			Location:] ₂										Ì		Number of Containers
ALS Lab W	ork Order# (lab use on	ly)	are entre de la companya de la companya de la companya de la companya de la companya de la companya de la comp La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	ALS Conta	act:	Sampler:		Total metals (dry)		etals		Size								-
ALS Sample a	<u> </u>	•	n and/or Coordina appear on the repo		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Totalm	Moisture	Total metals	ဥ	Grain S	표							
10-1	MH30-5	,	···		23-Aug-14		Tisstre	R	่่ย											
10-10-2	Š												1	Ī						
	14 2									i –					一	$\neg \vdash$	十一	1	1	
- A - A - A - A - A - A - A - A - A - A	8 S							+-	_	 	_		\vdash			\top	\top	\top		
100 100 100 100 100 100 100 100 100 100	8 <u> </u>						-	+				1		-	\dashv	\dashv	┰	+	1	
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	31				· ·			+				 			\dashv	+	+	+	┢	
200					· · · · · · - · · · · · · · · · · · · · · · · 					╁		1	-	\vdash			+-	+	 	
	8] 8							+	 						\dashv		+	+-	\vdash	
· 图像是一种的情况是是有	S		····					+		 		ļ			-					
1.00	8							╅	 	\vdash		\vdash		\vdash	-	+	+	+		
	in the second se						ļ	╁	1	├		 		-			+-		1	
	% 					 			-	<u> </u>		-	_	-		-	+			
200000000000000000000000000000000000000	Š		Υ-				<u> </u>	经 學所	l Osares) 88998564	AMP	leco	NOT	ON A	SREC	FIVEN	/lab≐i	se onl	ul sates	SELESSION A
Drinkin	g Water (DW) Samples	(client use)	Spe	cial instructions /	Specify Criteria to add	n report (client l	Jse)	Froz	3 - 1 - 1 - 1					17 57 11	bserva	4-11-1-2	4.0	Salvery Com		
Are samples ta	ken from a Regulated DV	V System?		an X in the analysi des frozen until ana	s cell so l've put R as ju lyzed.	st regular service	es is required.		acks ing init	2 CA 25 S. M.		No		Cust	ody sea	il intaci	Ye		No	
Are samples fo	r human drinking water	use?						_ INI	ITIAL C	OOLER	TEMPE	RATUR	s°C.	1.17.2	<i>िन</i>	NAL CO	OLER T	EMPER/	TURES	°C (1500)
											11 T				機變			增加		表的元
	SHIPMENT RELEA	SE (client use)		INIT	AL SHIPMENT RECER	TION (lab use on	lly) 🚈 😘 💮	1763	SWIX		FI	IAL SI	IIPME	NT RE	CEPT	ON (la	b use	onlÿ)	Sens:	
Released by:		Date:		Received by:		Date:	Time:	Rec	eived i	y.		305) 31)			Date:	* (*)	Tim	e;	z obej Najvej	2156. +2 () .
REFER TO BAC	K PAGE FOR ALS LOCA	TIONS AND SAMPLI	ING INFORMATION		WH	ITE - LABORATO	RY COPY YE	LLOW	- CLIEI	AT CO	Ŷ				K	-FM-0328 e v	B Front/O4 J	anuary 2014		

Methods - Freshwater Benthos Project: Sa Dena Hes Client: Azimuth Consulting Group Protocol: CABIN (modified)

Kicknet samples were collected June 24-25, 2014 (7 samples in 19 jars) and in August 2014 (3 samples in 4 jars) and field-screened to 0.5mm. These arrived at Biologica on July 3 and September 10 respectively. The chain of custody documents were checked and approved. Samples were immediately transferred from formalin into 70% ethanol on a 0.25mm screen to allow for tissue shrinkage in the preservative. These were stained with Rose Bengal to aid in sorting. Each sample was provided a unique identification number and placed in the queue for analysis.

Prior to subsampling, samples were elutriated where possible, and any organisms >1.5cm ("Macro" organisms) were removed from the whole sample prior to subsampling to ensure the density of large, rare taxa were enumerated accurately. Subsampling was done on Caton trays (12-and 24-Quadrat trays) (Caton, 1991), which is an acceptable alternative to the Marchant box when samples contain high debris volumes with dense vegetation and plant matter (S. Strachan, pers. comm.). Samples were sorted to a minimum 300-count, which does not include copepods, cladocerans, nematodes and other incidental organisms specified by CABIN (MacDermott *et al.* 2012).

All samples are sorted using a Meiji EMZ dissecting microscope at 10-40x magnification by trained personnel. All debris in the subsample was checked microscopically, including leaves, twigs, moss, elutriated gravel, and other large debris. This method assures 'clinger taxa' are recovered consistently from the samples. To minimize potential sorter bias, samples were distributed among technicians such that no person sorted all the replicates of a given sample.

To ensure the sorting efficiency was >95%, whole and/or partial subsamples were re-sorted. Sorting efficiency was calculated using the following equation:

Sorting efficiency = $[Total count - (\#recovered on re-sort)] \times 100\%$ Total count

For the July samples, 50% of the debris for 4 of the 7 samples was re-sorted. The estimated efficiency was 98.2%. For the September samples, all samples were completely double-checked by a trained sorting technician during a training exercise and thus sorting efficiency is estimated to be 100% as all found organisms were retained.

Subsampling accuracy was assessed by comparing the percent differences in abundances among equivalent quadrats during sorting. Mean error among quadrats within a sample was 18.7%. Actual subsampling error is thus expected to be <20% from the larger reported subsamples.

All organisms are identified using a combination of dissecting (10-40x) and compound microscopes (100-1000X) and standard taxonomic keys (See Taxonomic References) to the lowest practicable level (species where possible). All chironomids were cleared and slide-mounted in a permanent mounting medium for optimal resolution of their head capsules. Specimens were identified by a SFS-certified taxonomist (EPT and Chironomidae, West) with 4 years of experience (Robynn Holma, B.Sc.). No new taxa were encountered or added the Biologica's reference collection during the course of this study. One sample for each time period was double-checked by a second internal taxonomist to ensure 100% internal agreement on all species-level identifications. All specimens were archived in air-tight glass vials with glycerin and 70% ethanol for long-term storage.

Taxonomic data were recorded on bench sheets as per CABIN guidelines. These data were entered into an excel spreadsheet and completely double-checked against bench sheets for entry errors. Data were delivered to the client electronically.

Methodological References:

- Environment Canada. 2010. Pulp and Paper Environmental Effects Monitoring (EEM) Technical Guidance Document.
- Environment Canada. 2012. Metal Mining Environmental Effects Monitoring (EEM) Technical Guidance Document.
- Environment Canada. 2002. Revised Guidance for Sample Sorting and Subsampling Protocols for EEM Benthic Invertebrate Community Surveys.

 https://www.ec.gc.ca/esee-eem/default.asp?lang=En&n=F919D331-1 accessed December 2012.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Beatty, J.M., McDonald, L.E., Westcott, F.M. and Perrin, C.J. 2006. Guidelines for Sampling Benthic Invertebrates in British Columbia Streams. BC Ministry of Environment. http://www.env.gov.bc.ca/epd/regions/kootenay/wq_reports/pdf/bi-sampling-06update.pdf. Accessed December 2012.

- Caton, L.W. 1991. Improved Subsampling Methods for the EPA "Rapid Bioassessment" Benthic Protocols. Bulletin of the North American Benthological Society of America 8(3):317-319.
- McDermott, H., Paull, T., and Strachan, S. 2012. CABIN (Canadian Aquatic Biomonitoring Network) Invertebrate Biomonitoring Field and Laboratory Manual. National Water Research Institute, Environment Canada, 30pp.

Selected Taxonomic References:

- Bousfield, E.L. 1958. Freshwater Amphipod Crustaceans of Glaciated North America. The Canadian Field Naturalist.72(2): 55-113
- Clarke, Arthur H., <u>The Freshwater Molluscs of Canada</u>, National Museum of Natural Sciences, National Museums of Canada, 1981.
- Epler, J.H. 2010. The Water Beetles of Florida an identification manual for the families Chrysomelidae, Curculionidae, Dryopidae, Dytiscidae, Elmidae, Gyrinidae, Haliplidae, Helophoridae, Hydraenidae, Hydrochidae, Hydrophilidae, Noteridae, Psephenidae, Ptilodactylidae and Scirtidae. Florida Department of Environmental Protection, Tallahassee, FL. 399 + iv pp.
- Epler, J.H. 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SJ2001-SP13. North Carolina Department of Environmental and Natural Resources, Raleigh, NC, and St. John's River Water.
- Essig, E.O. <u>Insects of Western North America</u>. The Macmillan Company. 1926.
- Kathman, R.D., and Brinkhurst, R.O., 1998. *Guide to the Freshwater Oligochaetes of North America*, Aquatic Resources Centre, College Grove, Tennessee, USA.
- McAlpine, J. F., (ed.), <u>Manual of Nearctic Diptera</u>, Research Branch Agriculture, Canada, Ottawa, Vol.1 (1982), Vol.2 (1987), Vol.3 (1989).
- Merritt, R.W. and K. W. Cummins, <u>Aquatic Insects of North America</u>, Third Edition, Kendall/Hunt Publishing Company, 1996.
- Needham, J.G., M.J. Westfall, Jr., and M.L. May. <u>Dragonflies of North America: the Odonata</u> (Anisoptera) fauna of Canada, the continental United States, northern Mexico and the <u>Greater Antilles</u>, Third Edition. Scientific Publishers, Inc. 2014.
- Northwest Biological Assesment Workgroup 9th Annual Taxonomic Workshop. Mayflies in Moscow: Northwest Ephemeroptera Nymphs. University of Idaho. 2005.

- Oliver, D.R., and M.E, Roussel, <u>The Genera of Larval Midges of Canada Diptera</u>: <u>Chironomidae</u>, Canada Dept. of Agriculture, 1983.
- Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J.Conklin Jr., <u>Freshwater</u>

 <u>Macroinvertebrates of Northeastern North America</u>, Cornell University Press, 1993.
- Pennak, R.W., <u>Freshwater Invertebrates of the United States</u>, Fourth Edition, John Wiley and Sons, Inc., 2001.
- Proctor, H. 2006. Key to Aquatic Mites Known From Alberta. Department of Biological Sciences, University of Calgary.
- Rogers, D.C. 2005. Identification manual to the freshwater Crustacea of the western United States and adjacent areas encountered during bioassesment. EcoAnalysts, Inc. Technical Publication #1.
- Stewart. K.W., and M.W. Oswood. <u>The Stoneflies (Plecoptera) of Alaska and Western Canada</u>. The Caddis Press. 2006.
- Stewart, K.W., and B.P. Stark. <u>Nymphs of North American Stonefly Genera (Plecoptera)</u>, Second Edition. The Caddis Press. 2002.
- Thorp J.H., and A.P. Covich, <u>Ecology and Classification of Freshwater Invertebrates</u>, Academic Press, Inc., 1991.
- Witzel, M.J., S.V. Fend, K.A. Coates, R.D. Kathman, and S.R. Gelder. 2009. Taxonomy, systematics, and ecology of the aquatic Oligochaeta and Branchiobdellidae (Annelida, Clitellata) of North America. A workbook. 3 March 2009. vi + 280 pp. + color plates.
- Wiggins, G.B. 1996. <u>Larvae of the North American caddisfly genera (Trichoptera)</u>, Second Edition. University of Toronto Press, Toronto. 457 pp.

Biologica Sample #

Biologica Gample #		No. of		MH-04				
TAXON	STAGE	individuals	1/12	Macro	Total			
PLATYHELMINTHES								
Planariidae								
Polycelis sp.	Α	24						
Polycelis sp.	J	12	1		12			
ANNELIDA								
Oligochaeta								
Enchytraeidae								
Enchytraeidae indet.	А	13						
Enchytraeidae indet.	J	14						
ARTHROPODA								
ARACHNIDA								
Acari								
Acari indet.	L	4						
Oribatida								
Oribatida indet.	Α	38						
Hydrozetidae								
Hydrozetes sp.	Α	15						
Trombidiformes								
Hydrachnidiae								
Hydrachnidiae indet.	Deutonymph	22	1		12			
Arrenuridae								
Arrenurus sp.	Α	4						
Hydryphantidae								
Protzia sp.	Α	96	8		96			
Wandesia sp.	Α	503	19		228			
Aturidae								
<i>Brachypoda</i> sp.	Α	24						
Lebertiidae								
Lebertia sp.	Α	16	1		12			
Sperchontidae								
Sperchon sp.	Α	8						
Amphipoda								
Gammaridae								
Gammarus sp.	Α	12						
Gammarus sp.	J	2						
INSECTA								
Coleoptera								
Coleoptera indet.	Α	8						
Collembola								
Dicyrtomidae								
Dicyrtoma s.l. sp.	Α	24						
Isotomidae								
Isotomidae indet.	Α	65	1		12			
Onychuridae								

Azimuth - Teck Creeks (Yukon) 2014 Benthic Data

Biologica Sample #

Biologica dampie #		No. of		MH-04			
TAXON	STAGE	individuals	1/12	Macro	Total		
Onychuridae indet.	Α	94					
Ephemeroptera							
Ephemeroptera indet.	N	132	11		132		
Ameletidae							
Ameletus sp.	N	243					
Baetidae							
Baetidae indet.	N	1048	21		252		
Baetis bicaudatus	N	7959	48		576		
Baetis sp.	N	1560					
Ephemerellidae							
Drunella doddsii	N	3					
Drunella sp.	N	4					
Heptageniidae							
Heptageniidae indet.	N	977	31		372		
Cinygma sp.	N	12					
Cinygmula sp.	N	849	10		120		
Epeorus albertae	N	66					
Epeorus longimanus	N	32					
Epeorus sp.	N	132					
Lepidoptera							
Lepidoptera indet.	L	12					
Plecoptera							
Plecoptera indet.	N	362	13		156		
Chloroperlidae							
Chloroperlidae indet.	N	129	3		36		
Paraperla sp.	N	191					
<i>Suwallia</i> sp.	N	206	14		168		
Sweltsa sp.	N	172					
Leuctridae							
Leuctridae indet.	N	156	1		12		
Despaxia augusta	N	44					
Perlomyia sp.	N	24					
Nemouridae							
Nemouridae indet	N	180					
Visoka cataractae	N	306					
Zapada cinctipes	N	4					
Zapada columbiana	N	24					
Zapada oregonensis group sp.	N	1431	22		264		
Zapada sp.	N	544					
Perlodidae							
Perlodidae indet	N	228	10		120		
Megarcys sp.	N	57		11	11		
Trichoptera							
Trichoptera indet.	L	14					
Apataniidae							
Allomyia sp.	L	516	43		516		

Biologica Sample #

Biologica Sample #		No. of		MH-04			
TAXON	STAGE	individuals	1/12	Macro	Total		
Glossosomatidae							
Glossosoma sp.	L	8					
Hydropsychidae							
Parapsyche sp.	L	11					
Limnephilidae							
Limnephilidae indet.	L	12	1		12		
Chyranda sp.	L	16					
Philocasca sp.	L	8					
Rhyacophilidae							
Rhyacophila sp.	L	546					
Uenoidae							
Oligophlebodes sp.	L	12					
Diptera							
Diptera indet.	L	12					
Brachycera							
Brachycera indet.	Р	12	1		12		
Chaoboridae							
Chaoborus sp.	L	44					
Chironomidae							
Chironomidae indet.	L	650	20		240		
Chironomidae indet.	Р	360	2		24		
Chironominae							
Tanytarsini							
Tanytarsini indet.	L	2					
Micropsectra/Tanytarsus sp. complex	L	129	6		72		
Diamesinae							
Diamesinae indet.	L	110					
Diamesa sp.	L	372	1		12		
Pagastia sp.	L	60					
Orthocladiinae							
Orthocladiinae indet.	L	1414	21		252		
<i>Brillia</i> sp.	L	86	1		12		
Corynoneura sp.	L	80	3		36		
Cricotopus/Orthocladius sp. complex	L	856	5		60		
Eukiefferiella sp.	L	1887	46		552		
Heleniella sp.	L	24					
Heterotrissocladius sp.	L	24					
Parakiefferiella sp.	L	36	3		36		
Parametriocnemus sp.	L	30					
Platysmittia sp.	L	24					
Rheocricotopus sp.	L	52					
Stilocladius sp.	L	10					
Synorthocladius sp.	L	204	1		12		
Synorthocladius sp. (aberrant)	L	426	4		48		
Thienemanniella sp.	L	189	2		24		
Tvetenia sp.	L	760					

Azimuth - Teck Creeks (Yukon) 2014 Benthic Data

Biologica Sample #

Biologica campi		No. of				
TAXON	STAGE	individuals	1/12	Macro	Total	
Podonominae						
Boreochlus sp.	L	8				
Prodiamesinae						
Prodiamesinae indet.	L	12				
Tanypodinae						
Tanypodinae indet.	L	14				
Procladius sp.	L	6				
Psectrotanypus sp.	L	4				
Reomyia/Zavrelimyia sp. complex	L	8				
Dixidae						
Dixa sp.	L	4				
Empididae						
Empididae indet.	L	28				
Clinocera sp.	L	48	4		48	
Neoplasta sp.	L	154				
Oreogeton sp.	L	951	24		288	
Psychodidae						
Pericoma/Telmatoscopus sp.	L	16	1		12	
Simuliidae						
Simuliidae indet.	L	58	3		36	
Simuliidae indet.	Р	19				
Prosimulium sp.	L	366				
Tipulidae						
Tipulidae indet.	L	8				
Antocha sp.	L	2				
Dicranota sp.	L	28	1		12	
			-			
Total Number of Organisms		28820	408	11	4907	
Total Number of Taxa		70			27	
MEIOFAUNA						
Crustacea						
Cladocera indet.	А	Present				
Copepoda indet.	A	Present				
Ostracoda indet.	A	Present	Р		Р	
Nematoda			-			
Nematoda indet.	А	Present				
МЕМО						
Araneae indet. (spider)	А	Present				
Invertebrate indet.	eggs	Present				
Terrestrial insect	A	Present	Р		Р	
Terrestrial gastropoda indet.						

Biologica Sample #

TAXON	STAGE	No. of individuals	MH-12			
			1/24	Macro	Total	
PLATYHELMINTHES						
Planariidae						
Polycelis sp.	Α	24				
Polycelis sp.	J	12				
ANNELIDA						
Oligochaeta						
Enchytraeidae						
Enchytraeidae indet.	Α	13				
Enchytraeidae indet.	J	14				
ARTHROPODA						
ARACHNIDA						
Acari						
Acari indet.	L	4				
Oribatida						
Oribatida indet.	Α	38				
Hydrozetidae						
Hydrozetes sp.	Α	15				
Trombidiformes						
Hydrachnidiae						
Hydrachnidiae indet.	Deutonymph	22				
Arrenuridae						
Arrenurus sp.	Α	4				
Hydryphantidae						
<i>Protzia</i> sp.	Α	96				
<i>Wandesia</i> sp.	Α	503				
Aturidae						
<i>Brachypoda</i> sp.	Α	24	1		24	
Lebertiidae						
Lebertia sp.	Α	16				
Sperchontidae						
Sperchon sp.	А	8				
Amphipoda						
Gammaridae						
Gammarus sp.	Α	12				
Gammarus sp.	J	2				
INSECTA						
Coleoptera						
Coleoptera indet.	Α	8				
Collembola						
Dicyrtomidae						
Dicyrtoma s.l. sp.	Α	24	1		24	
Isotomidae						
Isotomidae indet.	А	65				
Onychuridae						

Azimuth - Teck Creeks (Yukon) 2014 Benthic Data

Biologica Sample #

Biologica cample #	Ī	No. of individuals	MH-12			
TAXON	STAGE		1/24	Macro	Total	
Onychuridae indet.	Α	94				
Ephemeroptera						
Ephemeroptera indet.	N	132				
Ameletidae						
Ameletus sp.	N	243				
Baetidae						
Baetidae indet.	N	1048	7		168	
Baetis bicaudatus	N	7959	110		2640	
Baetis sp.	N	1560	7		168	
Ephemerellidae						
Drunella doddsii	N	3				
Drunella sp.	N	4				
Heptageniidae						
Heptageniidae indet.	N	977	5		120	
Cinygma sp.	N	12				
Cinygmula sp.	N	849	7		168	
Epeorus albertae	N	66	1		24	
Epeorus longimanus	N	32				
Epeorus sp.	N	132	1		24	
Lepidoptera						
Lepidoptera indet.	L	12				
Plecoptera						
Plecoptera indet.	N	362				
Chloroperlidae						
Chloroperlidae indet.	N	129				
Paraperla sp.	N	191	3		72	
Suwallia sp.	N	206				
Sweltsa sp.	N	172	1		24	
Leuctridae						
Leuctridae indet.	N	156	1		24	
Despaxia augusta	N	44				
Perlomyia sp.	N	24				
Nemouridae						
Nemouridae indet	N	180				
Visoka cataractae	N	306				
Zapada cinctipes	N	4				
Zapada columbiana	N	24				
Zapada oregonensis group sp.	N	1431	3		72	
Zapada sp.	N	544				
Perlodidae						
Perlodidae indet	N	228	1		24	
Megarcys sp.	N	57	1	9	33	
Trichoptera						
Trichoptera indet.	L	14				
Apataniidae						
Allomyia sp.	L	516				

Biologica Sample #

Biologica Sample	<u> </u>	No. of	MH-12			
TAXON	STAGE	individuals	1/24	Macro	Total	
Glossosomatidae						
Glossosoma sp.	L	8				
Hydropsychidae						
Parapsyche sp.	L	11				
Limnephilidae						
Limnephilidae indet.	L	12				
Chyranda sp.	L	16				
Philocasca sp.	L	8				
Rhyacophilidae						
Rhyacophila sp.	L	546	1		24	
Uenoidae						
Oligophlebodes sp.	L	12				
Diptera						
Diptera indet.	L	12				
Brachycera						
Brachycera indet.	Р	12				
Chaoboridae						
Chaoborus sp.	L	44				
Chironomidae						
Chironomidae indet.	L	650	12		288	
Chironomidae indet.	Р	360				
Chironominae						
Tanytarsini						
Tanytarsini indet.	L	2				
Micropsectra/Tanytarsus sp. complex	L	129				
Diamesinae						
Diamesinae indet.	L	110	4		96	
Diamesa sp.	L	372	3		72	
Pagastia sp.	L	60	2		48	
Orthocladiinae						
Orthocladiinae indet.	L	1414	31		744	
Brillia sp.	L	86	1		24	
Corynoneura sp.	L	80				
Cricotopus/Orthocladius sp. complex	L	856	11		264	
Eukiefferiella sp.	L	1887	47		1128	
Heleniella sp.	L	24				
Heterotrissocladius sp.	L	24				
Parakiefferiella sp.	L	36				
Parametriocnemus sp.	L	30				
Platysmittia sp.	L	24	1		24	
Rheocricotopus sp.	L	52				
Stilocladius sp.	L	10				
Synorthocladius sp.	L	204	3		72	
Synorthocladius sp. (aberrant)	L	426	2		48	
Thienemanniella sp.	L	189	6		144	
Tvetenia sp.	L	760	27		648	

Azimuth - Teck Creeks (Yukon) 2014 Benthic Data

Biologica Sample #

Biologica campi		No. of	MH-12			
TAXON	STAGE	individuals	1/24	Macro	Total	
Podonominae						
Boreochlus sp.	L	8				
Prodiamesinae						
Prodiamesinae indet.	L	12				
Tanypodinae						
Tanypodinae indet.	L	14				
Procladius sp.	L	6				
Psectrotanypus sp.	L	4				
Reomyia/Zavrelimyia sp. complex	L	8				
Dixidae						
Dixa sp.	L	4				
Empididae						
Empididae indet.	L	28	1		24	
Clinocera sp.	L	48				
Neoplasta sp.	L	154				
Oreogeton sp.	L	951	1		24	
Psychodidae						
Pericoma/Telmatoscopus sp.	L	16				
Simuliidae						
Simuliidae indet.	L	58				
Simuliidae indet.	Р	19				
Prosimulium sp.	L	366	1		24	
Tipulidae						
Tipulidae indet.	L	8				
Antocha sp.	L	2				
Dicranota sp.	L	28				
Total Number of Organisms		28820	304	9	7305	
Total Number of Taxa		70			22	
MEIOFAUNA						
Crustacea						
Cladocera indet.	Α	Present				
Copepoda indet.	А	Present				
Ostracoda indet.	А	Present				
Nematoda						
Nematoda indet.	А	Present				
MEMO						
Araneae indet. (spider)	А	Present				
Invertebrate indet.	eggs	Present	Р		Р	
Terrestrial insect	A	Present	Р		Р	
Terrestrial gastropoda indet.						

Biologica Sample #

Biologica Gample #		No. of	MH-27		
TAXON	STAGE	individuals	5/12	Macro	Total
PLATYHELMINTHES					
Planariidae					
Polycelis sp.	Α	24			
Polycelis sp.	J	12			
ANNELIDA					
Oligochaeta					
Enchytraeidae					
Enchytraeidae indet.	Α	13	2		5
Enchytraeidae indet.	J	14	1		2
ARTHROPODA					
ARACHNIDA					
Acari					
Acari indet.	L	4			
Oribatida					
Oribatida indet.	Α	38	1		2
Hydrozetidae					
Hydrozetes sp.	Α	15	3		7
Trombidiformes					
Hydrachnidiae					
Hydrachnidiae indet.	Deutonymph	22	1		2
Arrenuridae					
Arrenurus sp.	Α	4			
Hydryphantidae					
<i>Protzia</i> sp.	Α	96			
<i>Wandesia</i> sp.	Α	503	13		31
Aturidae					
<i>Brachypoda</i> sp.	Α	24			
Lebertiidae					
Lebertia sp.	Α	16			
Sperchontidae					
Sperchon sp.	Α	8			
Amphipoda					
Gammaridae					
Gammarus sp.	Α	12		2	2
Gammarus sp.	J	2			
INSECTA					
Coleoptera					
Coleoptera indet.	Α	8			
Collembola					
Dicyrtomidae					
Dicyrtoma s.l. sp.	Α	24			
Isotomidae					
Isotomidae indet.	Α	65	7		17
Onychuridae					

Azimuth - Teck Creeks (Yukon) 2014 Benthic Data

Biologica Sample #

Biologica Sample v	1	No. of	MH-27		
TAXON	STAGE	individuals	5/12	Macro	Total
Onychuridae indet.	Α	94	6		14
Ephemeroptera					
Ephemeroptera indet.	N	132			
Ameletidae					
Ameletus sp.	N	243	3		7
Baetidae					
Baetidae indet.	N	1048	10		24
Baetis bicaudatus	N	7959	28		67
Baetis sp.	N	1560			
Ephemerellidae					
Drunella doddsii	N	3	1		2
Drunella sp.	N	4			
Heptageniidae					
Heptageniidae indet.	N	977	17		41
Cinygma sp.	N	12	5		12
Cinygmula sp.	N	849	27		65
Epeorus albertae	N	66	16		38
Epeorus longimanus	N	32			
Epeorus sp.	N	132			
Lepidoptera					
Lepidoptera indet.	L	12			
Plecoptera					
Plecoptera indet.	N	362	4		10
Chloroperlidae					
Chloroperlidae indet.	N	129	2		5
Paraperla sp.	N	191	3		7
Suwallia sp.	N	206	11		26
Sweltsa sp.	N	172	5		12
Leuctridae					
Leuctridae indet.	N	156			
Despaxia augusta	N	44			
Perlomyia sp.	N	24			
Nemouridae					
Nemouridae indet	N	180			
Visoka cataractae	N	306	1		2
Zapada cinctipes	N	4			
Zapada columbiana	N	24			
Zapada oregonensis group sp.	N	1431	28		67
Zapada sp.	N	544			
Perlodidae					
Perlodidae indet	N	228			
Megarcys sp.	N	57		1	1
Trichoptera					
Trichoptera indet.	L	14	1		2
Apataniidae					
Allomyia sp.	L	516			

Biologica Sample #

Biologica campie #		No. of	MH-27		
TAXON	STAGE	individuals	5/12	Macro	Total
Glossosomatidae					
Glossosoma sp.	L	8			
Hydropsychidae					
Parapsyche sp.	L	11	1		2
Limnephilidae					
Limnephilidae indet.	L	12			
Chyranda sp.	L	16			
Philocasca sp.	L	8			
Rhyacophilidae					
Rhyacophila sp.	L	546	21		50
Uenoidae					
Oligophlebodes sp.	L	12			
Diptera					
Diptera indet.	L	12			
Brachycera					
Brachycera indet.	Р	12			
Chaoboridae					
Chaoborus sp.	L	44			
Chironomidae					
Chironomidae indet.	L	650	4		10
Chironomidae indet.	Р	360	5		12
Chironominae					
Tanytarsini					
Tanytarsini indet.	L	2	1		2
Micropsectra/Tanytarsus sp. complex	L	129	2		5
Diamesinae					
Diamesinae indet.	L	110	1		2
Diamesa sp.	L	372			
Pagastia sp.	L	60			
Orthocladiinae					
Orthocladiinae indet.	L	1414	4		10
<i>Brillia</i> sp.	L	86	4		10
Corynoneura sp.	L	80			
Cricotopus/Orthocladius sp. complex	L	856	5		12
Eukiefferiella sp.	L	1887	3		7
Heleniella sp.	L	24			
Heterotrissocladius sp.	L	24			
Parakiefferiella sp.	L	36			
Parametriocnemus sp.	L	30	1		2
Platysmittia sp.	L	24			
Rheocricotopus sp.	L	52			
Stilocladius sp.	L	10	1	· ·	2
Synorthocladius sp.	L	204			
Synorthocladius sp. (aberrant)	L	426	1		2
Thienemanniella sp.	L	189	2		5
Tvetenia sp.	L	760	5		12

Azimuth - Teck Creeks (Yukon) 2014 Benthic Data

Biologica Sample #

Biologica campi		No. of	MH-27			
TAXON	STAGE	individuals	5/12	Macro	Total	
Podonominae						
Boreochlus sp.	L	8				
Prodiamesinae						
Prodiamesinae indet.	L	12				
Tanypodinae						
Tanypodinae indet.	L	14	1		2	
Procladius sp.	L	6	1		2	
Psectrotanypus sp.	L	4				
Reomyia/Zavrelimyia sp. complex	L	8				
Dixidae						
Dixa sp.	L	4				
Empididae						
Empididae indet.	L	28				
Clinocera sp.	L	48				
Neoplasta sp.	L	154	4		10	
Oreogeton sp.	L	951	3		7	
Psychodidae						
Pericoma/Telmatoscopus sp.	L	16				
Simuliidae						
Simuliidae indet.	L	58	4		10	
Simuliidae indet.	P	19	3		7	
Prosimulium sp.	L	366	39		94	
Tipulidae						
Tipulidae indet.	L	8				
Antocha sp.	L	2	1		2	
Dicranota sp.	L	28	•			
Total Number of Organisms		28820	313	3	754	
Total Number of Taxa		70		_	34	
MEIOFAUNA						
Crustacea						
Cladocera indet.	А	Present	Р		Р	
Copepoda indet.	А	Present	Р		Р	
Ostracoda indet.	А	Present				
Nematoda						
Nematoda indet.	А	Present	Р		Р	
МЕМО						
Araneae indet. (spider)	А	Present				
Invertebrate indet.	eggs	Present	Р		Р	
Terrestrial insect	A	Present	Р		Р	
Terrestrial gastropoda indet.			Р		Р	

Biologica Gample #		No. of	МН	-28
TAXON	STAGE	individuals	1/12	Total
PLATYHELMINTHES				
Planariidae				
Polycelis sp.	Α	24	2	24
Polycelis sp.	J	12		
ANNELIDA				
Oligochaeta				
Enchytraeidae				
Enchytraeidae indet.	Α	13		
Enchytraeidae indet.	J	14		
ARTHROPODA				
ARACHNIDA				
Acari				
Acari indet.	L	4		
Oribatida				
Oribatida indet.	Α	38		
Hydrozetidae				
Hydrozetes sp.	Α	15		
Trombidiformes				
Hydrachnidiae				
Hydrachnidiae indet.	Deutonymph	22		
Arrenuridae				
Arrenurus sp.	Α	4		
Hydryphantidae				
<i>Protzia</i> sp.	Α	96		
<i>Wandesia</i> sp.	Α	503	12	144
Aturidae				
<i>Brachypoda</i> sp.	Α	24		
Lebertiidae				
Lebertia sp.	Α	16		
Sperchontidae				
Sperchon sp.	Α	8		
Amphipoda				
Gammaridae				
Gammarus sp.	Α	12		
Gammarus sp.	J	2		
INSECTA				
Coleoptera				
Coleoptera indet.	Α	8		
Collembola				
Dicyrtomidae				
Dicyrtoma s.l. sp.	Α	24		
Isotomidae				
Isotomidae indet.	Α	65		
Onychuridae				

Biologica Sample #

Biologica camp	TAXON STAGE individuals 1/12			
TAXON				Total
Onychuridae indet.	А	94	1	12
Ephemeroptera				
Ephemeroptera indet.	N	132		
Ameletidae				
Ameletus sp.	N	243	8	96
Baetidae				
Baetidae indet.	N	1048	7	84
Baetis bicaudatus	N	7959	109	1308
Baetis sp.	N	1560	40	480
Ephemerellidae				
Drunella doddsii	N	3		
Drunella sp.	N	4		
Heptageniidae				
Heptageniidae indet.	N	977	1	12
Cinygma sp.	N	12		
Cinygmula sp.	N	849	2	24
Epeorus albertae	N	66		
Epeorus longimanus	N	32		
Epeorus sp.	N	132		
Lepidoptera				
Lepidoptera indet.	L	12		
Plecoptera				
Plecoptera indet.	N	362		
Chloroperlidae				
Chloroperlidae indet.	N	129		
Paraperla sp.	N	191		
Suwallia sp.	N	206		
Sweltsa sp.	N	172	6	72
Leuctridae				
Leuctridae indet.	N	156	8	96
Despaxia augusta	N	44	3	36
Perlomyia sp.	N	24		
Nemouridae				
Nemouridae indet	N	180	5	60
Visoka cataractae	N	306	20	240
Zapada cinctipes	N	4		
Zapada columbiana	N	24	2	24
Zapada oregonensis group sp.	N	1431	42	504
Zapada sp.	N	544	4	48
Perlodidae				
Perlodidae indet	N	228		
Megarcys sp.	N	57		
Trichoptera				
Trichoptera indet.	L	14		
Apataniidae				
Allomyia sp.	L	516		

Biologica Sample #	T .	No. of	MH-28	
TAXON	STAGE	individuals	1/12	Total
Glossosomatidae				
Glossosoma sp.	L	8		
Hydropsychidae				
Parapsyche sp.	L	11		
Limnephilidae				
Limnephilidae indet.	L	12		
Chyranda sp.	L	16		
Philocasca sp.	L	8		
Rhyacophilidae				
Rhyacophila sp.	L	546	28	336
Uenoidae				
Oligophlebodes sp.	L	12		
Diptera				
Diptera indet.	L	12		
Brachycera				
Brachycera indet.	Р	12		
Chaoboridae				
Chaoborus sp.	L	44		
Chironomidae				
Chironomidae indet.	L	650	1	12
Chironomidae indet.	Р	360	4	48
Chironominae				
Tanytarsini				
Tanytarsini indet.	L	2		
Micropsectra/Tanytarsus sp. complex	L	129		
Diamesinae				
Diamesinae indet.	L	110	1	12
Diamesa sp.	L	372		
Pagastia sp.	L	60	1	12
Orthocladiinae				
Orthocladiinae indet.	L	1414	4	48
<i>Brillia</i> sp.	L	86	2	24
Corynoneura sp.	L	80	1	12
Cricotopus/Orthocladius sp. complex	L	856		
Eukiefferiella sp.	L	1887	1	12
Heleniella sp.	L	24		
Heterotrissocladius sp.	L	24		
Parakiefferiella sp.	L	36		
Parametriocnemus sp.	L	30	1	12
Platysmittia sp.	L	24		
Rheocricotopus sp.	L	52		
Stilocladius sp.	L	10		
Synorthocladius sp.	L	204		
Synorthocladius sp. (aberrant)	L	426		
Thienemanniella sp.	L	189	1	12
Tvetenia sp.	L	760	1	12

Biologica Sample #

Biologica Sample	* #	T T	14-1	
TAVON	STACE	No. of		
TAXON	STAGE	individuals	1/12	Total
Podonominae				
Boreochlus sp.	L	8		
Prodiamesinae		40		
Prodiamesinae indet.	L	12		
Tanypodinae				
Tanypodinae indet.	L	14	1	12
Procladius sp.	L	6		
Psectrotanypus sp.	L	4		
Reomyia/Zavrelimyia sp. complex	L	8		
Dixidae				
Dixa sp.	L	4		
Empididae				
Empididae indet.	L	28		
Clinocera sp.	L	48		
Neoplasta sp.	L	154		
Oreogeton sp.	L	951	1	12
Psychodidae				
Pericoma/Telmatoscopus sp.	L	16		
Simuliidae				
Simuliidae indet.	L	58	1	12
Simuliidae indet.	Р	19		
Prosimulium sp.	L	366	4	48
Tipulidae				
Tipulidae indet.	L	8		
Antocha sp.	L	2		
Dicranota sp.	L	28		
Biolancia opi	_			
Total Number of Organisms		28820	325	3900
Total Number of Taxa		70		22
MEIOFAUNA				
Crustacea				
Cladocera indet.	Α	Present		
Copepoda indet.	А	Present	Р	Р
Ostracoda indet.	A	Present	P	P
Nematoda				
Nematoda indet.	А	Present	Р	Р
			•	·
MEMO				
Araneae indet. (spider)	А	Present		
Invertebrate indet.	eggs	Present		
Terrestrial insect	A	Present	Р	Р
Terrestrial gastropoda indet.			•	•

TAXON	\	
Planariidae	Total	
Polycelis sp. A		
Polycelis sp. J 12		
ANNELIDA		
Dilgochaeta		
Dilgochaeta		
Enchytraeidae		
Enchytraeidae indet.		
Enchytraeidae indet.		
ARTHROPODA ARACHNIDA Acari indet. Oribatida Oribatida indet. Hydrozetidae Hydrozetes sp. A Arenuridae Arrenurus sp. Arenurus sp. A A Bydraphantidae Protzia sp. Brachypoda sp. Lebertiidae Lebertiiae Sperchon sp. A A A B Amphipoda Gammarus sp. A A A Cari Acari indet. A 1 A 38 B 5 Brachypoda Brachypoda sp. A 96 Brachypoda Brachyp		
ARACHNIDA L 4 1 Acari indet. L 4 1 Oribatida Oribatida indet. A 38 5 Hydrozetidae B Hydrozetidae B Hydrozetidae B		
Acari L 4 1 Oribatida Oribatida indet. A 38 5 Oribatida indet. A 38 5 Hydrozetidae B Hydrozetes sp. A 15 2 Trombidiformes B Hydrachnidiae B Hydrachnidiae B <t< td=""><td></td></t<>		
Acari indet. L 4 1 Oribatida Oribatida indet. A 38 5 Hydrozetidae Brydrozetes sp. A 15 2 Trombidiformes Brydrachnidiae Brydrac		
Oribatida A 38 5 Hydrozetidae B B B Hydrozetes sp. A 15 2 Trombidiformes B		
Oribatida indet. A 38 5 Hydrozetidae B Hydrozetes sp. A 15 2 Trombidiformes B Hydrachnidiae B Hydrachnidiae B	4	
Hydrozetidae A 15 2 Trombidiformes Bydrachnidiae		
Hydrozetes sp. A 15 2 Trombidiformes Butter of the process	20	
Trombidiformes Hydrachnidiae Hydrachnidiae indet. Deutonymph 22 Arrenuridae A 4 1 Arrenurus sp. A 4 1 Hydryphantidae Brotzia sp. A 96 96 Wandesia sp. A 503		
Hydrachnidiae Deutonymph 22 Arrenuridae A 4 1 Arrenurus sp. A 4 1 Hydryphantidae Brotzia sp. A 96 96 Wandesia sp. A 503 503 503 503 503 60	8	
Hydrachnidiae indet. Deutonymph 22 Arrenuridae A 4 1 Arrenurus sp. A 4 1 Hydryphantidae Brotzia sp. A 96 Wandesia sp. A 503 Aturidae Brachypoda sp. A 24 Lebertiidae Brachypoda sp. A 16 1 Sperchontidae Sperchontidae Sperchon sp. A 8 Amphipoda A 8 Amphipoda Gammaridae A 12 10 Gammarus sp. A 12 10 Gammarus sp. J 2 2		
Arrenuridae A 4 1 Hydryphantidae Brotzia sp. A 96 Wandesia sp. A 503 Aturidae A 24 Brachypoda sp. A 24 Lebertiidae A 16 1 Sperchontidae Sperchon sp. A 8 Amphipoda A 8 Gammaridae A 12 10 Gammarus sp. A 12 2 J 2 2 2		
Arrenurus sp. A 4 1 Hydryphantidae Brotzia sp. A 96 Wandesia sp. A 503 Aturidae Brachypoda sp. A 24 Lebertiidae Lebertia sp. A 16 1 Sperchontidae Sperchon sp. A 8 Amphipoda Bammaridae Bammaridae Bammarus sp. A 12 10 Gammarus sp. J 2 2 2		
Hydryphantidae A 96 Protzia sp. A 96 Wandesia sp. A 503 Aturidae Brachypoda sp. A 24 Lebertiidae Beerchiidae Beerchontidae Beerchontidae Beerchontidae Beerchon sp. A A Beerchontidae		
Protzia sp. A 96 Wandesia sp. A 503 Aturidae Brachypoda sp. A 24 Lebertiidae Lebertii sp. A 16 1 Sperchontidae Sperchon sp. A 8 A Amphipoda Gammaridae A 12 10 Gammarus sp. J 2 2	4	
Wandesia sp. A 503 Aturidae Brachypoda sp. A 24 Lebertiidae Best in a sp. A 16 1 Lebertia sp. A 16 1 Sperchontidae B B B Sperchon sp. A 8 B Amphipoda B B B Gammaridae B B B Gammarus sp. A 12 10 Gammarus sp. J 2 2		
Aturidae Brachypoda sp. A 24 Lebertiidae Bebertiidae A 16 1 Lebertia sp. A 16 1 Sperchontidae B B Sperchon sp. A 8 Amphipoda B B Gammaridae B B Gammarus sp. A 12 10 Gammarus sp. J 2 2		
Aturidae Brachypoda sp. A 24 Lebertiidae Bebertiidae A 16 1 Lebertia sp. A 16 1 Sperchontidae B B Sperchon sp. A 8 Amphipoda B B Gammaridae B B Gammarus sp. A 12 10 Gammarus sp. J 2 2		
Lebertiidae A 16 1 Lebertia sp. A 16 1 Sperchontidae B 8 Amphipoda B B Gammaridae B B Gammarus sp. A 12 10 Gammarus sp. J 2 2		
Lebertia sp. A 16 1 Sperchontidae Sperchon sp. A 8 Amphipoda Gammaridae Image: Common sp. and sp. a		
Sperchontidae A 8 Sperchon sp. A 8 Amphipoda Cammaridae Cammarus sp. A 12 10 Gammarus sp. J 2 2 2		
Sperchontidae A 8 Sperchon sp. A 8 Amphipoda Cammaridae Cammarus sp. A 12 10 Gammarus sp. J 2 2 2		
Sperchon sp. A 8 Amphipoda Cammaridae Cammarus sp. A 12 10 Gammarus sp. J 2 2		
Amphipoda Gammaridae Gammarus sp. A 12 10 Gammarus sp. J 2 2		
Gammaridae A 12 10 Gammarus sp. J 2 2		
Gammarus sp. J 2 2		
Gammarus sp. J 2 2	10	
	2	
Coleoptera		
Coleoptera indet. A 8		
Collembola		
Dicyrtomidae		
Dicyrtoma s.l. sp. A 24		
Isotomidae		
Isotomidae indet. A 65 1		
Onychuridae		

Biologica Sample #

Biologica Gample #		No. of		MH-28A	
TAXON	STAGE	individuals	1/4	Macro	Total
Onychuridae indet.	Α	94	3		12
Ephemeroptera					
Ephemeroptera indet.	N	132			
Ameletidae					
Ameletus sp.	N	243			
Baetidae					
Baetidae indet.	N	1048	49		196
Baetis bicaudatus	N	7959	109		436
Baetis sp.	N	1560			
Ephemerellidae					
Drunella doddsii	N	3		1	1
Drunella sp.	N	4	1		4
Heptageniidae					
Heptageniidae indet.	N	977	32		128
Cinygma sp.	N	12			
Cinygmula sp.	N	849	23		92
Epeorus albertae	N	66	1		4
Epeorus longimanus	N	32			
Epeorus sp.	N	132	19		76
Lepidoptera					
Lepidoptera indet.	L	12			
Plecoptera					
Plecoptera indet.	N	362	15		60
Chloroperlidae					
Chloroperlidae indet.	N	129			
Paraperla sp.	N	191	13		52
Suwallia sp.	N	206			
Sweltsa sp.	N	172	3		12
Leuctridae					
Leuctridae indet.	N	156			
Despaxia augusta	N	44			
Perlomyia sp.	N	24			
Nemouridae					
Nemouridae indet	N	180			
Visoka cataractae	N	306			
Zapada cinctipes	N	4	1		4
Zapada columbiana	N	24			
Zapada oregonensis group sp.	N	1431	23		92
Zapada sp.	N	544			
Perlodidae					
Perlodidae indet	N	228	7		28
Megarcys sp.	N	57		4	4
Trichoptera					
Trichoptera indet.	L	14			
Apataniidae					
Allomyia sp.	L	516			

Biologica dampie #		No. of		MH-28A	
TAXON	STAGE	individuals	1/4	Macro	Total
Glossosomatidae					
Glossosoma sp.	L	8			
Hydropsychidae					
Parapsyche sp.	L	11	2	1	9
Limnephilidae					
Limnephilidae indet.	L	12			
Chyranda sp.	L	16			
Philocasca sp.	L	8			
Rhyacophilidae					
Rhyacophila sp.	L	546	12		48
Uenoidae					
Oligophlebodes sp.	L	12			
Diptera					
Diptera indet.	L	12	3		12
Brachycera					
Brachycera indet.	Р	12			
Chaoboridae					
Chaoborus sp.	L	44	11		44
Chironomidae					
Chironomidae indet.	L	650	2		8
Chironomidae indet.	Р	360	6		24
Chironominae					
Tanytarsini					
Tanytarsini indet.	L	2			
Micropsectra/Tanytarsus sp. complex	L	129			
Diamesinae					
Diamesinae indet.	L	110			
Diamesa sp.	L	372			
Pagastia sp.	L	60			
Orthocladiinae					
Orthocladiinae indet.	L	1414	2		8
Brillia sp.	L	86			
Corynoneura sp.	L	80	8		32
Cricotopus/Orthocladius sp. complex	L	856	7		28
Eukiefferiella sp.	L	1887	2		8
Heleniella sp.	L	24			
Heterotrissocladius sp.	L	24			
Parakiefferiella sp.	L	36			
Parametriocnemus sp.	L	30	1		4
Platysmittia sp.	L	24			
Rheocricotopus sp.	L	52	3		12
Stilocladius sp.	L	10			<u> </u>
Synorthocladius sp.	L	204			
Synorthocladius sp. (aberrant)	L	426	1		4
Thienemanniella sp.	L	189	1		4
Tvetenia sp.	L	760	10		40

Biologica Sample #

	 	No. of	MH-28A		
TAXON	STAGE	individuals	1/4	Macro	Total
Podonominae					
Boreochlus sp.	L	8			
Prodiamesinae					
Prodiamesinae indet.	L	12	1		4
Tanypodinae					
Tanypodinae indet.	L	14			
Procladius sp.	L	6	1		4
Psectrotanypus sp.	L	4	1		4
Reomyia/Zavrelimyia sp. complex	L	8			<u>·</u>
Dixidae					
Dixa sp.	L	4	1		4
Empididae					<u> </u>
Empididae indet.	L	28	1		4
Clinocera sp.	 	48	•		<u> </u>
Neoplasta sp.	1	154	1		4
Oreogeton sp.	 	951	1		4
Psychodidae	_	1 33.			
Pericoma/Telmatoscopus sp.		16	1		4
Simuliidae		10	•		
Simuliidae indet.		58			
Simuliidae indet.	P	19	1		4
Prosimulium sp.	i	366	10		40
Tipulidae			10		10
Tipulidae indet.		8			
Antocha sp.	L	2			
Dicranota sp.	+	28	1		4
Dioranota Sp.		20			7
Total Number of Organisms		28820	402	18	1626
Total Number of Taxa		70		. •	37
MEIOFAUNA					
Crustacea					
Cladocera indet.	А	Present	Р		Р
Copepoda indet.	A	Present	P		P
Ostracoda indet.	A	Present	 P		 P
Nematoda		1 1000111	•		·
Nematoda indet.	А	Present	Р		Р
			•		·
МЕМО		† †			
Araneae indet. (spider)	А	Present	Р		Р
Invertebrate indet.	eggs	Present	Р		 P
Terrestrial insect	A	Present	P		P
Terrestrial gastropoda indet.			P		P

Biologica campie #		No. of	MH	
TAXON	STAGE	individuals	1/8	Total
PLATYHELMINTHES				
Planariidae				
Polycelis sp.	Α	24		
Polycelis sp.	J	12		
ANNELIDA				
Oligochaeta				
Enchytraeidae				
Enchytraeidae indet.	Α	13	1	8
Enchytraeidae indet.	J	14	1	8
ARTHROPODA				
ARACHNIDA				
Acari				
Acari indet.	L	4		
Oribatida				
Oribatida indet.	Α	38	2	16
Hydrozetidae				
Hydrozetes sp.	Α	15		
Trombidiformes				
Hydrachnidiae				
Hydrachnidiae indet.	Deutonymph	22	1	8
Arrenuridae				
Arrenurus sp.	Α	4		
Hydryphantidae				
<i>Protzia</i> sp.	Α	96		
Wandesia sp.	Α	503	8	64
Aturidae				
<i>Brachypoda</i> sp.	Α	24		
Lebertiidae				
Lebertia sp.	А	16		
Sperchontidae				
Sperchon sp.	Α	8	1	8
Amphipoda				
Gammaridae				
Gammarus sp.	Α	12		
Gammarus sp.	J	2		
INSECTA				
Coleoptera				
Coleoptera indet.	А	8	1	8
Collembola				
Dicyrtomidae				
Dicyrtoma s.l. sp.	Α	24		
Isotomidae				
Isotomidae indet.	Α	65	4	32
Onychuridae				

Biologica Sam	pic #	No. of	MH-29		
TAXON	TAXON STAGE		1/8	Total	
Onychuridae indet.	А	94	7	56	
Ephemeroptera					
Ephemeroptera indet.	N	132			
Ameletidae					
Ameletus sp.	N	243	16	128	
Baetidae					
Baetidae indet.	N	1048	24	192	
Baetis bicaudatus	N	7959	89	712	
Baetis sp.	N	1560			
Ephemerellidae					
Drunella doddsii	N	3			
Drunella sp.	N	4			
Heptageniidae					
Heptageniidae indet.	N	977	8	64	
Cinygma sp.	N	12			
Cinygmula sp.	N	849	25	200	
Epeorus albertae	N	66			
Epeorus longimanus	N	32	4	32	
Epeorus sp.	N	132	4	32	
Lepidoptera					
Lepidoptera indet.	L	12			
Plecoptera					
Plecoptera indet.	N	362	8	64	
Chloroperlidae					
Chloroperlidae indet.	N	129	2	16	
Paraperla sp.	N	191			
Suwallia sp.	N	206			
Sweltsa sp.	N	172	2	16	
Leuctridae					
Leuctridae indet.	N	156			
Despaxia augusta	N	44	1	8	
Perlomyia sp.	N	24			
Nemouridae					
Nemouridae indet	N	180			
Visoka cataractae	N	306	8	64	
Zapada cinctipes	N	4			
Zapada columbiana	N	24			
Zapada oregonensis group sp.	N	1431			
Zapada sp.	N	544	53	424	
Perlodidae					
Perlodidae indet	N	228	4	32	
Megarcys sp.	N	57			
Trichoptera					
Trichoptera indet.	L	14			
Apataniidae					
Allomyia sp.	L	516			

Biologica Sample		No. of	MH	
TAXON	STAGE	individuals	1/8	Total
Glossosomatidae				
Glossosoma sp.	L	8	1	8
Hydropsychidae				
Parapsyche sp.	L	11		
Limnephilidae				
Limnephilidae indet.	L	12		
Chyranda sp.	L	16	2	16
Philocasca sp.	L	8	1	8
Rhyacophilidae				
Rhyacophila sp.	L	546	11	88
Uenoidae				
Oligophlebodes sp.	L	12		
Diptera				
Diptera indet.	L	12		
Brachycera				
Brachycera indet.	Р	12		
Chaoboridae				
Chaoborus sp.	L	44		
Chironomidae				
Chironomidae indet.	L	650	4	32
Chironomidae indet.	Р	360	27	216
Chironominae				
Tanytarsini				
Tanytarsini indet.	L	2		
Micropsectra/Tanytarsus sp. complex	L	129	2	16
Diamesinae				
Diamesinae indet.	L	110		
Diamesa sp.	L	372		
Pagastia sp.	L	60		
Orthocladiinae				
Orthocladiinae indet.	L	1414	2	16
Brillia sp.	L	86	2	16
Corynoneura sp.	L	80		
Cricotopus/Orthocladius sp. complex	L	856		
Eukiefferiella sp.	L	1887	3	24
Heleniella sp.	L	24	3	24
Heterotrissocladius sp.	L	24		
Parakiefferiella sp.	L	36		
Parametriocnemus sp.	L	30		
Platysmittia sp.	L	24		
Rheocricotopus sp.	L	52	2	16
Stilocladius sp.	L	10	1	8
Synorthocladius sp.	L	204		
Synorthocladius sp. (aberrant)	L	426		
Thienemanniella sp.	L	189		
Tvetenia sp.	L	760		

Biologica Sample #

Biologica Sample	<u>"</u>			H-29	
TAXON	STAGE	individuals	1/8	Total	
Podonominae					
Boreochlus sp.	L	8	1	8	
Prodiamesinae					
Prodiamesinae indet.	L	12	1	8	
Tanypodinae					
Tanypodinae indet.	L	14			
Procladius sp.	L	6			
Psectrotanypus sp.	L	4			
Reomyia/Zavrelimyia sp. complex	L	8	1	8	
Dixidae	_				
Dixa sp.	L	4			
Empididae	_	-			
Empididae indet.	L	28			
Clinocera sp.	L	48			
Neoplasta sp.	L	154	1	8	
Oreogeton sp.	L	951	14	112	
Psychodidae	1 -	301			
Pericoma/Telmatoscopus sp.	L	16			
Simuliidae	1 -				
Simuliidae indet.	L	58			
Simuliidae indet.	P	19	1	8	
Prosimulium sp.	i i	366	20	160	
Tipulidae		000	20	100	
Tipulidae indet.	L	8	1	8	
Antocha sp.	L	2	· ·	0	
Dicranota sp.	L	28			
Dioranota sp.		20			
Total Number of Organisms		28820	375	3000	
Total Number of Taxa		70	010	33	
Total Namber of Taxa		70			
MEIOFAUNA					
Crustacea					
Cladocera indet.	А	Present			
Copepoda indet.	A	Present			
Ostracoda indet.	A	Present	Р	Р	
Nematoda	1		·	•	
Nematoda indet.	А	Present	Р	Р	
	, ,		·	<u> </u>	
МЕМО					
Araneae indet. (spider)	А	Present	Р	Р	
Invertebrate indet.	eggs	Present	Р	Р	
Terrestrial insect	A	Present	Р	Р	
Terrestrial gastropoda indet.			-		

		No. of	CC-03			
TAXON	STAGE	individuals	1/12	Macro	Total	
PLATYHELMINTHES						
Planariidae						
Polycelis sp.	Α	24				
Polycelis sp.	J	12				
ANNELIDA						
Oligochaeta						
Enchytraeidae						
Enchytraeidae indet.	Α	13				
Enchytraeidae indet.	J	14				
ARTHROPODA						
ARACHNIDA						
Acari						
Acari indet.	L	4				
Oribatida						
Oribatida indet.	А	38				
Hydrozetidae						
Hydrozetes sp.	Α	15				
Trombidiformes						
Hydrachnidiae						
Hydrachnidiae indet.	Deutonymph	22				
Arrenuridae						
Arrenurus sp.	Α	4				
Hydryphantidae						
Protzia sp.	Α	96				
Wandesia sp.	Α	503	3		36	
Aturidae						
<i>Brachypoda</i> sp.	Α	24				
Lebertiidae						
Lebertia sp.	Α	16				
Sperchontidae						
Sperchon sp.	Α	8				
Amphipoda						
Gammaridae						
Gammarus sp.	Α	12				
Gammarus sp.	J	2				
INSECTA						
Coleoptera						
Coleoptera indet.	Α	8				
Collembola						
Dicyrtomidae						
Dicyrtoma s.l. sp.	Α	24				
Isotomidae						
Isotomidae indet.	Α	65				
Onychuridae						

Biologica Sample #

Biologica Sample #		No. of	CC-03			
TAXON	STAGE	individuals	1/12	Macro	Total	
Onychuridae indet.	Α	94				
Ephemeroptera						
Ephemeroptera indet.	N	132				
Ameletidae						
Ameletus sp.	N	243	1		12	
Baetidae						
Baetidae indet.	N	1048	11		132	
Baetis bicaudatus	N	7959	185		2220	
Baetis sp.	N	1560	76		912	
Ephemerellidae						
Drunella doddsii	N	3				
Drunella sp.	N	4				
Heptageniidae						
Heptageniidae indet.	N	977	20		240	
Cinygma sp.	N	12				
Cinygmula sp.	N	849	15		180	
Epeorus albertae	N	66				
Epeorus longimanus	N	32				
Epeorus sp.	N	132				
Lepidoptera						
Lepidoptera indet.	L	12	1		12	
Plecoptera						
Plecoptera indet.	N	362	6		72	
Chloroperlidae						
Chloroperlidae indet.	N	129	6		72	
Paraperla sp.	N	191	5		60	
Suwallia sp.	N	206	1		12	
Sweltsa sp.	N	172	3		36	
Leuctridae						
Leuctridae indet.	N	156	2		24	
Despaxia augusta	N	44				
Perlomyia sp.	N	24	2		24	
Nemouridae						
Nemouridae indet	N	180	10		120	
Visoka cataractae	N	306				
Zapada cinctipes	N	4				
Zapada columbiana	N	24				
Zapada oregonensis group sp.	N	1431	36		432	
Zapada sp.	N	544	6		72	
Perlodidae						
Perlodidae indet	N	228	2		24	
Megarcys sp.	N	57		8	8	
Trichoptera						
Trichoptera indet.	L	14	1		12	
Apataniidae						
Allomyia sp.	L	516				

Biologica dampie #		No. of	CC-03			
TAXON	STAGE	individuals	1/12	Macro	Total	
Glossosomatidae						
Glossosoma sp.	L	8				
Hydropsychidae						
Parapsyche sp.	L	11				
Limnephilidae						
Limnephilidae indet.	L	12				
Chyranda sp.	L	16				
Philocasca sp.	L	8				
Rhyacophilidae						
Rhyacophila sp.	L	546				
Uenoidae						
Oligophlebodes sp.	L	12	1		12	
Diptera						
Diptera indet.	L	12				
Brachycera						
Brachycera indet.	Р	12				
Chaoboridae						
Chaoborus sp.	L	44				
Chironomidae						
Chironomidae indet.	L	650	5		60	
Chironomidae indet.	Р	360	3		36	
Chironominae						
Tanytarsini						
Tanytarsini indet.	L	2				
Micropsectra/Tanytarsus sp. complex	L	129	3		36	
Diamesinae						
Diamesinae indet.	L	110				
Diamesa sp.	L	372	24		288	
Pagastia sp.	L	60				
Orthocladiinae						
Orthocladiinae indet.	L	1414	28		336	
<i>Brillia</i> sp.	L	86				
Corynoneura sp.	L	80				
Cricotopus/Orthocladius sp. complex	L	856	41		492	
Eukiefferiella sp.	L	1887	13		156	
Heleniella sp.	L	24				
Heterotrissocladius sp.	L	24	2		24	
Parakiefferiella sp.	L	36				
Parametriocnemus sp.	L	30	1		12	
Platysmittia sp.	L	24				
Rheocricotopus sp.	L	52	2		24	
Stilocladius sp.	L	10				
Synorthocladius sp.	L	204	10		120	
Synorthocladius sp. (aberrant)	L	426	27		324	
Thienemanniella sp.	L	189				
Tvetenia sp.	L	760	4		48	

Biologica Sample #

віоюдіса Запіріє	, II	No. of	CC-03			
TAXON	STAGE	individuals	1/12	Macro	Total	
Podonominae						
Boreochlus sp.	L	8				
Prodiamesinae	-					
Prodiamesinae indet.	L	12				
Tanypodinae		-				
Tanypodinae indet.	L	14				
Procladius sp.		6				
Psectrotanypus sp.	L	4				
Reomyia/Zavrelimyia sp. complex	L	8				
Dixidae		1				
Dixa sp.	L	4				
Empididae		 				
Empididae indet.	L	28				
Clinocera sp.	L	48				
Neoplasta sp.	 	154	11		132	
Oreogeton sp.	 	951	42		504	
Psychodidae		001	12		001	
Pericoma/Telmatoscopus sp.	L	16				
Simuliidae		10				
Simuliidae indet.	L	58				
Simuliidae indet.	P	19				
Prosimulium sp.	 i	366				
Tipulidae		000				
Tipulidae indet.	L	8				
Antocha sp.		2				
Dicranota sp.	i i	28	1		12	
Dictariota Sp.		20	'		12	
Total Number of Organisms		28820	610	8	7328	
Total Number of Taxa		70			24	
MEIOFAUNA						
Crustacea						
Cladocera indet.	А	Present				
Copepoda indet.	А	Present				
Ostracoda indet.	А	Present	Р		Р	
Nematoda						
Nematoda indet.	А	Present				
MEMO						
Araneae indet. (spider)	А	Present				
Invertebrate indet.	eggs	Present	Р		Р	
Terrestrial insect	А	Present	Р		Р	
Terrestrial gastropoda indet.						

Biologica # 14-31-01

TAXON		No. of	Camp Creek-C		
	STAGE	individuals	1/6	Macro	Total
PLATYHELMINTHES	017102	a.viada.o	.,,		. • • • • • • • • • • • • • • • • • • •
Platyhelminthes indet.	Α	36			
Planariidae					
Polycelis coronata	А	36	6		36
7					
ARTHROPODA					
ARACHNIDA					
Acari					
Trombidiformes					
Hydrachnidiae					
Hydrachnidiae indet.	А	6	1		6
Hygrobates sp.	А	6			
Lebertiidae					
Lebertia sp.	Α	12	1		6
Sperchontidae					
Sperchon sp.	Α	6	1		6
INSECTA					
Coleoptera					
Staphylinidae					
Staphylinidae indet.	L	6			
Ephemeroptera					
Ephemeroptera indet.	N	42			
Ameletidae					
Ameletus sp.	N	54	6		36
Baetidae					
Baetidae indet.	N	1362			
Acerpenna sp.	N	6			
Baetis sp.	N	90			
Baetis bicaudatus	N	24			
Ephemerellidae					
Ephemerellidae indet.	N	12			
Drunella doddsii	N	30	2		12
Ephemerella tibialis	N	6	1		6
Heptageniidae					
Heptageniidae indet.	N	804	44		264
Cinygmula sp.	N	282	32		192
Epeorus deceptivus	N	42	7		42
Epeorus grandis/permagnus group sp.	N	42			
Epeorus longimanus	N	36	6		36
Epeorus sp.	N	12			
Plecoptera					
Plecoptera indet.	N	438	14		84
Capniidae					
Capniidae indet.	N	6			

Biologica #	14-31-01
No of	Comp Crool

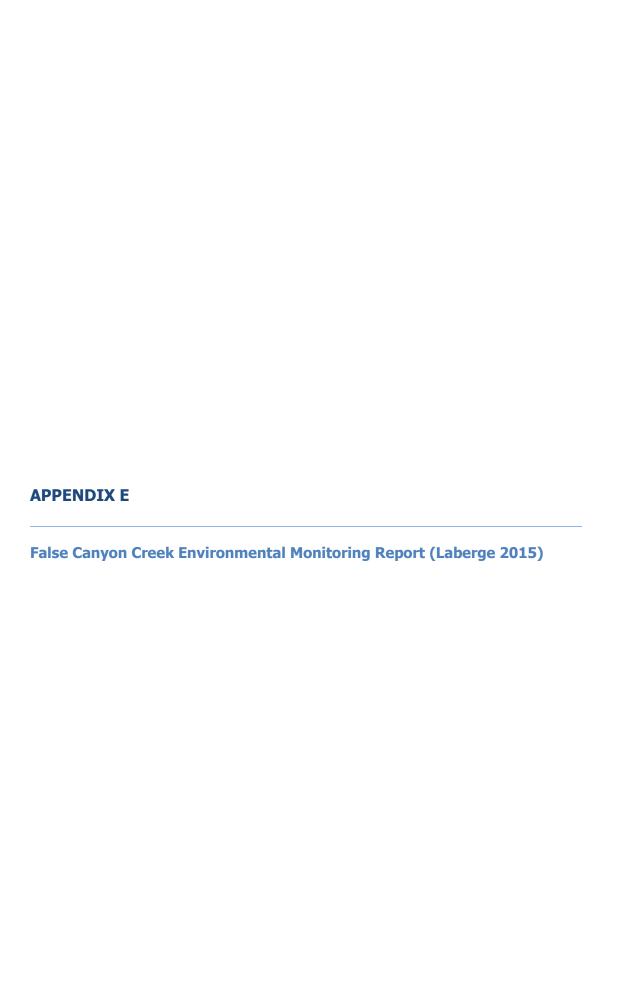
		No. of	Camp Creek-C			
TAXON	STAGE	individuals	1/6	Macro	Total	
Chloroperlidae			., 0			
Chloroperlidae indet.	N	366	22		132	
Paraperla sp.	N	48	8		48	
Suwallia sp.	N	48				
Sweltsa sp.	N	342	35		210	
Leuctridae						
Leuctridae indet.	N	30				
Nemouridae						
Nemouridae indet.	N	180	11		66	
Zapada cinctipes	N	48	2		12	
Zapada columbiana	N	696	62		372	
Zapada oregonensis group sp.	N	180	20		120	
Zapada sp.	N	180	3		18	
Perlodidae						
Perlodidae indet.	N	42				
Megarcys sp.	N	24	2		12	
Trichoptera			_			
Trichoptera indet.	L	6				
Brachycentridae						
Brachycentridae indet.	L	6	1		6	
Glossosomatidae			-			
Glossosomatidae indet.	L	36	2		12	
Glossosoma sp.	L	36	_			
Hydropsychidae						
Parapsyche sp.	L	11		2	2	
Limnephilidae						
Ecclisomyia sp.	L	6				
Polycentropodidae						
Polycentropodidae indet.	L	24				
Rhyacophilidae						
Rhyacophila sp.	L	180	21		126	
Uenoidae						
Neothremma sp.	L	24	4		24	
Diptera						
Diptera indet.	L	30				
Chironomidae						
Chironomidae indet.	L	24				
Chironomidae indet.	Р	24	3		18	
Chironominae						
Tanytarsini						
Stempellinella sp.	L	12	2		12	
Tanytarsus sp.	L	12	_			
Diamesinae						
Pagastia sp.	L	132	4		24	
Orthocladiinae	1 -		•			

Biologica # 14-31-01

		Biologica #	14-31-01			
		No. of	Camp Creek-C			
TAXON	STAGE	individuals	1/6	Macro	Total	
Orthocladiinae indet.	L	42	3		18	
Cricotopus/Orthocladius sp. complex	L	30	3		18	
Eukiefferiella brehmi group	L	60	9		54	
Eukiefferiella sp.	L	42	3		18	
Parametriocnemus sp.	L	6	1		6	
Rheocricotopus eminellobus	L	24	3		18	
Synorthocladius sp.	L	234	36		216	
Thienemanniella sp.	L	6				
Empididae						
Neoplasta sp.	L	36	1		6	
Oreogeton sp.	L	6				
Psychodidae						
Pericoma/Telmatoscopus sp.	L	12				
Psychoda sp.	L	6				
Simuliidae						
Simuliidae indet.	Р	6				
Tipulidae						
Dicranota sp.	L	42	4		24	
Total Number of Organisms		6695	386	2	2318	
Total Number of Taxa		44			29	
MEIOFAUNA						
Crustacea						
Ostracoda indet.	А	18				
Nematoda						
Nematoda indet.	А	12	1		6	
MEMO						
Acari indet. (terrestrial mite)	А	12				
Araneae indet. (spider)	Α	6	1		6	
Gastropoda indet. (terrestrial)	А	6				
Invertebrate indet.	egg mass	192	1		6	
Insecta indet. (terrestrial)	Α	36	1		6	
Insecta indet. (terrestrial grub)	L	6				

		Biologica #			
		No. of			
TAXON	STAGE	individuals	1/6	Macro	Total
PLATYHELMINTHES					
Platyhelminthes indet.	А	36	6		36
Planariidae					
Polycelis coronata	Α	36			
ARTHROPODA					
ARACHNIDA					
Acari					
Trombidiformes					
Hydrachnidiae					
Hydrachnidiae indet.	Α	6			
Hygrobatidae					
Hygrobates sp.	А	6			
Lebertiidae					
Lebertia sp.	Α	12			
Sperchontidae					
Sperchon sp.	Α	6			
INSECTA					
Coleoptera					
Staphylinidae					
Staphylinidae indet.	L	6	1		6
Ephemeroptera					
Ephemeroptera indet.	N	42	7		42
Ameletidae					
Ameletus sp.	N	54	2		12
Baetidae					
Baetidae indet.	N	1362	33		198
Acerpenna sp.	N	6			
Baetis sp.	N	90	1		6
Baetis bicaudatus	N	24	2		12
Ephemerellidae					
Ephemerellidae indet.	N	12			
Drunella doddsii	N	30	3		18
Ephemerella tibialis	N	6			
Heptageniidae					
Heptageniidae indet.	N	804	46		276
Cinygmula sp.	N	282	9		54
Epeorus deceptivus	N	42		-	
Epeorus grandis/permagnus group sp.	N	42	7		42
Epeorus longimanus	N	36			
Epeorus sp.	N	12	2		12
Plecoptera					
Plecoptera indet.	N	438	49		294
Capniidae					
Capniidae indet.	N	6	1		6
•					

Biologica # 14-31-02 No. of MH-11 1/6 STAGE individuals Macro Total **TAXON** Chloroperlidae 366 Chloroperlidae indet. Ν Paraperla sp. Ν 48 Suwallia sp. Ν 48 8 48 22 132 Sweltsa sp. Ν 342 Leuctridae Leuctridae indet. Ν 5 30 30 Nemouridae 180 6 36 Nemouridae indet. Ν Ν 5 30 Zapada cinctipes 48 40 240 Zapada columbiana Ν 696 6 36 Zapada oregonensis group sp. Ν 180 27 162 Zapada sp. Ν 180 Perlodidae Perlodidae indet. Ν 42 Ν 24 Megarcys sp. Trichoptera Trichoptera indet. L 6 1 6 Brachycentridae Brachycentridae indet. L 6 Glossosomatidae Glossosomatidae indet. 36 L 36 6 36 Glossosoma sp. L Hydropsychidae Parapsyche sp. L 11 1 3 9 Limnephilidae Ecclisomyia sp. 6 1 6 L Polycentropodidae Polycentropodidae indet. 24 24 4 L Rhyacophilidae Rhyacophila sp. 180 6 36 L **Uenoidae** Neothremma sp. L 24 Diptera 5 Diptera indet. L 30 30 Chironomidae Chironomidae indet. L 24 1 6 Р 24 Chironomidae indet. Chironominae Tanytarsini Stempellinella sp. L 12 Tanytarsus sp. L 12 **Diamesinae** Pagastia sp. L 132 2 12 Orthocladiinae


Biologica # 14-31-02

		Biologica #	14-31-02		
		No. of	MH-11		
TAXON	STAGE	individuals	1/6	Macro	Total
Orthocladiinae indet.	L	42			
Cricotopus/Orthocladius sp. complex	L	30	1		6
Eukiefferiella brehmi group	L	60			
Eukiefferiella sp.	L	42	1		6
Parametriocnemus sp.	L	6			
Rheocricotopus eminellobus	L	24	1		6
Synorthocladius sp.	L	234	1		6
Thienemanniella sp.	L	6			
Empididae					
Neoplasta sp.	L	36	2		12
Oreogeton sp.	L	6	1		6
Psychodidae					
Pericoma/Telmatoscopus sp.	L	12	2		12
Psychoda sp.	L	6	1		6
Simuliidae					
Simuliidae indet.	Р	6	1		6
Tipulidae					
Dicranota sp.	L	42	1		6
Total Number of Organisms		6695	327	3	1965
Total Number of Taxa		44			29
MEIOFAUNA					
Crustacea					
Ostracoda indet.	Α	18	3		18
Nematoda					
Nematoda indet.	Α	12			
MEMO					
Acari indet. (terrestrial mite)	Α	12	2		12
Araneae indet. (spider)	А	6			
Gastropoda indet. (terrestrial)	А	6	1		6
Invertebrate indet.	egg mass	192			
Insecta indet. (terrestrial)	А	36	4		24
Insecta indet. (terrestrial grub)	L	6			

		Biologica # No. of	14-31-03 MH-30	
TAXON	STAGE	individuals	1/6	Total
PLATYHELMINTHES	GIAGE	marviadais	170	Total
Platyhelminthes indet.	Α	36		
Planariidae				
Polycelis coronata	А	36		
ARTHROPODA				
ARACHNIDA				
Acari				
Trombidiformes				
Hydrachnidiae Hydrachnidiae indet.	^	6		
•	A	0		
Hygrobatidae	Α	6	1	6
Hygrobates sp. Lebertiidae	A	0	1	0
Lebertidae Lebertia sp.	Α	12	1	6
Sperchontidae	A	12	1	0
•		6		
Sperchon sp. INSECTA	A	0		
Coleoptera				
•				
Staphylinidae	L	6		
Staphylinidae indet.	L	6		
Ephemeroptera	NI	40		
Ephemeroptera indet.	N	42		
Ameletidae	N.I	F.4	4	
Ameletus sp.	N	54	1	6
Baetidae	NI NI	1000	404	1101
Baetidae indet.	N	1362	194	1164
Acerpenna sp.	N	6	1	6
Baetis sp.	N	90	14	84
Baetis bicaudatus	N	24	2	12
Ephemerellidae		40		40
Ephemerellidae indet.	N	12	2	12
Drunella doddsii	N	30		
Ephemerella tibialis	N	6		
Heptageniidae		201		
Heptageniidae indet.	N	804	44	264
Cinygmula sp.	N	282	6	36
Epeorus deceptivus	N	42		
Epeorus grandis/permagnus group sp.	N	42		
Epeorus longimanus	N	36		
Epeorus sp.	N	12		
Plecoptera		100		
Plecoptera indet.	N	438	10	60
Capniidae				
Capniidae indet.	N	6		

		Biologica #	14-31-03 MH-30		
TAXON	STAGE	individuals	1/6	Total	
Chloroperlidae	GIAGE	marviadais	170	Total	
Chloroperlidae indet.	N	366	39	234	
Paraperla sp.	N	48			
Suwallia sp.	N	48			
Sweltsa sp.	N	342			
Leuctridae					
Leuctridae indet.	N	30			
Nemouridae					
Nemouridae indet.	N	180	13	78	
Zapada cinctipes	N	48	1	6	
Zapada columbiana	N	696	14	84	
Zapada oregonensis group sp.	N	180	4	24	
Zapada sp.	N	180			
Perlodidae					
Perlodidae indet.	N	42	7	42	
Megarcys sp.	N	24	2	12	
Trichoptera					
Trichoptera indet.	L	6			
Brachycentridae					
Brachycentridae indet.	L	6			
Glossosomatidae					
Glossosomatidae indet.	L	36	4	24	
Glossosoma sp.	L	36			
Hydropsychidae					
Parapsyche sp.	L	11			
Limnephilidae					
Ecclisomyia sp.	L	6			
Polycentropodidae					
Polycentropodidae indet.	L	24			
Rhyacophilidae					
Rhyacophila sp.	L	180	3	18	
Uenoidae					
Neothremma sp.	L	24			
Diptera					
Diptera indet.	L	30			
Chironomidae					
Chironomidae indet.	L	24	3	18	
Chironomidae indet.	Р	24	1	6	
Chironominae					
Tanytarsini					
Stempellinella sp.	L	12			
Tanytarsus sp.	L	12	2	12	
Diamesinae					
Pagastia sp.	L	132	16	96	
Orthocladiinae					

Biologica # 14-31-03 No. of MH-30 1/6 **TAXON** STAGE individuals Total Orthocladiinae indet. 42 4 24 L Cricotopus/Orthocladius sp. complex 30 1 6 L Eukiefferiella brehmi group L 1 6 60 Eukiefferiella sp. L 42 3 18 Parametriocnemus sp. L 6 Rheocricotopus eminellobus L 24 2 12 Synorthocladius sp. L 234 Thienemanniella sp. L 6 1 6 **Empididae** Neoplasta sp. 3 18 36 L L Oreogeton sp. 6 **Psychodidae** 12 Pericoma/Telmatoscopus sp. L Psychoda sp. 6 L Simuliidae Simuliidae indet. Ρ 6 **Tipulidae** Dicranota sp. L 42 2 12 **Total Number of Organisms** 6695 402 2412 Total Number of Taxa 44 22 **MEIOFAUNA** Crustacea Ostracoda indet. Α 18 Nematoda 12 Nematoda indet. Α 6 **MEMO** Acari indet. (terrestrial mite) 12 Α Araneae indet. (spider) Α 6 6 Gastropoda indet. (terrestrial) Α egg mass Invertebrate indet. 192 31 186 Insecta indet. (terrestrial) Α 36 1 6 1 6 Insecta indet. (terrestrial grub) L 6

ENVIRONMENTAL MONITORING AT FALSE CANYON CREEK, 2014

For

Teck Resources Ltd
Sä Dena Hes Operating Corporation,

Submitted by

Laberge Environmental Services & Can-Nic-A-Nick Environmental Sciences

January 2015

Office Phone: 867-668-6838 Cell Phone: 867-668-1043 Fax: 867-667-6956

LETTER OF TRANSMITTAL

Dave Ryder Senior Environmental Coordinator Teck Resources Limited Bag 2000, Kimberley, BC V1A 3E1

Dear Dave:

Re: Environmental Monitoring at False Canyon Creek, 2014

We are pleased to submit herewith, the above report covering the environmental monitoring programs completed in 2014 at the Sä Dena Hes property.

The water and stream sediment chemistry in the False Canyon Creek drainage continue to be of good quality for the support of freshwater aquatic life. Robust communities of benthic invertebrates and fish, primarily slimy sculpin, were present at each site.

Should you have any questions or comments on the report, please do not hesitate to contact the undersigned.

Sincerely,

Bonnie Burns

Laberge Environmental Services

TABLE OF CONTENTS

				Page
Lette	r of Transn	nittal		i
Table	e of Conter	its		ii
Lists	of Tables	and Figures		iii
1.0	INTROE	OUCTION		1
2.0	STUDY		le Site Descriptions	2 4
3.0	;	3.1.1 Water 3.1.1 3.1.2 3.2 Sedim 3.3 Benth	Quality Field Measurements Chemical Analyses nent Sampling ic Invertebrates Monitoring	6 6 6 6 6 7
4.0	4	1.2 Sedim 1.3 Benth 4.3.1 4.3.2	Quality	8 8 11 15 15 16 17 18 20 20 22
5.0	SUMMA	.RY		23
6.0	REFER	ENCES		24
APPE	ENDICES			
Appe Appe	endix B endix C I	Water Quality	August 2014 and Stream Sediment Analytical Data 2014 tebrate Data 2014	

LIST OF TABLES

Table		Page
1	Sample Site Descriptions	2
2	Water Quality Data, August 14, 2014	9
3	Comparison of Potential Toxicants at each of the Sites over the Study Period	10
4	Metal Concentrations in the Individual Stream Sediment Samples	12
5	Summary of Metal Concentrations in Stream Sediments, 2012	12
6	Comparison of Metals in Sediments over the Study Period	13
7	General Statistics on the Benthic Communities, 201415	
8	Taxonomic Distribution of Benthic Invertebrates	16
9	EPT Abundance, Richness and Proportion	17
10	Presence and Absence of Sensitive Taxa at False Canyon Creek	18
10	Comparison of Benthic Data over the Study Period	19
11	Summary of Sampling Methods, Effort and Total Catch of Fish, August 2014	20
12	Comparisons of Total Fish Catch at each of the Sites over a 22 Year Period	21

LIST OF FIGURES

Figure		Page
1	False Canyon Creek - Sample Sites	3
2	Comparison of Arsenic Sediment Levels at each Site over the Study Period	14
3	Comparison of Copper Sediment Levels at each Site over the Study Period	14
4	Comparison of Cadmium Sediment Levels at each Site over the Study Period	14
5	Comparison of Lead Sediment Levels at each Site over the Study Period	14
6	Comparison of Zinc Sediment Levels at each Site over the Study Period	14
7	Composition of Taxonomic Groups at Each Site	16
8	Density of Communities Per Site Over Time	19

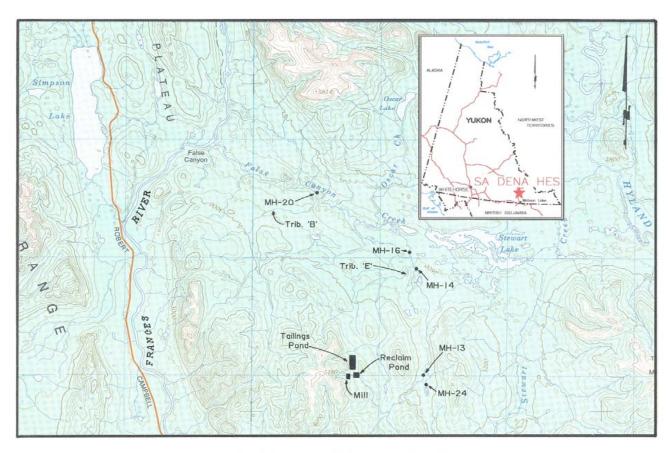
1.0 INTRODUCTION

The Sä Dena Hes Operating Corporation is a joint venture comprised of Teck Resources Limited (Teck) at 50 percent and 50 percent Pan-Pacific Metal Mining Corp., a wholly-owned subsidiary of Korea Zinc. The Joint Venture purchased the Sä Dena Hes lead/zinc property north of Watson Lake, Yukon, in March 1994. Teck is the operator under the joint venture agreement.

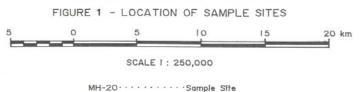
The current use of water and disposal of waste at the property is governed by Water Licence Number QZ99-045 which was re-issued by the Yukon Territory Water Board in January 2002 and will expire on December 31st, 2015. Active mining and milling occurred from July 1991 until temporary shut down on December 2, 1992. There has been no production at Sä Dena Hes since operations were suspended in 1992 and the property has since been maintained in a temporary shut down mode. Permanent closure of the mine site was initiated in 2013 with site decommissioning, closure and reclamation planned to be completed by December 2015. The water licence requires that certain fish, benthic invertebrate and sediment monitoring programs be carried out every two years (Part F, Sections 57 to 67).

Teck engaged Laberge Environmental Services (LES) and Can-Nic-A-Nick Environmental Sciences to conduct the monitoring programs required for 2014. This report presents the results of the programs with some comparisons made with previous studies conducted in 1992 (P.A. Harder and Associates, 1993), in 1994 (LES and WMEC, 1995), in 1996 (LES, 1996), in 1998 (LES and Can-Nic-A-Nick, 1998), in 2000 (LES and Can-Nic-A-Nick, 2000), in 2002 (LES and Can-Nic-A-Nick, 2002) in 2004 (LES and Can-Nic-A-Nick, 2004), in 2006 (LES and Can-Nic-A-Nick, 2006), in 2008, 2010 (LES and Can-Nic-A-Nick, 2011) and 2012 (LES and Can-Nic-A-Nick, 2012).

2.0 STUDY AREA


The study area is located in the upper part of the Liard River basin, 40 air kilometres, and 70 road kilometres north of Watson Lake.

The Sä Dena Hes property lies within the ecoregion known as Liard Basin. This ecoregion is characterized by low hills separated by broad plains and surrounded by mountains and plateaus. The low elevation, moderate precipitation and relatively long, warm summers results in vigorous forest growth, most notably in the floodplains of the major rivers of the area (Ecoregion Working Group, 2004)


The mine is primarily an underground operation with potential for two small open pits. Waste dumps and sediment ponds are situated in tributary drainages. Tailings and wastewater are discharged to the tailings pond. (Note that the mill and mine have not operated since December 2, 1992.) The tailings pond water flows to the reclaim pond which is licensed to discharge to upper False Canyon Creek, a tributary of the Frances River, during specified time periods each year. Decommissioning of the site has been ongoing for the past few years. From May 15th to August 4th, 2014, the reclaim and south ponds were dewatered resulting in a release of 414,328 m³ of treated water to the False Canyon Creek watershed.

The sample sites are within the drainage basin of False Canyon Creek which has a total catchment area of 492 km². The Frances River discharges into the Liard River 55 kilometres downstream from the confluence with False Canyon Creek. Three sites on False Canyon Creek (MH13, MH16 and MH20) were sampled for water, sediment, fish and benthos (Figure 1). The site locations, descriptions and types of monitoring are outlined in Table 1.

TABLE 1 SAMPLE SITE DESCRIPTIONS							
SITE#	DESCRIPTION	COORDINATES	SAMPLE TYPE				
MH13	False Canyon Cr approx 10 km d/s of reclaim pond.	60° 31' 21.1" N 128° 45' 34.6" W	WQ, SS, BI, F				
MH16	False Canyon Cr. approx 22 km d/s of reclaim pond	60° 37' 37.3" N 128° 46' 53.2" W	WQ, SS, BI, F				
MH20	False Canyon Cr approx 33 km d/s of reclaim pond	60° 39' 06.8" N 128° 51' 32.4" W	WQ, SS, BI, F				
WQ = water quality SS = stream sediments BI = benthic invertebrates F = fish							

FALSE CANYON CREEK

The licence states that sampling should also be undertaken at MH14, MH18 and MH-19 for the benthos, fish and sediment surveys. MH14 was submerged between 1996 to 2006, and the alternate site MH16, located two kilometers downstream, had been used for those studies. The present sampling location at MH14 is now no longer flooded, however in the pursuit of consistency, MH16 was again used as the sample site rather than MH14. Regular water samples are collected quarterly at MH14 and MH16, both located on the main stem of False Canyon Creek. However, MH16 is unaffected by beaver activity and is representative of a more stable environment than MH14.

As with all previous monitoring surveys, a suitable landing site could not be located for MH18 and an alternate sample location has not been established. To maintain consistency with the 1992, 1994, 1996, 1998, 2000, 2002, 2004, 2006, 2008, 2010 and 2012 studies, MH20 was sampled for benthos instead of MH19.

Site MH24, on the headwaters of False Canyon Creek, was to serve as the control site since 1998, as it is unaffected by any potential mining activity. It was discovered in 1998 that the site characteristics and sampling limitations were similar to those associated with MH14. Specifically, MH24 was underlain with water with no defined stable channel, and no safe landing site. These conditions make this site unsuitable as a background/control site for the monitoring program and no attempts were made to collect any data in 2014.

2.1 Sample Site Descriptions

MH13

MH13 is located on the main stem of False Canyon Creek approximately ten kilometres downstream of the reclaim pond in a beaver/wetland complex. The water levels were very high during the 2014 field trip. The area to the base of the hill was inundated and the regular region of benthic and sediment sampling could not be accessed and was under more water than on any previous occasion. The ponds were deeper and larger where the fisheries assessments are conducted. During the survey conducted in 2008, water levels were very low throughout the area of MH13 (LES, 2008) but were at typical levels by the 2010 survey. Benthic invertebrates have frequently been difficult to collect here due to unconfined channels, deep pools, and altered watercourses resulting from beaver activity. The conditions encountered in 2014 created challenges for the collection of stream sediment and benthos samples and only one small section of running water could be located that was suitable for the collection methodologies (see Photos #1 and 2 in Appendix A).

MH14

MH14 is located on the main stem of False Canyon Creek approximately twenty kilometres downstream of the reclaim pond in a beaver/wetland complex. This reach has undergone considerable alteration since the survey in 1994. Beaver dams in 1996 had caused flooding of the original site and this continued to be the case until 2006. No sampling, other than routine water quality (see annual report) was undertaken in 2014.

MH16

MH16 is located on the main stem of False Canyon Creek approximately twenty-two kilometres downstream of the reclaim pond. The channel is moderately well confined and appears stable with well-vegetated banks. This site has changed very little over time although the water was slightly turbid during the 2014 episode.

MH20

MH20 is located on the main stem of False Canyon Creek approximately thirty-three kilometres downstream of the reclaim pond and approximately 13 kilometres upstream of the confluence with the Frances River. The channel is well defined and stable with exposed gravel bars throughout the reach. The physical characteristics of this site have remained essentially unchanged since the monitoring program commenced in 1992, with the exception of several downed trees, which had fallen into the stream in 2008. However, due to high water in 2014, the helicopter could not land safely on the regular gravel bar. After aerially assessing the reach, the site was re-located approximately 75 m upstream. This site has the same characteristics as the original and the fisheries assessments could be conducted at the original location by wading downstream. The large woody debris that was present near this site in 2012 appears to have been dislodged downstream.

MH24

As stated earlier, a site for MH24 had not been established due to wet conditions. If appropriate conditions were met (confined channel, and stable banks and substrate), this site would have been located on upper False Canyon Creek upstream of the confluence with the reach on which MH13 is situated. MH24 would then have represented a control/background site for the downstream, potentially mine affected sites. As this was not possible, assessments of the fish communities at sites MH13, MH16 and MH20 shall continue to act as monitors of changes in water quality. All of these sites now have considerable fisheries, sediment, water quality and benthic invertebrate data, collected over many years providing an opportunity for trend and cumulative effects analyses. In addition, the less mobile slimy sculpin community associated with the beaver/wetland complex at MH13 serves virtually as an in-stream bioassay of surface waters originating from the mine.

3.0 METHODS

The environmental monitoring programs described below were completed on August 23rd and 24th, 2014. All sites were accessed by helicopter.

3.1 Water Quality

Water quality samples were collected at each site. The samples were collected in a fast flowing section of the stream, prior to any other sampling activity.

3.1.1 Field Measurements

In-situ measurements were taken at each site. Temperature, conductivity and pH measurements were obtained using a Hanna multi-probe.

3.1.2 Chemical Analyses

All sample bottles were supplied by Maxxam Analytics Inc (Maxxam) of Burnaby, B.C. At each site, samples were collected in one litre plastic bottles for sulphates, alkalinity and nonfilterable residue. Samples to be analyzed for total metals were collected in 250 ml plastic bottles. The dissolved metals samples were filtered in the field using disposable sterile syringes and in-line filters (filter pore size 0.45 microns). Dissolved and total metals samples were preserved with nitric acid. All sample bottles with the exception of the dissolved metals sample, were partially filled and rinsed three times prior to collecting sample waters. The dissolved metals sample bottle was rinsed three times with the filtrate. Samples were kept cool prior to shipment to Maxxam.

3.2 Sediment Sampling

Triplicate sediment samples were collected from MH13, MH16 and MH20. Sample sites were selected from areas of deposition along the stream bank, generally characterized by the finest grain size evident at the site. Samples were collected with a stainless steel trowel and placed in ziplock freezer bags. The samples were packed with ice packs when shipped to Maxxam in B.C.

At the lab the samples were dried, passed through a 100 mesh (0.15 mm) stainless steel sieve, and then run through an ICP analysis to determine total metals levels.

3.3 Benthic Invertebrates

Benthic invertebrates were sampled at three similar locations per site and labeled A, B and C. The samples were collected from an undisturbed, fast flowing, gravel strewn riffle habitat at each of the sites where possible. Collections were made with a Surber sampler (area = 0.0929 m²) which had a 300 micron mesh net. The bed material within the frame was cleaned and washed by hand, with the fast flowing current carrying the disturbed bottom fauna and detritus into the collection bag. The level of effort for each sample and at each site was comparable. The captured invertebrates and detritus were placed in one-litre Nalgene bottles, preserved in 10% formalin, and shipped to Cordillera Consulting in Summerland, B.C., for sorting, identification and enumeration.

At the lab, all samples were washed through two screens with mesh sizes 1 millimetre and 180 microns. All of the organisms retained by the coarse screen were counted and identified, whereas the organisms on the 180 micron screen were subsampled as necessary. A Folsom plankton splitter was used for the subsampling. The majority of the benthos was identified to the genus level.

3.4 Fish Monitoring

Three sites on False Canyon Creek (MH13, MH16, and MH20) were sampled for the presence of fish during the week of August 23rd, 2014. The methodology and timing of the assessment was consistent with all previous monitoring projects for the watershed. The current water license requires fish biennial monitoring during periods when the mine is not active. The mine has not been active since the early 1990s. Fisheries monitoring began in 1994 (LES 1995).

As in all previous assessments, a Smith Route model LR24 battery powered electrofisher was the primary method used for establishing fish presence at each site. A conductivity meter was used to measure the conductivity of the surface flows at each site to assist in determining the most appropriate settings of the electrofisher. The shocking time (seconds) and settings used to collect fish were recorded for each sampling site. Three Gee type baited minnow traps were also set overnight at each of the sampling sites using methods described by the Yukon River Panel (2007). Angling and seining were additionally used at sites MH16 and MH20. Angling employed the use of small spinners. The time spent angling was used as an index of sampling effort. All captured fish were identified and measured. The numbers of lure strikes were also noted. A 1.5 X 7 meter seine net (6.3 mm oval mesh) was used to sample shallow water sidebars at site MH20. All captured fish were identified and measured for a length (± 1mm) and weight (± 0.1gm). Weight was determined using an Ohaus Scout II digital scale. All fish were live released at site of capture.

4.0 RESULTS AND DISCUSSION

4.1 Water Quality

Water quality samples were collected from each of the three sites on the main channel of False Canyon Creek during the 2014 study. As a measure of quality control and quality assurance, a field blank was prepared. All data are presented in Appendix B. Of the 34 metals analyzed, seven were below detection at each site in both the total and dissolved states (beryllium, bismuth, boron, sulphur, titanium, thallium, and zirconium).

The results for the field data and for the specified licensed parameters are presented in Table 2. Concentrations of the various water quality parameters were compared to the Canadian Council of Ministers of the Environment (CCME, 1999) guidelines for the protection of freshwater aquatic life. Parameters that have exceeded the guidelines are indicated in bold and highlighted. It is important to note that the limits as set out under the Water Licence issued by the Yukon Territory Water Board apply to the discharge point and there is no obligation to meet the CCME criteria in the receiving waters at this time.

The waters of the study area were cool and slightly alkaline. Conductivity is generally a measure of dissolved ions in water. Conductivity at all sites was relatively high, predominately due to the concentrations of calcium and magnesium ions.

Alkalinity is a measure of water's ability to neutralize acid. The creeks sampled in this study had high alkalinity values and the waters were hard to very hard, providing this region with a relatively good buffering capacity. Hardness is an important modifying factor in water quality as it can significantly influence the form and hence toxicity of numerous heavy metals. In general terms, the toxicity of certain metals is lowered with an increase in hardness.

Sulphate levels were low at all sites ranging from 6.15 to 7.56 mg/L. Natural sulphate concentrations in surface waters have been found to vary from 3 to 80 mg/L (CCREM, 1987). Sulphate can contribute to changes in pH in water systems. The alkaline waters of the False Canyon Creek drainage are a reflection of naturally high carbonate/bicarbonate and low sulphate concentrations.

False Creek Canyon waters were clear at MH13 and MH20. The water at MH16 was slightly turbid and had a total suspended solids value of 13 mg/L. Due to recent precipitation events, water levels at all sites were somewhat higher than experienced during past surveys. The turbid waters at MH16 may be attributable to surface runoff.

Concentrations of the examined metals were generally low. There is an anomalous reading of copper in the dissolved sample at MH16 where the concentration is almost twice that of the total metals sample. Since the water here contained suspended sediment the total value should be higher than the dissolved sample since the analysis would also include any undissolved material. Although not confirmed, the samples may have been switched or mislabeled in the laboratory. The dissolved concentrations for lead, zinc and iron however, are much lower than the total concentrations at MH16.

The CCME recommended guideline for iron was slightly exceeded at MH13. The remaining samples met all of the applicable guidelines for the parameters examined in Table 2.

	TABLE 2 WATER QUALITY DATA, AUGUST 2014									
Sample Site	MH13	MH16	MH20	Detection Limit	CCME Guideline for freshwater aquatic life					
Date Sampled Time Sampled	August 23 13:10	August 23 14:30	August 24 12:10							
Water Temp °C	8.7	10.0	9.9							
pH: in-situ pH: lab	8.05 8.29	8.26 8.40	8.28 8.33		6.5 to 9.0					
Conductivity (uS/cm) field Conductivity (uS/cm) Lab	370 360	381 376	320 316	1.0						
Alkalinity (mg/L as CaCO3)	190	202	164	0.5						
Sulphate (mg/L)	7.32	6.15	7.56	0.50						
Total Suspended Solids (ppm)	<4.0	13	<4.0	4						
Cu: total (ug/L) Cu: dissolved (u/gL)	0.409 0.313	0.286 0.501	0.412 0.280	0.050 0.050	4					
Pb: total (ug/L) Pb: dissolved (ug/L)	0.434 0.032	0.087 0.007	0.075 0.011	0.005 0.005	6					
Zn: total (ug/L) Zn: dissolved (ug/L)	2.38 0.89	1.11 0.13	2.96 0.38	1.0 1.0	30					
Fe: total (ug/L) Fe: dissolved (ug/L)	309 65.9	231 80.3	181 74.9	1.0 1.0	300					
Total Hardness mg/L as CaC03	184	210	163							

Concentrations of potential toxicants in water collected during the twelve surveys (1992, 1994, 1996, 1998, 2000, 2002, 2004, 2006, 2008, 2010, 2012 and 2014) are compiled in Table 3. The majority of the analyses were below the method detection limit. The method detection limit (MDL) has decreased over time providing more precision at lower concentrations. The concentration of cadmium has slightly exceeded the MDL at each of the sites on rare occasions. The analytical procedure in 2000 allowed for a lower MDL for copper resulting in reportable copper values at each site from 2000 to the present. The level of nickel has consistently been below the MDL with the exception of a low concentration documented in the 1998 dissolved sample at MH16. The MDL for nickel, lead and zinc was lowered for the 2014 analyses allowing for reportable concentrations of some of these metals at sites where they had previously been rarely or not documented before. Zinc has been occasionally detected at each of the sites.

None of the detectable values exceeded the CCME recommended guidelines. The low concentrations of reported metals throughout the study area over the study period indicate good water quality for the support of freshwater aquatic life.

		COMPARISO	N OF POTE	ENTIAL TOX		TABLE 3 J/L) AT EAC	H OF THE SI	TES OVER T	HE STUDY F	PERIOD	
Site Year Cadmium Copper Nickel Lead Zinc									Zino		
Sile	real	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
MH - 13	1992 1994 1996	<0.0005 <0.0001 <0.0001	<0.0005 <0.0001 <0.0001	<0.001 <0.002 <0.002	<0.001 <0.001 <0.001	<0.008 <0.01 <0.01	<0.008 <0.008 <0.008	0.002 <0.003 <0.003	<0.001 <0.001 <0.001	0.004 <0.01 0.07	<0.002 <0.002 <0.002
	1998 2000 2002	<0.002 0.00008 <0.00001	<0.002 <0.00002 0.00002	<0.003 0.0008 0.0006	0.001 0.0006 0.0005	<0.01 <0.01 <0.008	<0.008 <0.008 <0.008	<0.03 <0.001 <0.0005	<0.02 <0.001 <0.0005	<0.01 <0.005 0.01	<0.002 <0.005 <0.005
	2004 2006 2008 2010	0.00002 0.00001 0.00003 not reported	<0.00001 0.00001 0.00003	0.0003 0.0003 0.0004 0.0003	0.0004 0.0003 0.0004 0.0006	<0.008 <0.008 <0.001 <0.001	<0.008 <0.008 <0.001 <0.001	<0.0005 <0.0005 <0.0002 <0.0002	<0.0005 <0.0005 <0.0002 <0.0002	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005
	2012 2014	0.000026 0.000036	0.00002 0.000019 0.000017	0.0003 0.00038 0.00041	0.0005 0.00031	<0.001 <0.0010 0.00053	<0.001 <0.0010 0.00048	<0.0002 <0.00020 0.000434	<0.0002 <0.00020 0.000032	<0.0050 0.00238	<0.005 <0.0050 0.00089
MH - 16	1992 1998 2000 2002	<0.0005 <0.002 0.00002 <0.00001	<0.0005 <0.002 <0.00002 <0.00001	<0.001 0.004 0.0006 0.0005	<0.001 0.001 0.0006 0.0005	<0.008 <0.01 <0.01 <0.008	<0.008 0.010 <0.008 <0.008	0.003 <0.03 <0.001 <0.0005	<0.001 <0.02 <0.001 <0.0005	0.002 <0.01 <0.005 0.009	<0.002 <0.002 <0.005 <0.005
	2004 2006 2008 2010	0.00002 0.00002 0.00001 not reported	<0.00001 <0.00001 0.00004	0.0003 0.0004 0.0003 0.0002	0.0004 0.0003 0.0008 0.0002	<0.008 <0.0008 <0.001 <0.001	<0.008 <0.008 <0.001 <0.001	<0.0005 <0.0005 <0.0002 <0.0002	<0.0005 <0.0005 0.0002 <0.0002	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.005 <0.005
	2010 2012 2014	0.000012 0.000014	<0.00001 <0.000010 0.000008	0.0002 0.00026 0.00029	0.0002 0.00034 0.00050	<0.001 <0.0010 0.00035	<0.001 <0.0010 0.00029	<0.0002 <0.00020 0.000087	<0.0002 <0.00020 0.000007	<0.005 <0.0050 0.00111	<0.005 <0.0050 0.00013
MH - 20	1992 1994 1996 1998	<0.0005 <0.0001 <0.0001 <0.002	<0.0005 <0.0001 <0.0001 <0.002	<0.001 <0.002 <0.002 <0.003	<0.001 <0.001 <0.001 <0.001	<0.008 <0.01 <0.01 <0.01	<0.008 <0.008 <0.008 <0.008	0.002 <0.003 <0.003 <0.03	0.001 <0.001 <0.001 <0.02	0.002 <0.01 0.01 <0.01	<0.002 <0.002 <0.002 <0.002
	2000 2002 2004 2006	<0.00002 <0.00001 <0.00001 0.00001	<0.00002 <0.00001 <0.00001 <0.00001	0.0008 0.0006 0.0003 0.0003	0.0005 0.0005 0.0005 0.0003	<0.01 <0.008 <0.008 <0.008	<0.008 <0.008 <0.008 <0.008	<0.001 <0.0005 <0.0005 <0.0005	<0.001 <0.0005 0.0006 <0.0005	<0.005 0.009 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005
	2008 2010 2012 2014	0.00001 not reported <0.000010 0.00002	0.00001 <0.00001 <0.000010 0.000012	0.0005 0.0003 0.00039 0.000412	0.0004 0.0003 0.00179 0.00028	<0.001 <0.001 <0.0010 0.000635	<0.001 <0.001 <0.0010 0.000492	<0.0002 <0.0002 <0.00020 0.000075	<0.0002 <0.0002 <0.00020 0.000011	<0.005 <0.005 <0.0050 0.00296	<0.005 <0.005 <0.0050 0.00038

4.2 Sediments

Upon review of the analytical geochemical data, some anomalies were noted. Concentrations of copper and lead were extremely high in sample MH13B, and the concentration of copper was very high in samples MH20A and MH20B. These values were so out of the ordinary when compared to the past 22 years of data that a request was made of the lab for reanalysis.

The reanalysis confirmed the data at MH13B (Appendix B) and the originally reported data is included in the following tables. However, the concentrations of copper in samples MH20A and MH20B were considerably reduced following retesting, reflecting typical levels that have historically been reported. The copper levels initially presented in the laboratory report were 322 ppm and 65.1 ppm at MH20A and MH20B respectively. Reanalysis produced concentrations of 11.5 ppm and 17.1 ppm (Appendix B). The revised data are reported below.

The final results for the metals analyses of all stream sediment samples are presented in Appendix B with the water quality data. Of the 32 metals analyzed, only sodium was not detected in any of the samples.

Seven elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) were chosen for closer examination as these can be potentially toxic to aquatic systems. The data for the triplicates was averaged per site and standard deviation was performed to determine the spread of the data (Table 4). Metals in sediments are often difficult to interpret because levels can vary widely as a function of natural mineralization of local soils in a given watershed. The standard deviation analysis shows that representative samples were collected at the majority of the sites. Due to the very high concentrations of copper and lead in sample MH-13B, the standard deviation was high indicating a wide range of values. Although reanalysis confirmed these high values it is unknown why concentrations were so great in this sample only. All three samples were collected from the same stretch of running water. As mentioned earlier, the region of MH13 was flooded to a greater extent than in previous years and the site of sample collection occurred in an area that had previously been above the waterline. In is unknown how long the water had been at this stage, but it was a sufficient time period for the establishment of a small running stream with a fine muddy substrate (see Photo #1).

				TABLE 4								
МЕ	METAL CONCENTRATIONS (ug/g) IN THE INDIVIDUAL SEDIMENT SAMPLES, AUGUST 2014											
	рН	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Zinc				
Units	рН	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
MH-13A	8.32	14.3	0.862	19.7	36.6	31.4	0.073	158				
MH-13B	8.02	23.0	4.32	14.6	439	243	0.125	338				
MH-13C	7.91	22.8	3.70	21.9	35.4	60.8	0.097	306				
Mean:	8.08	20.03	2.96	18.7	170.3	111.7	0.10	267				
S.D.:	0.21	4.97	1.84	3.7	232.7	114.6	0.03	96				
MH-16A	8.16	5.74	0.743	16.1	13.0	11.0	<0.050	99				
MH-16B	8.14	6.59	0.826	17.7	15.5	12.3	0.053	110				
MH-16C	8.14	6.55	0.892	18.5	16.1	11.9	0.060	106				
Mean:	8.15	6.29	0.82	17.4	14.9	11.7	0.06	105				
S.D.:	0.01	0.48	0.07	1.2	1.6	0.7	0.005	6				
MH-20A	8.50	5.75	0.463	29.2	11.5	7.27	< 0.050	71				
MH-20B	8.43	6.26	0.581	28.8	17.1	9.27	< 0.050	93				
MH-20C	8.18	13.6	1.60	44.5	37.2	27.7	0.108	200				
Mean:	8.37	8.54	0.88	34.2	21.9	14.7	0.11	121				
S.D.:	0.17	4.39	0.63	9.0	13.5	11.3	0.00	69				

The mean concentrations of these metals were compared to the CCME (1999) interim freshwater sediment quality guidelines (ISQG), and to the probable effects levels (PEL). Concentrations greater than the PEL have a 50% incidence of creating adverse biological effects (Table 5).

Arsenic concentrations in the stream sediments exceeded the recommended ISQG guideline at all three sites, and the PEL was also exceeded at MH-13. The ISQG for cadmium was also exceeded at all of the sites. Concentrations of copper, lead and zinc exceeded the ISQG guidelines in the sediments collected from MH-13 with the level of lead also exceeding the PEL.

	TABLE 5										
SUI	SUMMARY OF METAL CONCENTRATIONS (ug/g) IN THE STREAM SEDIMENTS, AUGUST 2014										
Site	Site pH Arsenic Cadmium Chromium Copper Lead Mercury Zinc										
MH-13	8.08	20.0	2.96	18.7	170.3	111.7	0.10	267			
MH-16	8.15	6.3	0.82	17.4	14.9	11.7	0.06	105			
MH-20	8.37	8.5	0.88	34.2	21.9	14.7	0.11	121			
ISQG		5.9	0.6	37.3	35.7	35.0	0.170	123			
PEL		17.0	3.5	90	197.0	91.3	0.486	315			

The 2014 sediment results were compared to data collected in previous studies for sites MH13, MH16 and MH20 (Table 6 and Figures 2 to 6). The applicable ISQG and/or PEL were plotted on each figure.

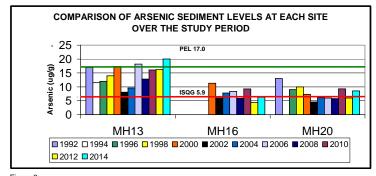

The concentration of arsenic in the sediments has consistently surpassed the ISQG at each site and approached or exceeded the PEL at MH13. These levels do not appear to have impacted the aquatic communities (see sections 4.3 and 4.4).

			TABLE 6			
COMPA	RISON OF M	IETALS (ug/	g) IN SEDIME	ENTS OVER	THE STUDY	PERIOD
Site	Year	Arsenic	Copper	Cadmium	Lead	Zinc
	1992	17.0	21.7	1.2	65	256
	1994	11.5	22.8	1.5	47	216
	1996	12.0	19.2	1.7	27	160
	1998	14.0	20.7	1.2	37	174
	2000	17.3	24.1	2.1	71	266
MH - 13	2002	8.1	17.8	1.2	24	148
IVITI - 13	2004	9.6	23.5	1.3	30	185
	2006	18.2	23.9	2.4	38	224
	2008	12.8	22.0	1.9	48	226
	2010	16.1	24.5	1.9	38	233
	2012	16.2	22.9	2.0	28	199
	2014	20.0	170.3	3.0	112	267
	1998	<8	9.2	0.4	8	72
	2000	11.3	9.8	0.4	8	80
	2002	6.0	13.0	0.8	11	90
	2004	7.8	17.5	1.0	13	118
MH - 16	2006	8.4	14.6	0.8	11	96
	2008	5.9	13.8	0.8	11	95
	2010	9.3	20.0	1.4	15	138
	2012	4.3	10.4	0.6	8	82
	2014	6.3	14.9	0.8	12	105
	1992	13.0	22.1	<0.1	15	78
	1994	<10	20.6	0.5	9	70
	1996	9.0	16.6	1.5	9	69
	1998	10.0	18.7	0.3	11	74
	2000	7.3	23.0	0.3	13	88
MH - 20	2002	4.6	16.9	0.3	8	57
WIII - 20	2004	6.1	22.9	0.4	10	78
	2006	6.0	18.0	0.3	8	66
	2008	5.8	21.2	0.4	10	75
	2010	9.3	16.8	0.5	8	75
	2012	6.0	21.2	0.6	9	69
	2014	8.5	21.9	0.9	15	121

Note: ISQG = Interim freshwater Sediment Quality Guidelines, in **bold** where exceeded.

PEL = Probable Effects Level (>50% of adverse effects occur above this level), shaded and in bold where exceeded.

Copper levels have been consistent over time and remained well below the ISQG of 37.3 ug/g until 2014 when an outlier was documented at MH-13. The average concentration of copper at MH13 prior to 2014 was 22.1 ppm. Cadmium concentrations tended to fluctuate slightly at each site, with overall levels higher at MH-13 where the ISQG guideline was exceeded on all occasions.

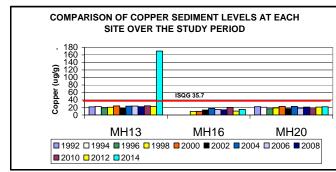


Figure 2

Figure 3

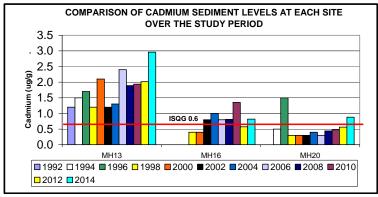


Figure 4

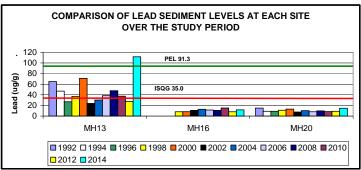
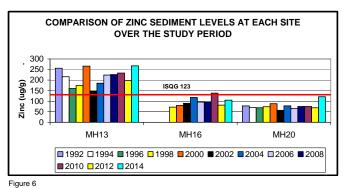



Figure 5

Lead concentrations were very low at the downstream sites MH-16 and MH-20. Levels frequently exceeded the ISQG at MH-13, with an anomalously high value recorded at MH-13 in 2014 that exceeded the PEL. Prior to 2104, the average lead concentration at MH13 was 41.0 ppm.

Zinc concentrations were significantly higher in the stream sediments at MH13 where the ISQG was exceeded throughout the study period. Generally zinc levels were higher at MH-16 that at MH-20. The ISQG was exceeded once at MH-16, in 2010.

In general, the concentrations of the various metals have remained relatively consistent in the stream sediments at MH20. Concentrations tended to fluctuate more widely in the sediments at MH13 and moderately in the sediments at MH16.

4.3 Benthic Invertebrates

Six phyla were found in the study area: Arthropoda, Mollusca, Nematoda, Annelida, Cnidaria, and Platyhelminthes. A total of 9,455 benthic invertebrates, representing 101 different taxonomic groups, were identified within these phyla. These data are presented in Appendix C.

4.3.1 Abundance and Taxonomic Richness

The total number of organisms of the triplicates for each site was summed to give a total abundance value for that site. The total populations were 4,400 individuals at MH13, 4,682 individuals at MH16, and 373 individuals at MH20. Density was calculated for each site and these values followed the same trend as the abundance values. The low population at MH20 may be reflective of the high water levels resulting from recent rainfall events, that may have created bed scour displacing organisms along with the relocation of the large in-stream woody debris that typically has been at this site.

Taxonomic richness was determined for each site by enumerating all the different taxonomic groups identified from species to phylum as a measure of community diversity. The diversity at all the communities was very similar. To further characterize the taxonomic wealth of each community, the diversity was related to the population size using the formula: (Diversity – 1) divided by the natural log of the population. The community at MH20 had the greatest taxonomic wealth and the community at MH13 the least. All of the above data are included in Table 7.

TABLE 7	GENERAL STATISTICS ON THE BENTHIC COMMUNITIES, 2014						
Site	Abundance Density Diversity Taxonomic Richness						
MH-13	4,400	15,788	52	6.1			
MH-16	4,682	16,799	55	6.4			
MH-20	373	1,338	53	8.8			

4.3.2 Distribution

The percent composition of the major taxonomic groups was calculated for each station (Figure 7). Based on the percentages of each group, taxa were classified with respect to their dominance within the benthic community for each site (Table 8). The group "Other" includes invertebrates from Collembola, Coleoptera, Oligochaeta, Gastropoda, Hydrozoa, Turbellaria and Nematoda.

FIGURE 7 COMPOSITION OF TAXONOMIC GROUPS AT EACH SITE

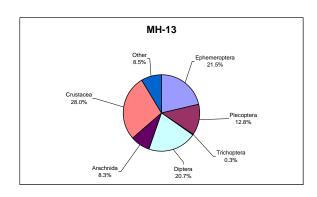
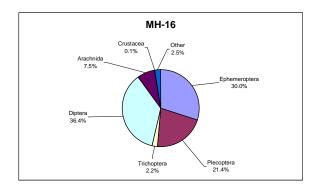
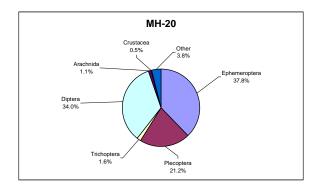




TABLE 8 TAXONOMIC DISTRIBUTION OF BENTHIC INVERTEBRATES

DOMINANT (>25%)	SUBDOMINANT (10% to 24.9%)	COMMON (1.0% to 9.9%)	RARE (0.1% to 0.9%)
Crustacea	Ephemeroptera	Other	Trichoptera
	Diptera	Arachnida	
	Plecoptera		

DOMINANT (>25%)	SUBDOMINANT (10% to 24.9%)	COMMON (1.0% to 9.9%)	RARE (0.1% to 0.9%)
Diptera	(Crustacea
Ephemeroptera		Other	
		Tricoptera	

DOMINANT	SUBDOMINANT	COMMON	RARE
(>25%)	(10% to 24.9%)	(1.0% to 9.9%)	(0.1% to 0.9%)
Ephemeroptera	Plecoptera	Other	Crustacea
Diptera		Trichoptera	
		Arachnida	

Crustaceans, composed largely of Copepods and Ostracods (seed shrimp), dominated the community at MH13. Copepods tend to be more pelagic (dwelling in the water column) rather than benthic, and both taxa prefer slower moving water such as ponds and lakes. Their high presence here is indicative of the habitat at MH13 – large ponded areas. Crustaceans were rare at MH-16

and MH-20. The insect orders Ephemeroptera, Diptera and Plecoptera were subdominant at MH-13.

The composition of the communities at MH-16 and MH-20 was relatively similar. Diptera and Ephemeroptera shared dominance at both MH-16 and MH-20, and Plecoptera was subdominant at both sites.

4.3.3 EPT

Many aquatic insects require good water quality to thrive. Larvae of mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) require clear, clean, well oxygenated water and have very low tolerance to pollution (Rosenberg and Resh, 1993). Analyzing the combined EPT (Ephemeroptera, Plecoptera, Trichoptera) at a site, gives an indication of the overall health of the stream. Table 9 summarizes the number of EPT found per site, the number of EPT taxa (richness) and the proportion of EPT in each community.

TABLE 9	EPT ABUNDANCE, RICHNESS & PROPORTION						
Site	EPT Abundance	EPT Richness	EPT %				
MH-13	1525	17	34.7				
MH-16	2508	27	53.6				
MH-20	226	27	60.6				

Abundance was lowest at MH-20 but the proportion of EPT within the community was the greatest here. The community at MH-13 had the lowest EPT richness and lowest representation. Twenty-seven EPT taxa were identified at both MH-16 and MH-20. Stream Keepers have indicated that streams with an EPT richness greater than 8 are of good quality (DFO). Richness values below 5 could indicate that the habitat is compromised in some way. Based on this criteria, False Canyon Creek at MH13 is also of good quality.

Due to the sensitivity of EPT, Lehmkuhl (1979) has identified several groups within these insect orders that have very low tolerance to chemical pollution. Ten of these taxa (five taxa within Plecoptera, three taxa within Ephemeroptera and two taxa within Trichoptera) have been identified in the study area. Table 10 summarizes the presence or absence of each of these taxa per site.

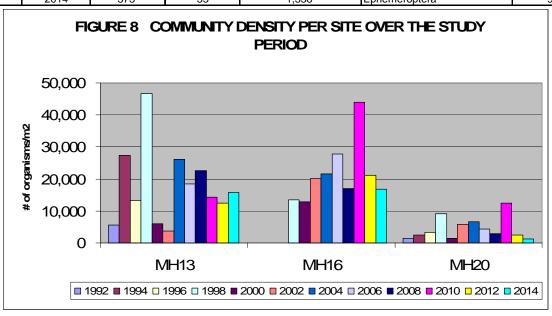
Only four of the sensitive taxa were collected at MH13. The habitat here is not conducive to populations of EPT due to the lack of clean washed gravels with a relatively high velocity of flow. The flow was very sluggish in this reach with a high degree of fines comprising the substrate. Other zones within this reach consisted of beaver dams or flooded willow areas.

Nine of the ten sensitive taxa were identified at MH16 and at MH20. High representation of these sensitive organisms at these two sites indicates good water and stream sediment quality for the support of benthic invertebrates.

TABLE 10 Presence (+) and Absence (-) of Sensitive Taxa at False Canyon Creek Study Area, 2014							
Sensitive Taxa MH13 MH16 MH20							
Plecoptera							
Capniidae	+	+	+				
Chloroperlidae	-	+	+				
Nemouridae	+	+	+				
Perlodidae	+	+	+				
Taeniopterygidae	-	+	-				
Ephemeroptera							
Ephemerellidae	+	+	+				
Rhrithrogena sp.	-	+	+				
Epeorus	-	-	+				
Trichoptera							
Brachycentriidae	-	+	+				
Rhyacophilidae	-	+	+				
Total # of sensitive taxa:	4	9	9				
After Lehmkuhl (1979)			_				

4.3.4 Comparisons with Past Data

Data collected biannually from False Canyon Creek since 1992 have been summarized and compiled in Table 11. Population densities were greatest in 1998 at MH13, and in 2010 at MH16 and MH20 (Figure 8). The population at MH13 has fluctuated considerably over the study period which probably reflects the instability of this site. Population numbers have consistently been lower downstream at MH20 than at the other two upstream sites.


Diversity has continued to fluctuate over time at MH13 and MH20, but has been relatively stable at MH16. Overall, the communities at MH16 have been the most diverse.

The number of sensitive taxa has varied significantly at MH13 but has been very low during recent surveys. This was likely due to natural degradation in habitat quality. The communities at MH16 and MH20 continue to have high numbers of sensitive taxa.

The dominance of the respective communities has remained virtually unchanged over the study period up until 2014. Diptera has been the dominant or co-dominant order at MH13 during every sampling period, with the addition of Ostracoda as the co-dominant order in 2010. In 2014 Crustacea (which included Ostracoda and Copepoda) dominated the community. Ephemeroptera and/or Diptera have been the dominant orders at MH16 and MH20 over time.

The temporal data generally indicates that the community at MH13 fluctuates depending on the changing habitat characteristics during the particular sampling period. Although abundance varies somewhat over time, the communities at MH16 and MH20 are relatively stable.

		COMPARISO	N OF BENT	Table 10 HIC DATA OVER T	HE STUDY PERIOD	
Site	Year	Total Abundance	Diversity	Density (# of organisms/m²)	Dominant Taxa	Total # of Sensitive Taxa
MH13	1992	1,562	25	5,605	Diptera	7
	1994	7,631	37	27,380	Ephemeroptera & Diptera	9
	1996	3,682	57	13,211	Diptera	8
	1998	13,033	30	46,764	Diptera	2
	2000	1,704	50	6,114	Plecoptera & Diptera	4
	2002	1,020	43	3,660	Diptera	3
	2004	7.289	72	26.153	Diptera	9
	2006	5,168	46	18,543	Diptera	4
	2008	6,319	50	22,673	Diptera & Plecoptera	8
	2010	4,003	33	14,363	Ostracoda & Diptera	0
	2012	3,465	53	12,433	Diptera & Other	3
	2014	4,400	52	15,788	Crustacea	4
MH16	1998	3,754	60	13,470	Diptera & Ephemeroptera	10
	2000	3,578	65	12,838	Diptera & Ephemeroptera	9
	2002	5,588	67	20,050	Diptera & Ephemeroptera	8
	2004	5,995	63	21,510	Diptera & Ephemeroptera	10
	2006	7,445	76	27,713	Diptera	10
	2008	4,769	58	17,112	Diptera & Ephemeroptera	8
	2010	12,266	52	44,011	Diptera	6
	2012	5,893	61	21,145	Diptera	8
	2014	4,682	55	16,799	Diptera & Ephemeroptera	9
MH20	1992	394	22	1,414	Ephemeroptera	6
	1994	720	31	2,583	Ephemeroptera & Diptera	8
	1996	936	54	3,358	Ephemeroptera & Diptera	12
	1998	2,564	59	9,200	Ephemeroptera & Diptera	10
	2000	412	28	1,478	Diptera & Ephemeroptera	6
	2002	1,591	43	5,709	Diptera	6
	2004	1,853	56	6,648	Diptera & Ephemeroptera	11
	2006	1,196	64	4,291	Ephemeroptera & Diptera	11
	2008	826	49	2,964	Ephemeroptera & Diptera	7
	2010	3,474	54	12,465	Diptera & Ephemeroptera	8
	2012	682	52	2,447	Ephemeroptera	10
	2014	373	53	1,338	Ephemeroptera	9

4.4 Fish

4.4.1 Fish Distribution and Abundance

Slimy sculpin (*Cottus cognatus*) and Arctic grayling (*Thymallus arcticus*) continue to be the most common species captured or observed at sampling sites in False Canyon Creek. Other species captured in 2014 were juvenile burbot (*Lota lota*) and a whitefish species (*Prosopim sp*). Table 12 summarizes fish capture results using the various gear types at the three surveyed sites in the False Canyon Creek drainage in 2014. Individual fish length and weight data for each site is presented in Table 1 of Appendix D.

Table 12
SUMMARY OF SAMPLING EFFORT AND TOTAL CATCH
USING VARIOUS FISH CAPTURE METHODS AT EACH SAMPLING LOCATION,
AUGUST 2014.

	I		I	0-	4 - I.		
Sample	Capture	Sample		<u> </u>	tch		
Site	Method	Effort	Arctic Grayling	Burbot	Slimy Sculpin	Whitefish	Observations
MH13	MNT	21.0 hrs	0	0	0	0	
MH13	Electro	766 sec	0	0	1	0	
MH16	MNT	21.0 hrs	0	1	0	0	
MH16	Electro	627 sec	1	1	13	0	6 sculpin + fry
MH16	Angling	15 min	1	0	0	0	4 grayling strikes (< 300 mm TL)
MH20	MNT	20.5 hrs	0	0	0	0	
MH20	Electro	723 sec	1	0	11	1	6 sculpin + fry
MH20	Seine	30 m2	0	0	0	5	
MH20	Angling	20 min	0	0	0	0	3 grayling strikes (< 200 mm FL)

Legend: MNT = Minnow trap (3 traps)

Electro = Electrofisher

Seine = Pole Seine (2 sweeps)

Angle = Angling

As with all previous sampling years, slimy sculpin were once again the only fish species represented in the catch at site MH13. Only a single sculpin was encountered indicating extremely low densities at this site. The modest catch is well below the 2002 to 2012 site average of 21.7 captures for each sampling year (Table 13). Low densities at this site were also documented in 1992, 2000 and 2002. Arctic grayling have never been captured at this location. The single slimy sculpin was 61 mm in total length representing a juvenile life history stage. No slimy sculpin fry were observed at MH13 as in the past.

Slimy sculpin of varying size were more numerous in the catches at sites MH16 and MH20. Capture numbers were near historic averages (Table 13). Sculpin fry were also observed while electrofishing at both these sites. Large adults (> 90mm TL) were not well represented in the catch in 2014.

	TABLE	13									
COMPARISON OF FISH CATCH AT THREE SAMPLING SITES OVER A 22 YEAR PERIOD											
		CATO	CH (#)								
SPECIES	SAMPLE SITE	1992 to 2012 [*]	2014								
		(Average)	(Total)								
	MH13	21.7	1								
Slimy sculpin	MH16	12.1	13								
	MH20	14.7	11								
	MH13	0	0								
Arctic grayling	MH16	3.3	2								
	MH20	4.3	1								
	MH13	0	0								
Burbot	MH16	0.9	2								
	MH20	0.8	0								
	MH13	0	0								
Whitefish sp.	MH16	0	0								
	MH20	0.7	6								
	MH13	0	0								
Lake chub	MH16	0	0								
	MH20	0.1	0								
	MH13	0	0								
Char sp.	MH16	0	0								
	MH20	0.1	0								

^{*} Note that site MH16 was not sampled during the 1992, 1994 and 1996 surveys.

Only two Arctic grayling were captured at site MH16. A single fry (43 mm FL) and a reasonably good-sized adult (210 mm FL) embodied the catch. Several juvenile Arctic grayling were also observed while angling at this site. Only a single Arctic grayling fry was captured at site MH20 (55 mm FL) however several juveniles were observed while angling. Historically, captures of grayling at site MH20 have been more numerous than at site MH16. Arctic grayling of all life history stages have in the past been well represented at site MH20 (Figure 2 of Appendix D).

As in the past, whitefish (*Prosopium sp*) continue to be captured in low numbers at site MH20. Whitefish are known to inhabit the Liard River basin (Anon. 1996, McPhail 2007, LES 2004). Lake chub and Dolly Varden/bull trout were not represented in the catch in 2014 as only a single specimen of each has ever been documented over the 22-year monitoring period. Dolly Varden, most likely bull trout, are apparently abundant at the confluence with the Frances River and are utilized as part of a food fishery (Donnessey, pers. com., 2006). A total of two juvenile burbot were also captured at site MH16 in 2014. This species has been previously documented sporadically at sites MH16 and MH20.

Fish distribution and catch comparisons for all sites sampled in 2014 generally indicate little change in the dominant fish types or their relative abundance when compared to previous surveys (Table 12). While the absolute number of captured fish varies from year to year, the species composition continues to be consistent and indicative of a stable fish community.

Notable in 2014 was the capture of several whitefish at site MH20. This species has been previously documented at this location.

4.4.2 Fish Habitat

Water levels were high and did not vary much between sampling sites in False Canyon Creek during 2014. Beaver activity at site MH13 continues to be a major influence on the aquatic environs at this location. Water levels were once again high compared to the survey in 2008 when levels were dramatically lower which resulted in the capture of large numbers of fish during that monitoring year. The many barriers, debris piles and active beaver dams associated with this site are believed to be an impediment to the upstream movement of other species and may be a factor preventing their colonization.

Water levels at sites MH16 and MH20 were also higher than normal at the time of the survey. The Watson Lake region recorded an above average snow pack during the spring of 2014 (Environment Yukon 2015). The combination of a high snow pack and above average rainfall during July seemed to result in wetter conditions and higher than average base flows prevailing throughout southeastern Yukon in 2014 (Environment Canada 2015). Most of the gravel bars were under water at site MH20 making aerial access challenging. Evidence of channel modifying flows and flooding was evident in many areas along the banks of the creek. Snags and accumulations of woody debris that were apparent during previous years were notably absent or repositioned (see Photos 3 to 6 in Appendix A). Some sections of the stream had eroding banks that seemed relatively recent. None-the-less, the main channel continues to provide good fish cover values in the form of deep pools, overhanging vegetation and accumulations of woody debris. The mature forest that predominates the riparian habitat along the banks of the main channel remains healthy. Site-specific physical habitat descriptions for all three sites have been previously described (LES 1998).

5.0 SUMMARY

No anomalies were apparent in the water quality during the 2014 study. The alkaline waters of the drainage were hard to very hard and concentrations of metals were low where detected. All samples met the applicable CCME guidelines for the protection of freshwater aquatic life with the exception of iron in the total metals sample collected at MH13.

Metal concentrations in the sediments at MH13 were higher than at MH16 and MH20, indicating its location in a mineralized area. Very high concentrations of lead and copper were reported in one of the stream sediments collected from MH13, which had previously not be documented. Reanalysis confirmed the high levels. The concentrations of various metals have exceeded the CCME guidelines for the protection of freshwater aquatic life at MH13 over the 22 year study period. Concentrations of metals have fluctuated over time at MH13 but have remained relatively stable at MH16 and MH20.

Although the stream sediment data indicates that there could be negative effects on the aquatic biota, the benthic invertebrate communities were diverse and had good representation from the major groups of organisms that are usually present in lotic waters. The presence of EPT at all sites, including MH13, suggest that the metals documented in the sediments are likely not in a bioavailable form. The composition of the benthic population at MH13 is different from that of the other two sites, and is a function of the physical habitat rather than the quality of the water and stream sediments at this site.

Fish distribution and catch comparisons for all sites sampled in 2014 generally indicate little change in the dominant fish types or their relative abundance when compared to previous surveys. While the absolute number of captured fish varies from year to year, the species composition continues to be consistent and indicative of a stable fish community. Notable in 2014 was the capture of several whitefish at site MH20. This species has been previously documented at this location.

6.0 REFERENCES

- Anon. 1996. Fish collection database of the University of British Columbia Fish Museum Fish Museum. University of British Columbia, Vancouver, Canada.
- Canadian Council of Minister of the Environment. 1999. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Winnipeg, Canada.
- Canadian Council of Resource and Environment Ministers (CCREM). 1987. Canadian Water Guidelines. Task Force of Water Quality Guidelines. Ottawa, Canada.
- Donnessey, Sam. August 2006. Personal communication. Kaska Tribal Council Representative, Watson Lake, Yukon.
- Environment Canada. 2015. Government of Canada. Weather Information. [Accessed January 2015] Web site: http://climate.weather.gc.ca/index_e.html
- Environment Yukon. 2015. Yukon Snow Survey Bulletin & Water Supply Forecast, May 1, 2014. Water Resources Section, Environmental Programs Branch, Box 2703, Whitehorse, Yukon. [Accessed January 2015] Web site: http://www.env.gov.yk.ca/air-water-waste/documents/SnowBulletin_May_2014.pdf
- Laberge Environmental Services & White Mountain Environmental Consulting. 1995. *Environmental Monitoring at False Canyon Creek, 1994.* Prepared for Sä Dena Hes Joint Venture.
- Laberge Environmental Services. 1996. *Environmental Monitoring at False Canyon Creek, 1996.*Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 1998. *Environmental Monitoring at False Canyon Creek, 1998.* Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2000. *Environmental Monitoring at False Canyon Creek*, 2000. Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2002. *Environmental Monitoring at False Canyon Creek*, 2002. Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2002. *Environmental Monitoring at False Canyon Creek*, 2002. Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2004a. *Environmental Monitoring at False Canyon Creek*, 2004. Prepared for Sä Dena Hes Operating Corporation.

- Laberge Environmental services. 2004b. Fish Passage Considerations for Preliminary Designs
 Preparation of an Environmental Screening Report Robert Campbell Highway #4 Km 10
 to Km 55. Submitted to Yukon Government Transportation Engineering Branch.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2006. *Environmental Monitoring at False Canyon Creek*, 2006. Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2008. *Environmental Monitoring at False Canyon Creek*, 2008. Prepared for Sä Dena Hes Operating Corporation.
- Laberge Environmental Services & Can-Nic-A-Nick Environmental. 2010. *Environmental Monitoring at False Canyon Creek*, 2010. Prepared for Sä Dena Hes Operating Corporation.
- Lehmkuhl, Dennis M. 1979. *How to know the aquatic insects*. University of Saskatchewan. Wm. C. Brown C. Publishers. Dubuque, Iowa.
- Lindsey, C.C., K. Patalas, R.A. Bodaly, and C.P. Archibald. 1981. *Glaciation and the Physical, Chemical and Biological Limnology of Yukon Lakes*. Technical Report of Fisheries and Aquatic Sciences, Winnipeg, Man. 45 p.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia. University of Alberta Press.
- P.A. Harder and Associates Ltd. (1993). *Environmental Assessment of False Canyon Creek, 1992 Study.* Prepared for Curragh Inc.
- Pennak, Robert W. 1989. Fresh-water Invertebrates of the United States, 3rd Ed. John Wiley & Sons Inc. New York
- Rosenberg, David M. and Vincent H. Resh. 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall Inc. New York.
- Scott, W. B., and E. J. Crossman. 1973. *Freshwater Fishes of Canada.* Fisheries Research Board of Canada, Ottawa, Bulletin 184.
- Yukon Ecoregions Working Group. 2004. Biophysical Properties of Yukon Landscapes. Agriculture and Agri-Food Canada. Research Branch. PARC Technical Bulletin 04-01.
- Yukon River Panel. 2007. Protocol for Collection and Reporting of Data from Juvenile Salmon Sampled in Canadian R&E Projects. Prepared for the Yukon River Panel By Fisheries and Oceans Canada. 1 p.

APPENDIX A PHOTOGRAPHS, AUGUST 2014

Photo #1: The small stream that was sampled at MH-13, looking upstream from sample site MH-13A, August 23rd, 2014.

Photo #2: Looking downstream from the sample site MH-13A, August 23rd, 2014.

Photo #3: Accumulations of woody debris at MH20 on August 14th, 2012.

Photo #4: The same gravel bar at MH20 on August 23rd, 2014. The woody debris has been flushed away.

Photo #5: Looking downstream from MH20 on August 12th, 2012 at in-stream woody debris.

Photo #6: The same view as Photo #5 as it appeared on August 23^{rd} , 2014.

APPENDIX B

MAXXAM ANALYTICAL REPORT FOR WATER AND SEDIMENT, 2014

• Work Order #: B474948

Data Re-check Form

PM SS

Project Manager:	KP5		_	Da	ata Validation	Coordinator:	RI	R5	Client:	Teck Resource	es Ltd	
Job Number:	B474948		_			Project #:	SA DENA HES		Date:	2014/09/17		
Reason for Re-Check:	Client Reque	st										
					7							
Type of Re-Check:		Raw Data R	echeck]							
Client Comments:												
It appears there may b												
values have always be	en in the 20 t	o 40 ppm ran	ge and lead h	as been	in the 30 to 6	0 ppm range.	Can you plea	se have the re	ported value	s confirmed,	and that its no	ot just a
misplaced decimal?												
QA/QC Review												
Raw Data Check:	No		Label Check	c - Maxx	am vs. Client:	No		Status Ched	k Calc's Redo	ne/Checked:	No	
QA/QC Check	No		Bottle	Check -	Preservative:	No		Comments:				
		1						•				
								*2nd re	work must be	e done when	necessary to	confirm data change.
al:	Maxxam	l <u>-</u> .			Bottle	Initial w/in	Original	Rework		2nd Rework	RPD % (1st	
Client Sample ID	Sample ID	Test	Analyte	Units	submitted	Hold Time	Result	Result	RPD %	Result*	& 2nd RW)	Confirmed
MH-13B	KL2360	ICPMS2TV-S	Cu	mg/kg	Recommend	Yes	439	436	0.7%			Yes
			Pb	mg/kg	Recommend	Yes	243	238	2.1%			Yes
Lab/SS Comments:			Į.		ļ.							
<u>Laby 33 Comments.</u>												

Your Project #: SA DENA HES

Site Location: SA DENA HES, YUKON Your C.O.C. #: 08396251, 446148-01-01

Attention:Michelle Unger

TECK RESOURCES LTD.
SULLIVAN
BAG 2000
601 Knighton Rd.
KIMBERLEY, BC
Canada V1A 3E1

Report Date: 2014/11/19

Report #: R1686293 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B474948 Received: 2014/08/26, 12:45

Sample Matrix: Soil # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Elements by ICPMS (total)	11	2014/09/02	2014/09/03	BBY7SOP-00001	EPA 6020a R1 m
Elements by ICPMS (total)	1	2014/11/08	2014/11/10	BBY7SOP-00001	EPA 6020a R1 m
pH (2:1 DI Water Extract)	12	2014/09/03	2014/09/03	BBY6SOP-00028	BCMOE BCLM Mar2005 m

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water	3	2014/08/27	2014/08/27	BBY6SOP-00026	SM 22 2320 B m
Alkalinity - Water	1	2014/08/27	2014/08/28	BBY6SOP-00026	SM 22 2320 B m
Conductance - water	3	N/A	2014/08/27	BBY6SOP-00026	SM 22 2510 B m
Conductance - water	1	N/A	2014/08/28	BBY6SOP-00026	SM 22 2510 B m
Hardness Total (calculated as CaCO3)	4	N/A	2014/09/03	BBY7SOP-00002	EPA 6020a R1 m
Hardness (calculated as CaCO3)	4	N/A	2014/09/04	BBY7SOP-00002	EPA 6020a R1 m
Mercury (Dissolved-LowLevel) by CVAF	4	N/A	2014/09/02	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Mercury (Total-LowLevel) by CVAF	4	2014/09/04	2014/09/05	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	4	N/A	2014/09/04	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (dissolved)	1	N/A	2014/09/03	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (dissolved)	3	N/A	2014/09/04	BBY7SOP-00002	EPA 6020A R1 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	4	N/A	2014/09/03	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (total)	4	N/A	2014/09/03	BBY7SOP-00002	EPA 6020A R1 m
Ammonia-N (Preserved)	3	N/A	2014/08/28	BBY6SOP-00009	SM 22 4500-NH3- G m
Ammonia-N (Preserved)	1	N/A	2014/09/08	BBY6SOP-00009	SM 22 4500-NH3- G m
Filter and HNO3 Preserve for Metals	1	N/A	2014/09/03	BBY7 WI-00004	BCMOE Reqs 08/14
Filter and HNO3 Preserve for Metals	3	N/A	2014/09/04	BBY7 WI-00004	BCMOE Reqs 08/14
pH Water (1)	3	N/A	2014/08/27	BBY6SOP-00026	SM 22 4500-H+ B m
pH Water (1)	1	N/A	2014/08/28	BBY6SOP-00026	SM 22 4500-H+ B m
Sulphate by Automated Colourimetry	4	N/A	2014/08/28	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Suspended Solids	1	N/A	2014/08/27	BBY6SOP-00034	SM 22 2540 D

Your Project #: SA DENA HES

Site Location: SA DENA HES, YUKON Your C.O.C. #: 08396251, 446148-01-01

Attention:Michelle Unger

TECK RESOURCES LTD.
SULLIVAN
BAG 2000
601 Knighton Rd.
KIMBERLEY, BC
Canada V1A 3E1

Report Date: 2014/11/19

Report #: R1686293 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B474948 Received: 2014/08/26, 12:45

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Analytical Method
Total Suspended Solids	3	N/A	2014/08/29	9 BBY6SOP-00034	SM 22 2540 D

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

 $\label{lem:please direct all questions regarding this Certificate of Analysis to your Project Manager. \\$

Ken Pomeroy, Project Manager Email: KPomeroy@maxxam.ca Phone# (604)638-5020

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		KL2370		KL2371		KL2372		KL2373		
Sampling Date		2014/08/12 10:45		2014/08/12 12:30		2014/08/12 15:15		2014/08/12		
COC Number		446148-01-01		446148-01-01		446148-01-01		446148-01-01		
	Units	MH-13	QC Batch	MH-16	QC Batch	MH-20	QC Batch	FIELD BLANK	RDL	QC Batch
Calculated Parameters		•	•	•	•	•	•	•	•	
Filter and HNO3 Preservation	N/A	FIELD	ONSITE	FIELD	ONSITE	FIELD	ONSITE	FIELD	N/A	ONSITE
Misc. Inorganics	•	•	•	•	•	•	•		•	
Alkalinity (Total as CaCO3)	mg/L	190	7617250	202	7617250	164	7617250	0.52	0.50	7617255
Alkalinity (PP as CaCO3)	mg/L	<0.50	7617250	3.74	7617250	1.95	7617250	<0.50	0.50	7617255
Bicarbonate (HCO3)	mg/L	232	7617250	237	7617250	195	7617250	0.63	0.50	7617255
Carbonate (CO3)	mg/L	<0.50	7617250	4.49	7617250	2.34	7617250	<0.50	0.50	7617255
Hydroxide (OH)	mg/L	<0.50	7617250	<0.50	7617250	<0.50	7617250	<0.50	0.50	7617255
Anions	•									
Dissolved Sulphate (SO4)	mg/L	7.32	7619030	6.15	7619030	7.56	7619030	<0.50	0.50	7619030
Nutrients	•									
Total Ammonia (N)	mg/L	0.017	7619667	0.024	7619667	0.024	7619667	0.060	0.0050	7629947
Physical Properties		•		•		•	•			
Conductivity	uS/cm	360	7617254	376	7617254	316	7617254	<1.0	1.0	7617257
рН	рН	8.29	7617252	8.40	7617252	8.33	7617252	6.01	N/A	7617256
Physical Properties	•			•					•	-
Total Suspended Solids	mg/L	<4.0 (1)	7616272	13.0 (1)	7617941	<4.0 (1)	7617953	<4.0 (1)	4.0	7617953
		•	•	•	•	•	•	•	•	

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Sample arrived to laboratory past recommended hold time.

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KL2359	KL2360	KL2361	KL2362	KL2363	KL2364	KL2365		
Sampling Date		2014/08/12	2014/08/12	2014/08/12	2014/08/12	2014/08/12	2014/08/12			
Jamping Date		11:15	11:15	11:15	13:00	13:00	13:00	15:30		
COC Number		08396251	08396251	08396251	08396251	08396251	08396251	08396251		
	Units	MH-13A	MH-13B	MH-13C	MH-16A	MH-16B	MH-16C	MH-20A	RDL	QC Batch
Physical Properties										
Soluble (2:1) pH	рН	8.32	8.02 (1)	7.91 (2)	8.16	8.14	8.14	8.50	N/A	7622305
Total Metals by ICPMS										
Total Aluminum (Al)	mg/kg	11700	7940	10400	8130	8680	8320	6240	100	7622283
Total Antimony (Sb)	mg/kg	1.45	3.79	1.18	0.59	0.63	0.63	0.89	0.10	7622283
Total Arsenic (As)	mg/kg	14.3	23.0	22.8	5.74	6.59	6.55	4.74	0.50	7622283
Total Barium (Ba)	mg/kg	283	484	474	268	287	306	238	0.10	7622283
Total Beryllium (Be)	mg/kg	0.49	<0.40	0.48	<0.40	<0.40	<0.40	<0.40	0.40	7622283
Total Bismuth (Bi)	mg/kg	0.19	0.61	0.21	0.10	0.10	0.11	0.11	0.10	7622283
Total Cadmium (Cd)	mg/kg	0.862	4.32	3.70	0.743	0.826	0.892	0.484	0.050	7622283
Total Calcium (Ca)	mg/kg	7280	21300	16600	7760	8530	8380	8400	100	7622283
Total Chromium (Cr)	mg/kg	19.7	14.6	21.9	16.1	17.7	18.5	31.0	1.0	7622283
Total Cobalt (Co)	mg/kg	9.61	9.41	10.9	5.66	6.31	5.95	5.77	0.30	7622283
Total Copper (Cu)	mg/kg	36.6	439	35.4	13.0	15.5	16.1	322	0.50	7622283
Total Iron (Fe)	mg/kg	25900	30100	32600	15700	16700	17100	15900	100	7622283
Total Lead (Pb)	mg/kg	31.4	243	60.8	11.0	12.3	11.9	21.3	0.10	7622283
Total Lithium (Li)	mg/kg	19.5	11.3	15.3	12.0	12.6	12.5	8.1	5.0	7622283
Total Magnesium (Mg)	mg/kg	5400	4760	5470	4810	4820	4710	6300	100	7622283
Total Manganese (Mn)	mg/kg	433	2300	2100	432	547	527	257	0.20	7622283
Total Mercury (Hg)	mg/kg	0.073	0.125	0.097	<0.050	0.053	0.060	<0.050	0.050	7622283
Total Molybdenum (Mo)	mg/kg	1.72	1.96	1.81	0.65	0.73	0.70	1.10	0.10	7622283
Total Nickel (Ni)	mg/kg	26.0	34.0	38.4	20.4	22.7	21.7	30.3	0.80	7622283
Total Phosphorus (P)	mg/kg	966	866	1090	750	768	742	723	10	7622283
Total Potassium (K)	mg/kg	767	868	1090	634	685	708	586	100	7622283
Total Selenium (Se)	mg/kg	1.34	4.25	4.11	1.14	1.53	1.52	<0.50	0.50	7622283
Total Silver (Ag)	mg/kg	0.419	0.506	0.435	0.205	0.209	0.225	0.143	0.050	7622283
Total Sodium (Na)	mg/kg	<100	<100	<100	<100	<100	<100	<100	100	7622283
Total Strontium (Sr)	mg/kg	38.1	85.8	71.8	32.7	36.4	34.7	32.5	0.10	7622283
Total Thallium (TI)	mg/kg	0.111	0.131	0.144	0.096	0.101	0.102	0.071	0.050	7622283
Total Tin (Sn)	mg/kg	3.17	83.9	0.71	0.35	0.53	1.78	6.66	0.10	7622283
Total Titanium (Ti)	mg/kg	85.1	42.8	50.3	98.5	100	109	118	1.0	7622283
Total Uranium (U)	mg/kg	1.03	2.28	1.48	0.708	0.762	0.755	0.695	0.050	7622283
			•	•	•	•			•	

RDL = Reportable Detection Limit

N/A = Not Applicable

⁽¹⁾ Due to insufficient sample water:soil extraction ratio has changed from 2:1 to 10:1 in order to analyse sample.

⁽²⁾ Due to insufficient sample water:soil extraction ratio has changed from 2:1 to 3:1 in order to analyse sample.

 ${\sf TECK}\ {\sf RESOURCES}\ {\sf LTD}.$

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KL2359	KL2360	KL2361	KL2362	KL2363	KL2364	KL2365		
Campling Data		2014/08/12	2014/08/12	2014/08/12	2014/08/12	2014/08/12	2014/08/12	2014/08/12		
Sampling Date		11:15	11:15	11:15	13:00	13:00	13:00	15:30		
COC Number		08396251	08396251	08396251	08396251	08396251	08396251	08396251		
	Units	MH-13A	MH-13B	MH-13C	MH-16A	MH-16B	MH-16C	MH-20A	RDL	QC Batch
Total Vanadium (V)	mg/kg	30.3	23.5	26.6	21.7	23.8	24.8	24.9	2.0	7622283
Total Zinc (Zn)	mg/kg	158	338	306	99.0	110	106	118	1.0	7622283
Total Zirconium (Zr)	mg/kg	1.74	2.05	2.41	1.39	1.46	1.39	2.47	0.50	7622283
RDL = Reportable Detection	Limit									

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KL2366		KL2366		KL2367	KL2493	KL2494		
IVIAXXAIII ID							KLZ495	KLZ494		
Sampling Date		2014/08/12 15:30		2014/08/12 15:30		2014/08/12 15:30	2014/08/25	2014/08/23		
COC Number		08396251		08396251		08396251				
	Units	MH-20B	QC Batch	MH-20B REPEAT	QC Batch	MH-20C	MH-11	MH-30	RDL	QC Batch
Physical Properties										
Soluble (2:1) pH	рН	8.43	7622305		7622305	8.18 (1)	8.25	7.47	N/A	7622305
Total Metals by ICPMS	-	•		•	•					
Total Aluminum (Al)	mg/kg	6450	7622283	6290	7712166	9530	12100	8370	100	7622283
Total Antimony (Sb)	mg/kg	1.03	7622283	1.00	7712166	2.45	1.53	0.79	0.10	7622283
Total Arsenic (As)	mg/kg	5.96	7622283	6.26	7712166	13.6	13.7	4.61	0.50	7622283
Total Barium (Ba)	mg/kg	246	7622283	251	7712166	369	133	284	0.10	7622283
Total Beryllium (Be)	mg/kg	<0.40	7622283	<0.40	7712166	0.57	<0.40	<0.40	0.40	7622283
Total Bismuth (Bi)	mg/kg	0.14	7622283	0.11	7712166	0.24	0.22	0.10	0.10	7622283
Total Cadmium (Cd)	mg/kg	0.546	7622283	0.581	7712166	1.60	3.61	1.07	0.050	7622283
Total Calcium (Ca)	mg/kg	8390	7622283	8930	7712166	13300	12000	5270	100	7622283
Total Chromium (Cr)	mg/kg	27.3	7622283	28.8	7712166	44.5	22.3	18.3	1.0	7622283
Total Cobalt (Co)	mg/kg	6.60	7622283	7.58	7712166	11.7	8.07	5.67	0.30	7622283
Total Copper (Cu)	mg/kg	65.1	7622283	17.1	7712166	37.2	26.3	19.0	0.50	7622283
Total Iron (Fe)	mg/kg	16000	7622283	17300	7712166	26600	20800	16200	100	7622283
Total Lead (Pb)	mg/kg	19.8	7622283	9.27	7712166	27.7	283	30.8	0.10	7622283
Total Lithium (Li)	mg/kg	8.5	7622283	8.6	7712166	12.7	26.0	13.6	5.0	7622283
Total Magnesium (Mg)	mg/kg	6450	7622283	6770	7712166	9160	7450	3950	100	7622283
Total Manganese (Mn)	mg/kg	283	7622283	353	7712166	663	1340	118	0.20	7622283
Total Mercury (Hg)	mg/kg	<0.050	7622283	<0.050	7712166	0.108	<0.050	0.052	0.050	7622283
Total Molybdenum (Mo)	mg/kg	1.32	7622283	1.49	7712166	4.46	1.57	1.06	0.10	7622283
Total Nickel (Ni)	mg/kg	33.8	7622283	35.9	7712166	62.1	25.1	24.3	0.80	7622283
Total Phosphorus (P)	mg/kg	722	7622283	838	7712166	888	809	872	10	7622283
Total Potassium (K)	mg/kg	653	7622283	611	7712166	900	606	574	100	7622283
Total Selenium (Se)	mg/kg	<0.50	7622283	0.51	7712166	1.50	0.88	0.98	0.50	7622283
Total Silver (Ag)	mg/kg	0.147	7622283	0.171	7712166	0.560	0.350	0.275	0.050	7622283
Total Sodium (Na)	mg/kg	<100	7622283	<100	7712166	<100	<100	<100	100	7622283
Total Strontium (Sr)	mg/kg		7622283	36.8	7712166	51.4	47.3	25.3	0.10	7622283
Total Thallium (TI)	mg/kg	0.075	7622283	0.095	7712166	0.139	0.101	0.133	0.050	7622283
Total Tin (Sn)	mg/kg	5.91	7622283	0.25	7712166	0.36	2.03	1.01	0.10	7622283
Total Titanium (Ti)	mg/kg	102	7622283	117	7712166	96.2	362	63.5	1.0	7622283
Total Uranium (U)	mg/kg	0.740	7622283	0.779	7712166	1.18	0.823	1.16	0.050	7622283
Total Vanadium (V)	mg/kg	23.7	7622283	26.4	7712166	33.3	28.5	20.7	2.0	7622283
	•									

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Due to insufficient sample water:soil extraction ratio has changed from 2:1 to 3:1 in order to analyse sample.

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KL2366		KL2366		KL2367	KL2493	KL2494		
Sampling Date		2014/08/12 15:30		2014/08/12 15:30		2014/08/12 15:30	2014/08/25	2014/08/23		
COC Number		08396251		08396251		08396251				
	Units	MH-20B	QC Batch	MH-20B REPEAT	QC Batch	MH-20C	MH-11	MH-30	RDL	QC Batch
Total Zinc (Zn)	mg/kg	84.8	7622283	93.2	7712166	200	670	139	1.0	7622283
Total Zirconium (Zr)	mg/kg	2.44	7622283	2.43	7712166	3.06	1.67	1.75	0.50	7622283
RDL = Reportable Detecti	on Limit									

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KL2495		
Sampling Date		2014/08/23		
		2014/08/23		
COC Number				
	Units	CC AT CONFLUENCE	RDL	QC Batch
		CONFLOENCE		
Physical Properties				ī
Soluble (2:1) pH	рН	8.14	N/A	7622305
Total Metals by ICPMS				
Total Aluminum (Al)	mg/kg	11200	100	7622283
Total Antimony (Sb)	mg/kg	1.91	0.10	7622283
Total Arsenic (As)	mg/kg	14.1	0.50	7622283
Total Barium (Ba)	mg/kg	169	0.10	7622283
Total Beryllium (Be)	mg/kg	<0.40	0.40	7622283
Total Bismuth (Bi)	mg/kg	0.21	0.10	7622283
Total Cadmium (Cd)	mg/kg	3.60	0.050	7622283
Total Calcium (Ca)	mg/kg	11700	100	7622283
Total Chromium (Cr)	mg/kg	21.5	1.0	7622283
Total Cobalt (Co)	mg/kg	8.19	0.30	7622283
Total Copper (Cu)	mg/kg	25.1	0.50	7622283
Total Iron (Fe)	mg/kg	22300	100	7622283
Total Lead (Pb)	mg/kg	155	0.10	7622283
Total Lithium (Li)	mg/kg	21.6	5.0	7622283
Total Magnesium (Mg)	mg/kg	7480	100	7622283
Total Manganese (Mn)	mg/kg	845	0.20	7622283
Total Mercury (Hg)	mg/kg	<0.050	0.050	7622283
Total Molybdenum (Mo)	mg/kg	2.60	0.10	7622283
Total Nickel (Ni)	mg/kg	30.3	0.80	7622283
Total Phosphorus (P)	mg/kg	1000	10	7622283
Total Potassium (K)	mg/kg	661	100	7622283
Total Selenium (Se)	mg/kg	1.36	0.50	7622283
Total Silver (Ag)	mg/kg	0.430	0.050	7622283
Total Sodium (Na)	mg/kg	<100	100	7622283
Total Strontium (Sr)	mg/kg	50.9	0.10	7622283
Total Thallium (TI)	mg/kg	0.115	0.050	7622283
Total Tin (Sn)	mg/kg	1.59	0.10	7622283
Total Titanium (Ti)	mg/kg	169	1.0	7622283
Total Uranium (U)	mg/kg	1.21	0.050	7622283
Total Vanadium (V)	mg/kg	31.1	2.0	7622283
RDL = Reportable Detection N/A = Not Applicable				

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KL2495		
Sampling Date		2014/08/23		
COC Number				
	Units	CC AT CONFLUENCE	RDL	QC Batch
Total Zinc (Zn)	mg/kg	424	1.0	7622283
Total Zirconium (Zr)	mg/kg	1.97	0.50	7622283
rotar En comani (Er)	6/ 1.6	2.57	0.00	

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

LOW LEVEL DISSOLVED METALS WITH CV HG (WATER)

Maxxam ID		KL2370		KL2371	KL2372	KL2373		
Sampling Date		2014/08/12 10:45		2014/08/12 12:30	2014/08/12 15:15	2014/08/12		
COC Number		446148-01-01		446148-01-01	446148-01-01	446148-01-01		
	Units	MH-13	QC Batch	MH-16	MH-20	FIELD BLANK	RDL	QC Batc
Misc. Inorganics			•	•	-	•	•	•
Dissolved Hardness (CaCO3)	mg/L	190	7615999	197	162	<0.50	0.50	7615999
Elements	, o,				I	I	l .	I
Dissolved Mercury (Hg)	ug/L	0.0040	7618981	0.0042	0.0045	0.0023	0.0020	7618983
Dissolved Metals by ICPMS			I.		ı	ı	ı	ı
Dissolved Aluminum (Al)	ug/L	3.04	7622363	2.32	2.75	1.08	0.50	7622363
Dissolved Antimony (Sb)	ug/L	0.128	7622363	0.084	0.100	0.134 (1)	0.020	7622363
Dissolved Arsenic (As)	ug/L	0.393	7622363	0.363	0.389	<0.020	0.020	7622363
Dissolved Barium (Ba)	ug/L	135	7622363	163	126	<0.020	0.020	7622363
Dissolved Beryllium (Be)	ug/L	<0.010	7622363	<0.010	<0.010	<0.010	0.010	7622363
Dissolved Bismuth (Bi)	ug/L	<0.0050	7622363	<0.0050	<0.0050	<0.0050	0.0050	7622363
Dissolved Boron (B)	ug/L	<20	7622363	<20	<20	<20	20	7622363
Dissolved Cadmium (Cd)	ug/L	0.0170	7622363	0.0080	0.0120	<0.0050	0.0050	7622363
Dissolved Chromium (Cr)	ug/L	<0.10	7622363	<0.10	<0.10	<0.10	0.10	7622363
Dissolved Cobalt (Co)	ug/L	0.0380	7622363	0.0240	0.0340	<0.0050	0.0050	7622363
Dissolved Copper (Cu)	ug/L	0.313	7622363	0.501 (1)	0.280	<0.050	0.050	7622363
Dissolved Iron (Fe)	ug/L	65.9	7622363	80.3	74.9	1.2	1.0	7622363
Dissolved Lead (Pb)	ug/L	0.0320	7622363	0.0070	0.0110	0.0050	0.0050	7622363
Dissolved Lithium (Li)	ug/L	1.06	7622363	1.21	1.20	<0.50	0.50	7622363
Dissolved Manganese (Mn)	ug/L	11.9	7622363	8.27	17.6	<0.050	0.050	7622363
Dissolved Molybdenum (Mo)	ug/L	1.07	7627635	1.20	1.39	<0.050	0.050	7622363
Dissolved Nickel (Ni)	ug/L	0.477	7622363	0.287	0.492	0.022	0.020	7622363
Dissolved Selenium (Se)	ug/L	0.462	7622363	0.410	0.423	<0.040	0.040	7622363
Dissolved Silicon (Si)	ug/L	3110	7622363	3270	3220	<100	100	7622363
Dissolved Silver (Ag)	ug/L	0.0060	7622363	<0.0050	<0.0050	0.0160	0.0050	7622363
Dissolved Strontium (Sr)	ug/L	200	7622363	213	168	<0.050	0.050	7622363
Dissolved Thallium (TI)	ug/L	<0.0020	7622363	<0.0020	<0.0020	<0.0020	0.0020	7622363
Dissolved Tin (Sn)	ug/L	0.51	7622363	<0.20	0.74	<0.20	0.20	7622363
Dissolved Titanium (Ti)	ug/L	<0.50	7622363	<0.50	<0.50	<0.50	0.50	7622363
Dissolved Uranium (U)	ug/L	1.23	7622363	0.829	0.873	<0.0020	0.0020	7622363
Dissolved Vanadium (V)	ug/L	<0.20	7622363	<0.20	<0.20	<0.20	0.20	7622363
Dissolved Zinc (Zn)	ug/L	0.89	7622363	0.13	0.38	0.51	0.10	7622363
Dissolved Zirconium (Zr)	ug/L	<0.10	7622363	<0.10	<0.10	<0.10	0.10	7622363
Dissolved Calcium (Ca)	mg/L	55.3	7616000	56.6	46.1	<0.050	0.050	7616000

RDL = Reportable Detection Limit

(1) Dissolved greater than total. Reanalysis yields similar results.

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

LOW LEVEL DISSOLVED METALS WITH CV HG (WATER)

Maxxam ID		KL2370		KL2371	KL2372	KL2373		
Sampling Date		2014/08/12 10:45		2014/08/12 12:30	2014/08/12 15:15	2014/08/12		
COC Number		446148-01-01		446148-01-01	446148-01-01	446148-01-01		
	Units	MH-13	QC Batch	MH-16	MH-20	FIELD BLANK	RDL	QC Batch
Dissolved Magnesium (Mg)	mg/L	12.5	7616000	13.6	11.4	<0.050	0.050	7616000
Dissolved Potassium (K)	mg/L	0.381	7616000	0.402	0.473	<0.050	0.050	7616000
Dissolved Sodium (Na)	mg/L	0.870	7616000	1.15	1.16	<0.050	0.050	7616000
Dissolved Sulphur (S)	mg/L	<3.0	7616000	<3.0	<3.0	<3.0	3.0	7616000
RDL = Reportable Detection L	imit		•					

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

LOW LEVEL TOTAL METALS WITH CV HG (WATER)

Sampling Date 2014/08/12 2014/08/12 15:15 2014/08/12 15:15 2014/08/12 15:15 2014/08/12 15:15 2014/08/12 2014/08									
10:45 12:30 15:15 2014/08/12	Maxxam ID		KL2370	KL2371	KL2372		KL2373		
	Sampling Date						2014/08/12		
Total Hardness (CaCO3) mg/L 184 210 163 7615935 <	COC Number		446148-01-01	446148-01-01	446148-01-01		446148-01-01		
Total Hardness (CaCO3) mg/L 184 210 163 7615935 < 0.50 0.50 7615935		Units	MH-13	MH-16	MH-20	QC Batch	FIELD BLANK	RDL	QC Batch
Total Mercury (Hg)	Calculated Parameters	•	•	•	-	•	•	•	•
Total Mercury (Hg)	Total Hardness (CaCO3)	mg/L	184	210	163	7615935	<0.50	0.50	7615935
Total Aluminum (AI)	Elements	-						ı	I
Total Aluminum (AI) ug/L 15.1 11.9 13.9 7622378 0.64 0.50 7622378 Total Aluminum (AI) ug/L 0.133 0.086 0.117 7622378 <0.020 0.020 7622378 Total Aratimony (Sb) ug/L 0.580 0.446 0.446 7622378 <0.020 0.020 7622378 Total Arsenic (As) ug/L 139 154 124 7622378 <0.020 0.020 7622378 Total Barium (Ba) ug/L 139 154 124 7622378 <0.020 0.020 7622378 Total Beryllium (Be) ug/L <0.010 <0.010 <0.010 7622378 <0.010 0.010 7622378 Total Beryllium (Be) ug/L <0.0050 <0.0050 7622378 <0.0050 0.0050 7622378 Total Beryllium (Be) ug/L <0.0050 <0.0050 7622378 <0.0050 0.0050 7622378 Total Beryllium (Be) ug/L <0.0050 <0.0050 7622378 <0.0050 0.0050 7622378 Total Beryllium (Be) ug/L <0.0050 <0.0050 7622378 <0.0050 0.0050 7622378 Total Beryllium (Be) ug/L 0.0360 0.0140 0.0200 7622378 <0.0050 0.0050 7622378 Total Chromium (Cr) ug/L 0.0360 0.0140 0.0200 7622378 <0.0050 0.0050 7622378 Total Cobalt (Co) ug/L 0.0740 0.0450 0.0550 7622378 <0.0050 0.0050 7622378 Total Cobalt (Co) ug/L 0.049 0.286 0.412 7622378 <0.0050 0.0050 7622378 Total Coper (Cu) ug/L 309 231 181 7622378 <0.050 0.050 7622378 Total Lead (Pb) ug/L 0.434 0.0870 0.0750 7622378 <0.050 0.050 7622378 Total Honglinum (LI) ug/L 1.15 1.21 1.37 7622378 <0.050 0.050 7622378 Total Manganese (Mn) ug/L 29.8 16.1 20.9 7622378 <0.050 0.050 7622378 Total Molybdenum (Mo) ug/L 0.533 0.348 0.635 7622378 <0.050 0.050 7622378 Total Silicon (Si) ug/L 0.533 0.348 0.635 7622378 <0.000 0.000 7622378 Total Silicon (Si) ug/L 0.423 0.453 0.450 7622378 <0.000 0.000 7622378 Total Silicon (Si) ug/L 2580 3300 3050 7622378 <0.000 0.000 7622378 Total Titanium (Fr) ug/L 0.0050 <0.0050 7622378 <0.0050 0.0050 7622378 Total Titanium (Fr) ug/L 0.0050 <0.0050 7622378 <0.000 0.000 7622378 Total Titanium (Fr) ug/L 0.0050 <0.0050 7622378 <0.000 0.000 7622378 Total Titanium (Fr) ug/L 0.0050 <0.0050 7622378 <0.000 0.000 7622378 Total Titanium (Fr) ug/L 0.0050 <0.0050 7622378 <0.000 0.000 7622378 Total Titanium (Ti) ug/L 0.0050 <0.0050 7622378 <0.000 0.000 7622378 Total Titanium (Ti) ug/L 0.050 <0.050 7622378 <0.000 0.000 7622	Total Mercury (Hg)	ug/L	0.0023	<0.0020	0.0028	7625631	<0.0020	0.0020	7625631
Total Antimony (Sb) ug/L 0.133 0.086 0.117 7622378 <0.020	Total Metals by ICPMS			ı	ı				I.
Total Arsenic (As) ug/L 0.580 0.446 0.446 7622378 <0.020 0.020 7622378 Total Barium (Ba) ug/L 139 154 124 7622378 <0.020	Total Aluminum (Al)	ug/L	15.1	11.9	13.9	7622378	0.64	0.50	7622378
Total Barium (Ba)	Total Antimony (Sb)	ug/L	0.133	0.086	0.117	7622378	<0.020	0.020	7622378
Total Beryllium (Be)	Total Arsenic (As)	ug/L	0.580	0.446	0.446	7622378	<0.020	0.020	7622378
Total Bismuth (Bi)	Total Barium (Ba)	ug/L	139	154	124	7622378	<0.020	0.020	7622378
Total Boron (B)	Total Beryllium (Be)	ug/L	<0.010	<0.010	<0.010	7622378	<0.010	0.010	7622378
Total Cadmium (Cd)	Total Bismuth (Bi)	ug/L	<0.0050	<0.0050	<0.0050	7622378	<0.0050	0.0050	7622378
Total Chromium (Cr)	Total Boron (B)	ug/L	<20	<20	<20	7622378	<20	20	7622378
Total Cobalt (Co) ug/L 0.0740 0.0450 0.0550 7622378 <0.0050 7622378 Total Copper (Cu) ug/L 0.409 0.286 0.412 7622378 <0.050	Total Cadmium (Cd)	ug/L	0.0360	0.0140	0.0200	7622378	<0.0050	0.0050	7622378
Total Copper (Cu) ug/L 0.409 0.286 0.412 7622378 <0.050 7629991 Total Iron (Fe) ug/L 309 231 181 7622378 <1.0	Total Chromium (Cr)	ug/L	0.10	<0.10	<0.10	7622378	<0.10	0.10	7622378
Total Iron (Fe)	Total Cobalt (Co)	ug/L	0.0740	0.0450	0.0550	7622378	<0.0050	0.0050	7622378
Total Lead (Pb) ug/L 0.434 0.0870 0.0750 7622378 <0.0050 0.0050 7622378 Total Lithium (Li) ug/L 1.15 1.21 1.37 7622378 <0.50 0.50 7622378 Total Manganese (Mn) ug/L 29.8 16.1 20.9 7622378 <0.050 0.050 7622378 Total Molybdenum (Mo) ug/L 1.08 1.06 1.24 7622378 <0.050 0.050 7622378 Total Nickel (Ni) ug/L 0.533 0.348 0.635 7622378 <0.020 0.020 76229591 Total Selenium (Se) ug/L 0.423 0.453 0.450 7622378 <0.040 0.040 7622378 Total Silicon (Si) ug/L 2580 3300 3050 7622378 <0.040 0.040 7622378 Total Silver (Ag) ug/L <0.0050 <0.0050 <0.0050 7622378 Total Strontium (Sr) ug/L 205 215 176 7622378 <0.0090 0.0050 7622378 Total Thallium (TI) ug/L <0.0020 <0.0020 <0.0020 7622378 <0.0020 0.0020 7622378 Total Trin (Sn) ug/L <0.20 <0.020 <0.020 7622378 <0.0020 0.0020 7622378 Total Titanium (Ti) ug/L <0.50 <0.50 <0.50 7622378 <0.0020 0.0020 7622378 Total Titanium (U) ug/L 1.29 0.863 0.899 7622378 <0.002 0.002 7622378 Total Zinc (Zn) ug/L 2.38 1.11 2.96 7622378 <0.10 0.10 7622378 Total Calcium (Ca) mg/L 53.0 61.4 45.7 7616001 <0.050 0.050 7616001 Total Magnesium (Mg) mg/L 12.6 13.8 11.8 7616001 <0.050 0.050 7.050 7616001	Total Copper (Cu)	ug/L	0.409	0.286	0.412	7622378	<0.050	0.050	7629591
Total Lithium (Li) ug/L 1.15 1.21 1.37 7622378 <0.050 0.50 7622378 Total Manganese (Mn) ug/L 29.8 16.1 20.9 7622378 <0.050 0.050 7622378 Total Molybdenum (Mo) ug/L 1.08 1.06 1.24 7622378 <0.050 0.050 7622378 Total Nickel (Ni) ug/L 0.533 0.348 0.635 7622378 <0.020 0.020 7629591 Total Selenium (Se) ug/L 0.423 0.453 0.450 7622378 <0.040 0.040 7622378 Total Silicon (Si) ug/L 2580 3300 3050 7622378 <0.004 0.040 7622378 Total Silver (Ag) ug/L <0.0050 <0.0050 <0.0050 7622378 0.0090 0.0050 7622378 Total Strontium (Sr) ug/L 205 215 176 7622378 <0.050 0.050 7622378 Total Thallium (Tl) ug/L <0.0020 <0.0020 7622378 <0.0020 0.0020 7622378 Total Tin (Sn) ug/L <0.002 <0.0020 7622378 <0.0020 0.0020 7622378 Total Titanium (Ti) ug/L <0.050 <0.50 <0.50 7622378 <0.0020 0.0020 7622378 Total Titanium (U) ug/L 1.29 0.863 0.899 7622378 <0.002 0.0020 7622378 Total Zinc (Zn) ug/L 2.38 1.11 2.96 7622378 <0.10 0.10 7622378 Total Zinc (Zn) ug/L <0.10 <0.10 7622378 Total Calcium (Ca) mg/L 53.0 61.4 45.7 7616001 <0.050 0.050 7616001 Total Magnesium (Mg) mg/L 12.6 13.8 11.8 7616001 <0.050 0.050 7616001	Total Iron (Fe)	ug/L	309	231	181	7622378	<1.0	1.0	7622378
Total Manganese (Mn) ug/L 29.8 16.1 20.9 7622378 <0.050 0.050 7622378 Total Molybdenum (Mo) ug/L 1.08 1.06 1.24 7622378 <0.050	Total Lead (Pb)	ug/L	0.434	0.0870	0.0750	7622378	<0.0050	0.0050	7622378
Total Molybdenum (Mo) ug/L 1.08 1.06 1.24 7622378 <0.050 0.050 7622378 Total Nickel (Ni) ug/L 0.533 0.348 0.635 7622378 <0.020	Total Lithium (Li)	ug/L	1.15	1.21	1.37	7622378	<0.50	0.50	7622378
Total Nickel (Ni) ug/L 0.533 0.348 0.635 7622378 <0.020 0.020 7629591 Total Selenium (Se) ug/L 0.423 0.453 0.450 7622378 <0.040	Total Manganese (Mn)	ug/L	29.8	16.1	20.9	7622378	<0.050	0.050	7622378
Total Selenium (Se) ug/L 0.423 0.453 0.450 7622378 <0.040 0.040 7622378 Total Silicon (Si) ug/L 2580 3300 3050 7622378 <100	Total Molybdenum (Mo)	ug/L	1.08	1.06	1.24	7622378	<0.050	0.050	7622378
Total Silicon (Si) ug/L 2580 3300 3050 7622378 <100 100 7622378 Total Silver (Ag) ug/L <0.0050	Total Nickel (Ni)	ug/L	0.533	0.348	0.635	7622378	<0.020	0.020	7629591
Total Silver (Ag) ug/L <0.0050 <0.0050 7622378 0.0090 0.0050 7622378 Total Strontium (Sr) ug/L 205 215 176 7622378 <0.050	Total Selenium (Se)	ug/L	0.423	0.453	0.450	7622378	<0.040	0.040	7622378
Total Strontium (Sr) ug/L 205 215 176 7622378 <0.050 0.050 7622378 Total Thallium (TI) ug/L <0.0020	Total Silicon (Si)	ug/L	2580	3300	3050	7622378	<100	100	7622378
Total Thallium (TI) ug/L <0.0020 <0.0020 <0.0020 7622378 <0.0020 0.0020 7622378 Total Tin (Sn) ug/L <0.20	Total Silver (Ag)	ug/L	<0.0050	<0.0050	<0.0050	7622378	0.0090	0.0050	7622378
Total Tin (Sn) ug/L <0.20 <0.20 <0.20 7622378 <0.20 0.20 7622378 Total Titanium (Ti) ug/L <0.50	Total Strontium (Sr)	ug/L	205	215	176	7622378	<0.050	0.050	7622378
Total Titanium (Ti) ug/L <0.50 <0.50 <0.50 7622378 <0.50 0.50 7622378 Total Uranium (U) ug/L 1.29 0.863 0.899 7622378 <0.0020	Total Thallium (TI)	ug/L	<0.0020	<0.0020	<0.0020	7622378	<0.0020	0.0020	7622378
Total Uranium (U) ug/L 1.29 0.863 0.899 7622378 <0.0020 0.0020 7622378 Total Vanadium (V) ug/L 0.21 0.23 0.21 7622378 <0.20	Total Tin (Sn)	ug/L	<0.20	<0.20	<0.20	7622378	<0.20	0.20	7622378
Total Vanadium (V) ug/L 0.21 0.23 0.21 7622378 <0.20 0.20 7622378 Total Zinc (Zn) ug/L 2.38 1.11 2.96 7622378 <0.10	Total Titanium (Ti)	ug/L	<0.50	<0.50	<0.50	7622378	<0.50	0.50	7622378
Total Zinc (Zn) ug/L 2.38 1.11 2.96 7622378 <0.10 0.10 7622378 Total Zirconium (Zr) ug/L <0.10	Total Uranium (U)	ug/L	1.29	0.863	0.899	7622378	<0.0020	0.0020	7622378
Total Zirconium (Zr) ug/L <0.10 <0.10 7622378 <0.10 0.10 7622378 Total Calcium (Ca) mg/L 53.0 61.4 45.7 7616001 <0.050	Total Vanadium (V)	ug/L	0.21	0.23	0.21	7622378	<0.20	0.20	7622378
Total Calcium (Ca) mg/L 53.0 61.4 45.7 7616001 <0.050 0.050 7616001 Total Magnesium (Mg) mg/L 12.6 13.8 11.8 7616001 <0.050 0.050 7616001	Total Zinc (Zn)	ug/L	2.38	1.11	2.96	7622378	<0.10	0.10	7622378
Total Magnesium (Mg) mg/L 12.6 13.8 11.8 7616001 <0.050 0.050 7616001	Total Zirconium (Zr)	ug/L	<0.10	<0.10	<0.10	7622378	<0.10	0.10	7622378
	Total Calcium (Ca)	mg/L	53.0	61.4	45.7	7616001	<0.050	0.050	7616001
RDL = Reportable Detection Limit	Total Magnesium (Mg)	mg/L	12.6	13.8	11.8	7616001	<0.050	0.050	7616001
	RDL = Reportable Detection	Limit							

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

LOW LEVEL TOTAL METALS WITH CV HG (WATER)

Maxxam ID		KL2370	KL2371	KL2372		KL2373		
Sampling Date		2014/08/12 10:45	2014/08/12 12:30	2014/08/12 15:15		2014/08/12		
COC Number		446148-01-01	446148-01-01	446148-01-01		446148-01-01		
	Units	MH-13	MH-16	MH-20	QC Batch	FIELD BLANK	RDL	QC Batch
Total Potassium (K)	mg/L	0.404	0.422	0.478	7616001	<0.050	0.050	7616001
Total Sodium (Na)	mg/L	0.907	1.29	1.30	7616001	<0.050	0.050	7616001
Total Sulphur (S)	mg/L	<3.0	<3.0	<3.0	7616001	<3.0	3.0	7616001
RDL = Reportable Detection	on Limit							

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

GENERAL COMMENTS

Sample KL2366-01: Revised Report (Version: 3): Due to client request, sample was reanalyzed for metals. The results from the reanalysis are included in this report.

Sample KL2370, Elements by ICPMS Low Level (dissolved): Test repeated. Sample KL2373, Elements by ICPMS Low Level (total): Test repeated.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

TECK RESOURCES LTD.
Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7616272	Total Suspended Solids	2014/08/27	109	80 - 120	108	80 - 120	<4.0	mg/L	NC	20		
7617250	Alkalinity (PP as CaCO3)	2014/08/27					<0.50	mg/L	NC	20		
7617250	Alkalinity (Total as CaCO3)	2014/08/27	NC	80 - 120	100	80 - 120	<0.50	mg/L	0.22	20		
7617250	Bicarbonate (HCO3)	2014/08/27					<0.50	mg/L	0.22	20		
7617250	Carbonate (CO3)	2014/08/27					<0.50	mg/L	NC	20		
7617250	Hydroxide (OH)	2014/08/27					<0.50	mg/L	NC	20		
7617252	рН	2014/08/27			101	97 - 103			0.53	N/A		
7617254	Conductivity	2014/08/27			98	80 - 120	<1.0	uS/cm	0.31	20		
7617255	Alkalinity (PP as CaCO3)	2014/08/28					<0.50	mg/L	NC	20		
7617255	Alkalinity (Total as CaCO3)	2014/08/28	92	80 - 120	99	80 - 120	<0.50	mg/L	NC	20		
7617255	Bicarbonate (HCO3)	2014/08/28					<0.50	mg/L	NC	20		
7617255	Carbonate (CO3)	2014/08/28					<0.50	mg/L	NC	20		
7617255	Hydroxide (OH)	2014/08/28					<0.50	mg/L	NC	20		
7617256	рН	2014/08/28			101	97 - 103			1.7	N/A		
7617257	Conductivity	2014/08/28			100	80 - 120	<1.0	uS/cm	NC	20		
7617941	Total Suspended Solids	2014/08/29	120	80 - 120	101	80 - 120	<4.0	mg/L	4.0 (1)	20		
7617953	Total Suspended Solids	2014/08/29	101	80 - 120	98	80 - 120	<4.0	mg/L	NC	20		
7618981	Dissolved Mercury (Hg)	2014/09/02	105	80 - 120	112	80 - 120	<0.0020	ug/L	NC	20		
7619030	Dissolved Sulphate (SO4)	2014/08/28			91	80 - 120	0.52, RDL=0.50	mg/L				
7619667	Total Ammonia (N)	2014/08/28	93	80 - 120	101	80 - 120	0.0050, RDL=0.0050	mg/L	1.1	20		
7622283	Total Aluminum (Al)	2014/09/03					<100	mg/kg	0.92	35	118	70 - 130
7622283	Total Antimony (Sb)	2014/09/03	97	75 - 125	100	75 - 125	<0.10	mg/kg	NC	30	103	70 - 130
7622283	Total Arsenic (As)	2014/09/03	96	75 - 125	101	75 - 125	<0.50	mg/kg	3.8	30	101	70 - 130
7622283	Total Barium (Ba)	2014/09/03	NC	75 - 125	103	75 - 125	<0.10	mg/kg	0.58	35	105	70 - 130
7622283	Total Beryllium (Be)	2014/09/03	97	75 - 125	99	75 - 125	<0.40	mg/kg	NC	30		
7622283	Total Bismuth (Bi)	2014/09/03					<0.10	mg/kg	NC	30		
7622283	Total Boron (B)	2014/09/03							NC	30		
7622283	Total Cadmium (Cd)	2014/09/03	97	75 - 125	106	75 - 125	<0.050	mg/kg	NC	30	106	70 - 130
7622283	Total Calcium (Ca)	2014/09/03					<100	mg/kg	5.5	30	100	70 - 130
7622283	Total Chromium (Cr)	2014/09/03	NC	75 - 125	98	75 - 125	<1.0	mg/kg	3.8	30	103	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.

Client Project #: SA DENA HES
Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7622283	Total Cobalt (Co)	2014/09/03	91	75 - 125	99	75 - 125	<0.30	mg/kg	1.6	30	91	70 - 130
7622283	Total Copper (Cu)	2014/09/03	102	75 - 125	108	75 - 125	<0.50	mg/kg	0.89	30	94	70 - 130
7622283	Total Iron (Fe)	2014/09/03					<100	mg/kg	0.90	30	101	70 - 130
7622283	Total Lead (Pb)	2014/09/03	102	75 - 125	108	75 - 125	0.13, RDL=0.10	mg/kg	7.4	35	103	70 - 130
7622283	Total Lithium (Li)	2014/09/03	93	75 - 125	98	75 - 125	<5.0	mg/kg	NC	30		
7622283	Total Magnesium (Mg)	2014/09/03					<100	mg/kg	4.2	30	97	70 - 130
7622283	Total Manganese (Mn)	2014/09/03	NC	75 - 125	99	75 - 125	<0.20	mg/kg	5.7	30	98	70 - 130
7622283	Total Mercury (Hg)	2014/09/03	99	75 - 125	102	75 - 125	<0.050	mg/kg	NC	35	96	70 - 130
7622283	Total Molybdenum (Mo)	2014/09/03	106	75 - 125	101	75 - 125	<0.10	mg/kg	5.3	35	122	70 - 130
7622283	Total Nickel (Ni)	2014/09/03	NC	75 - 125	104	75 - 125	<0.80	mg/kg	2.0	30	94	70 - 130
7622283	Total Phosphorus (P)	2014/09/03					<10	mg/kg	10	30	89	70 - 130
7622283	Total Potassium (K)	2014/09/03					<100	mg/kg	0.58	35		
7622283	Total Selenium (Se)	2014/09/03	97	75 - 125	107	75 - 125	<0.50	mg/kg	NC	30		
7622283	Total Silver (Ag)	2014/09/03	95	75 - 125	98	75 - 125	<0.050	mg/kg	NC	35		
7622283	Total Sodium (Na)	2014/09/03					<100	mg/kg	NC	35		
7622283	Total Strontium (Sr)	2014/09/03	NC	75 - 125	98	75 - 125	<0.10	mg/kg	0.86	35	107	70 - 130
7622283	Total Sulphur (S)	2014/09/03							NC	30		
7622283	Total Tellurium (Te)	2014/09/03							NC	30		
7622283	Total Thallium (TI)	2014/09/03	99	75 - 125	103	75 - 125	<0.050	mg/kg	NC	30	93	70 - 130
7622283	Total Thorium (Th)	2014/09/03							3.3	30		
7622283	Total Tin (Sn)	2014/09/03	96	75 - 125	98	75 - 125	<0.10	mg/kg	NC	35		
7622283	Total Titanium (Ti)	2014/09/03	NC	75 - 125	92	75 - 125	<1.0	mg/kg	2.6	35	107	70 - 130
7622283	Total Tungsten (W)	2014/09/03							NC	30		
7622283	Total Uranium (U)	2014/09/03	102	75 - 125	103	75 - 125	<0.050	mg/kg	0.16	30	102	70 - 130
7622283	Total Vanadium (V)	2014/09/03	NC	75 - 125	97	75 - 125	<2.0	mg/kg	5.8	30	102	70 - 130
7622283	Total Zinc (Zn)	2014/09/03	NC	75 - 125	110	75 - 125	<1.0	mg/kg	4.4	30	91	70 - 130
7622283	Total Zirconium (Zr)	2014/09/03					<0.50	mg/kg	3.9	30		
7622305	Soluble (2:1) pH	2014/09/03			101	97 - 103			0.29	N/A		
7622363	Dissolved Aluminum (Al)	2014/09/04	104	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
7622363	Dissolved Antimony (Sb)	2014/09/04	97	80 - 120	97	80 - 120	<0.020	ug/L	NC	20		
7622363	Dissolved Arsenic (As)	2014/09/04	100	80 - 120	97	80 - 120	<0.020	ug/L	2.2	20		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.
Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	'D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7622363	Dissolved Barium (Ba)	2014/09/04	NC	80 - 120	99	80 - 120	<0.020	ug/L	0.60	20		
7622363	Dissolved Beryllium (Be)	2014/09/04	103	80 - 120	101	80 - 120	<0.010	ug/L	NC	20		
7622363	Dissolved Bismuth (Bi)	2014/09/04	100	80 - 120	99	80 - 120	<0.0050	ug/L	NC	20		
7622363	Dissolved Boron (B)	2014/09/04					<20	ug/L	NC	20		
7622363	Dissolved Cadmium (Cd)	2014/09/04	100	80 - 120	100	80 - 120	<0.0050	ug/L	NC	20		
7622363	Dissolved Calcium (Ca)	2014/09/04							0.49	20		
7622363	Dissolved Cesium (Cs)	2014/09/04							NC	20		
7622363	Dissolved Chromium (Cr)	2014/09/04	98	80 - 120	98	80 - 120	<0.10	ug/L	NC	20		
7622363	Dissolved Cobalt (Co)	2014/09/04	99	80 - 120	101	80 - 120	<0.0050	ug/L	NC	20		
7622363	Dissolved Copper (Cu)	2014/09/04	97	80 - 120	97	80 - 120	<0.050	ug/L	NC	20		
7622363	Dissolved Iron (Fe)	2014/09/04	95	80 - 120	105	80 - 120	<1.0	ug/L	5.8	20		
7622363	Dissolved Lanthanum (La)	2014/09/04							NC	20		
7622363	Dissolved Lead (Pb)	2014/09/04	98	80 - 120	100	80 - 120	<0.0050	ug/L	0	20		
7622363	Dissolved Lithium (Li)	2014/09/04	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
7622363	Dissolved Magnesium (Mg)	2014/09/04							7.0	20		
7622363	Dissolved Manganese (Mn)	2014/09/04	NC	80 - 120	100	80 - 120	<0.050	ug/L	1.1	20		
7622363	Dissolved Mercury (Hg)	2014/09/04							NC	20		
7622363	Dissolved Molybdenum (Mo)	2014/09/04	NC	80 - 120	93	80 - 120	<0.050	ug/L	2.3	20		
7622363	Dissolved Nickel (Ni)	2014/09/04	98	80 - 120	101	80 - 120	<0.020	ug/L	0	20		
7622363	Dissolved Phosphorus (P)	2014/09/04							2.7	20		
7622363	Dissolved Potassium (K)	2014/09/04							0.37	20		
7622363	Dissolved Rubidium (Rb)	2014/09/04							0.19	20		
7622363	Dissolved Selenium (Se)	2014/09/04	97	80 - 120	98	80 - 120	<0.040	ug/L	NC	20		
7622363	Dissolved Silicon (Si)	2014/09/04					<100	ug/L	0.51	20		
7622363	Dissolved Silver (Ag)	2014/09/04	106	80 - 120	96	80 - 120	<0.0050	ug/L	NC	20		
7622363	Dissolved Sodium (Na)	2014/09/04							2.6	20		
7622363	Dissolved Strontium (Sr)	2014/09/04	NC	80 - 120	99	80 - 120	<0.050	ug/L	0.94	20		
7622363	Dissolved Sulphur (S)	2014/09/04							2.8	20		
7622363	Dissolved Tellurium (Te)	2014/09/04							NC	20		
7622363	Dissolved Thallium (TI)	2014/09/04	99	80 - 120	102	80 - 120	<0.0020	ug/L	NC	20		
7622363	Dissolved Thorium (Th)	2014/09/04							NC	20		
7622363	Dissolved Tin (Sn)	2014/09/04	90	80 - 120	103	80 - 120	<0.20	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.

Client Project #: SA DENA HES
Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7622363	Dissolved Titanium (Ti)	2014/09/04	101	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
7622363	Dissolved Tungsten (W)	2014/09/04							0.28	20		1
7622363	Dissolved Uranium (U)	2014/09/04	99	80 - 120	98	80 - 120	<0.0020	ug/L	0.39	20		
7622363	Dissolved Vanadium (V)	2014/09/04	105	80 - 120	101	80 - 120	<0.20	ug/L	NC	20		<u> </u>
7622363	Dissolved Zinc (Zn)	2014/09/04	104	80 - 120	114	80 - 120	<0.10	ug/L	1.0	20		
7622363	Dissolved Zirconium (Zr)	2014/09/04					<0.10	ug/L	NC	20		1
7622378	Total Aluminum (Al)	2014/09/03	NC	80 - 120	101	80 - 120	<0.50	ug/L	1.1	20		<u> </u>
7622378	Total Antimony (Sb)	2014/09/03	100	80 - 120	95	80 - 120	<0.020	ug/L	NC	20		<u> </u>
7622378	Total Arsenic (As)	2014/09/03	99	80 - 120	98	80 - 120	<0.020	ug/L	2.4	20		1
7622378	Total Barium (Ba)	2014/09/03	NC	80 - 120	94	80 - 120	<0.020	ug/L	0.67	20		<u> </u>
7622378	Total Beryllium (Be)	2014/09/03	94	80 - 120	94	80 - 120	<0.010	ug/L	NC	20		1
7622378	Total Bismuth (Bi)	2014/09/03	101	80 - 120	93	80 - 120	<0.0050	ug/L	NC	20		<u> </u>
7622378	Total Boron (B)	2014/09/03					<20	ug/L	NC	20		<u> </u>
7622378	Total Cadmium (Cd)	2014/09/03	96	80 - 120	97	80 - 120	<0.0050	ug/L	2.5	20		<u> </u>
7622378	Total Calcium (Ca)	2014/09/03							1.8	20		<u> </u>
7622378	Total Cesium (Cs)	2014/09/03							NC	20		<u> </u>
7622378	Total Chromium (Cr)	2014/09/03	100	80 - 120	100	80 - 120	<0.10	ug/L	NC	20		<u> </u>
7622378	Total Cobalt (Co)	2014/09/03	102	80 - 120	100	80 - 120	<0.0050	ug/L	1.8	20		<u> </u>
7622378	Total Copper (Cu)	2014/09/03	96	80 - 120	99	80 - 120	<0.050	ug/L	1.4	20		<u> </u>
7622378	Total Iron (Fe)	2014/09/03	NC	80 - 120	108	80 - 120	<1.0	ug/L	1.5	20		<u>l</u>
7622378	Total Lanthanum (La)	2014/09/03							NC	20		<u> </u>
7622378	Total Lead (Pb)	2014/09/03	100	80 - 120	96	80 - 120	<0.0050	ug/L	6.9	20		<u> </u>
7622378	Total Lithium (Li)	2014/09/03	90	80 - 120	90	80 - 120	<0.50	ug/L	NC	20		<u> </u>
7622378	Total Magnesium (Mg)	2014/09/03							1.0	20		<u> </u>
7622378	Total Manganese (Mn)	2014/09/03	NC	80 - 120	98	80 - 120	<0.050	ug/L	5.2	20		<u> </u>
7622378	Total Mercury (Hg)	2014/09/03							NC	20		<u> </u>
7622378	Total Molybdenum (Mo)	2014/09/03	NC	80 - 120	95	80 - 120	< 0.050	ug/L	0.22	20		<u> </u>
7622378	Total Nickel (Ni)	2014/09/03	102	80 - 120	106	80 - 120	<0.020	ug/L	1.3	20		
7622378	Total Potassium (K)	2014/09/03							3.9	20		<u> </u>
7622378	Total Rubidium (Rb)	2014/09/03							NC	20		
7622378	Total Selenium (Se)	2014/09/03	92	80 - 120	97	80 - 120	<0.040	ug/L	NC	20		<u> </u>
7622378	Total Silicon (Si)	2014/09/03					<100	ug/L	7.5	20		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.
Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7622378	Total Silver (Ag)	2014/09/03	94	80 - 120	91	80 - 120	<0.0050	ug/L	NC	20		
7622378	Total Sodium (Na)	2014/09/03							1.1	20		
7622378	Total Strontium (Sr)	2014/09/03	NC	80 - 120	98	80 - 120	<0.050	ug/L	3.1	20		
7622378	Total Sulphur (S)	2014/09/03							5.8	20		
7622378	Total Tellurium (Te)	2014/09/03							NC	20		
7622378	Total Thallium (TI)	2014/09/03	96	80 - 120	94	80 - 120	<0.0020	ug/L	NC	20		
7622378	Total Thorium (Th)	2014/09/03							NC	20		
7622378	Total Tin (Sn)	2014/09/03	101	80 - 120	95	80 - 120	<0.20	ug/L	NC	20		
7622378	Total Titanium (Ti)	2014/09/03	101	80 - 120	91	80 - 120	<0.50	ug/L	NC	20		
7622378	Total Tungsten (W)	2014/09/03							NC	20		
7622378	Total Uranium (U)	2014/09/03	100	80 - 120	94	80 - 120	<0.0020	ug/L	0	20		
7622378	Total Vanadium (V)	2014/09/03	104	80 - 120	96	80 - 120	<0.20	ug/L	NC	20		
7622378	Total Zinc (Zn)	2014/09/03	NC	80 - 120	122 (2)	80 - 120	<0.10	ug/L	1.3	20		
7622378	Total Zirconium (Zr)	2014/09/03					<0.10	ug/L	NC	20		
7625631	Total Mercury (Hg)	2014/09/05	88	80 - 120	102	80 - 120	<0.0020	ug/L	NC	20		
7627635	Dissolved Aluminum (Al)	2014/09/08							NC	20		
7627635	Dissolved Antimony (Sb)	2014/09/08							1.6	20		
7627635	Dissolved Arsenic (As)	2014/09/08							NC	20		
7627635	Dissolved Barium (Ba)	2014/09/08							NC	20		
7627635	Dissolved Beryllium (Be)	2014/09/08							NC	20		
7627635	Dissolved Bismuth (Bi)	2014/09/08							NC	20		
7627635	Dissolved Boron (B)	2014/09/08							NC	20		
7627635	Dissolved Cadmium (Cd)	2014/09/08							NC	20		
7627635	Dissolved Calcium (Ca)	2014/09/08							NC	20		
7627635	Dissolved Cesium (Cs)	2014/09/08							NC	20		
7627635	Dissolved Chromium (Cr)	2014/09/08							NC	20		
7627635	Dissolved Cobalt (Co)	2014/09/08							NC	20		
7627635	Dissolved Copper (Cu)	2014/09/08							NC	20		
7627635	Dissolved Iron (Fe)	2014/09/08							NC	20		
7627635	Dissolved Lanthanum (La)	2014/09/08							NC	20		
7627635	Dissolved Lead (Pb)	2014/09/08							NC	20		
7627635	Dissolved Lithium (Li)	2014/09/08							NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7627635	Dissolved Magnesium (Mg)	2014/09/08							NC	20		
7627635	Dissolved Manganese (Mn)	2014/09/08							NC	20		
7627635	Dissolved Mercury (Hg)	2014/09/08							NC	20		
7627635	Dissolved Molybdenum (Mo)	2014/09/08	101	80 - 120	92	80 - 120	<0.050	ug/L	NC	20		
7627635	Dissolved Phosphorus (P)	2014/09/08							NC	20		
7627635	Dissolved Potassium (K)	2014/09/08							NC	20		
7627635	Dissolved Rubidium (Rb)	2014/09/08							NC	20		
7627635	Dissolved Selenium (Se)	2014/09/08							NC	20		
7627635	Dissolved Silicon (Si)	2014/09/08							NC	20		
7627635	Dissolved Sodium (Na)	2014/09/08							NC	20		
7627635	Dissolved Strontium (Sr)	2014/09/08							NC	20		
7627635	Dissolved Sulphur (S)	2014/09/08							NC	20		
7627635	Dissolved Tellurium (Te)	2014/09/08							NC	20		
7627635	Dissolved Thallium (TI)	2014/09/08							NC	20		
7627635	Dissolved Thorium (Th)	2014/09/08							NC	20		
7627635	Dissolved Tin (Sn)	2014/09/08							NC	20		
7627635	Dissolved Titanium (Ti)	2014/09/08							NC	20		
7627635	Dissolved Tungsten (W)	2014/09/08							NC	20		
7627635	Dissolved Uranium (U)	2014/09/08							NC	20		
7627635	Dissolved Vanadium (V)	2014/09/08							NC	20		
7627635	Dissolved Zinc (Zn)	2014/09/08							NC	20		
7627635	Dissolved Zirconium (Zr)	2014/09/08							NC	20		
7629591	Total Aluminum (Al)	2014/09/08							NC	20		
7629591	Total Antimony (Sb)	2014/09/08							NC	20		1
7629591	Total Arsenic (As)	2014/09/08							NC	20		
7629591	Total Barium (Ba)	2014/09/08							NC	20		
7629591	Total Beryllium (Be)	2014/09/08							NC	20		
7629591	Total Bismuth (Bi)	2014/09/08							NC	20		
7629591	Total Boron (B)	2014/09/08							NC	20		
7629591	Total Cadmium (Cd)	2014/09/08							NC	20		
7629591	Total Calcium (Ca)	2014/09/08							NC	20		
7629591	Total Cesium (Cs)	2014/09/08							NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method I	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7629591	Total Chromium (Cr)	2014/09/08							NC	20		
7629591	Total Cobalt (Co)	2014/09/08							NC	20		
7629591	Total Copper (Cu)	2014/09/08	91	80 - 120	92	80 - 120	<0.050	ug/L	NC	20		
7629591	Total Iron (Fe)	2014/09/08							NC	20		
7629591	Total Lanthanum (La)	2014/09/08							NC	20		
7629591	Total Lead (Pb)	2014/09/08							NC	20		
7629591	Total Lithium (Li)	2014/09/08							NC	20		
7629591	Total Magnesium (Mg)	2014/09/08							NC	20		
7629591	Total Manganese (Mn)	2014/09/08							NC	20		
7629591	Total Mercury (Hg)	2014/09/08							NC	20		
7629591	Total Molybdenum (Mo)	2014/09/08							NC	20		
7629591	Total Nickel (Ni)	2014/09/08	93	80 - 120	96	80 - 120	<0.020	ug/L	NC	20		
7629591	Total Phosphorus (P)	2014/09/08							NC	20		
7629591	Total Potassium (K)	2014/09/08							NC	20		
7629591	Total Rubidium (Rb)	2014/09/08							NC	20		
7629591	Total Selenium (Se)	2014/09/08							NC	20		
7629591	Total Silicon (Si)	2014/09/08							NC	20		
7629591	Total Sodium (Na)	2014/09/08							NC	20		
7629591	Total Strontium (Sr)	2014/09/08							NC	20		
7629591	Total Sulphur (S)	2014/09/08							NC	20		
7629591	Total Tellurium (Te)	2014/09/08							NC	20		
7629591	Total Thallium (TI)	2014/09/08							NC	20		
7629591	Total Thorium (Th)	2014/09/08							NC	20		
7629591	Total Tin (Sn)	2014/09/08							NC	20		
7629591	Total Titanium (Ti)	2014/09/08							NC	20		
7629591	Total Tungsten (W)	2014/09/08							NC	20		
7629591	Total Uranium (U)	2014/09/08							NC	20		
7629591	Total Vanadium (V)	2014/09/08							NC	20		
7629591	Total Zinc (Zn)	2014/09/08							NC	20		
7629591	Total Zirconium (Zr)	2014/09/08							NC	20		
7629947	Total Ammonia (N)	2014/09/08	NC	80 - 120	101	80 - 120	<0.0050	mg/L	0.41	20		
7640941	Total Boron (B)	2014/09/17							NC	30		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.

Client Project #: SA DENA HES
Site Location: SA DENA HES, YUKON

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7640941	Total Sulphur (S)	2014/09/17							NC	30		
7640941	Total Tellurium (Te)	2014/09/17							NC	30		
7640941	Total Thorium (Th)	2014/09/17							9.5	30		
7640941	Total Tungsten (W)	2014/09/17							NC	30		
7712166	Total Aluminum (Al)	2014/11/10					<100	mg/kg	0.75	35	115	70 - 130
7712166	Total Antimony (Sb)	2014/11/10	101	75 - 125	93	75 - 125	<0.10	mg/kg	NC	30	97	70 - 130
7712166	Total Arsenic (As)	2014/11/10	106	75 - 125	100	75 - 125	<0.50	mg/kg	NC	30	104	70 - 130
7712166	Total Barium (Ba)	2014/11/10	NC	75 - 125	102	75 - 125	<0.10	mg/kg	22	35	103	70 - 130
7712166	Total Beryllium (Be)	2014/11/10	105	75 - 125	100	75 - 125	<0.40	mg/kg	NC	30		
7712166	Total Bismuth (Bi)	2014/11/10					<0.10	mg/kg	NC	30		
7712166	Total Boron (B)	2014/11/10							NC	30		
7712166	Total Cadmium (Cd)	2014/11/10	109	75 - 125	104	75 - 125	<0.050	mg/kg	NC	30	110	70 - 130
7712166	Total Calcium (Ca)	2014/11/10					<100	mg/kg	4.4	30	104	70 - 130
7712166	Total Chromium (Cr)	2014/11/10	102	75 - 125	102	75 - 125	<1.0	mg/kg	2.4	30	115	70 - 130
7712166	Total Cobalt (Co)	2014/11/10	108	75 - 125	105	75 - 125	<0.30	mg/kg	6.3	30	104	70 - 130
7712166	Total Copper (Cu)	2014/11/10	108	75 - 125	106	75 - 125	<0.50	mg/kg	8.6	30	100	70 - 130
7712166	Total Iron (Fe)	2014/11/10					<100	mg/kg	0.13	30	106	70 - 130
7712166	Total Lead (Pb)	2014/11/10	109	75 - 125	104	75 - 125	< 0.10	mg/kg	4.1	35	109	70 - 130
7712166	Total Lithium (Li)	2014/11/10	105	75 - 125	98	75 - 125	<5.0	mg/kg	NC	30		
7712166	Total Magnesium (Mg)	2014/11/10					<100	mg/kg	1.3	30	104	70 - 130
7712166	Total Manganese (Mn)	2014/11/10	NC	75 - 125	104	75 - 125	<0.20	mg/kg	0.27	30	103	70 - 130
7712166	Total Mercury (Hg)	2014/11/10	108	75 - 125	100	75 - 125	<0.050	mg/kg	NC	35	98	70 - 130
7712166	Total Molybdenum (Mo)	2014/11/10	109	75 - 125	103	75 - 125	<0.10	mg/kg	NC	35	117	70 - 130
7712166	Total Nickel (Ni)	2014/11/10	109	75 - 125	102	75 - 125	<0.80	mg/kg	1.3	30	100	70 - 130
7712166	Total Phosphorus (P)	2014/11/10					<10	mg/kg	3.0	30	103	70 - 130
7712166	Total Potassium (K)	2014/11/10					<100	mg/kg	2.7	35		
7712166	Total Selenium (Se)	2014/11/10	109	75 - 125	106	75 - 125	<0.50	mg/kg	NC	30		
7712166	Total Silver (Ag)	2014/11/10	90	75 - 125	81	75 - 125	<0.050	mg/kg	NC	35		
7712166	Total Sodium (Na)	2014/11/10					<100	mg/kg	NC	35		
7712166	Total Strontium (Sr)	2014/11/10	NC	75 - 125	101	75 - 125	<0.10	mg/kg	4.3	35	106	70 - 130
7712166	Total Sulphur (S)	2014/11/10							NC	30		
7712166	Total Tellurium (Te)	2014/11/10							NC	30		

QUALITY ASSURANCE REPORT(CONT'D)

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7712166	Total Thallium (TI)	2014/11/10	106	75 - 125	101	75 - 125	<0.050	mg/kg	NC	30	101	70 - 130
7712166	Total Thorium (Th)	2014/11/10							0.27	30		
7712166	Total Tin (Sn)	2014/11/10	101	75 - 125	93	75 - 125	<0.10	mg/kg	NC	35		
7712166	Total Titanium (Ti)	2014/11/10	NC	75 - 125	97	75 - 125	<1.0	mg/kg	2.5	35	120	70 - 130
7712166	Total Tungsten (W)	2014/11/10							NC	30		
7712166	Total Uranium (U)	2014/11/10	105	75 - 125	99	75 - 125	<0.050	mg/kg	4.1	30	106	70 - 130
7712166	Total Vanadium (V)	2014/11/10	NC	75 - 125	101	75 - 125	<2.0	mg/kg	0.59	30	116	70 - 130
7712166	Total Zinc (Zn)	2014/11/10	NC	75 - 125	109	75 - 125	<1.0	mg/kg	13	30	96	70 - 130
7712166	Total Zirconium (Zr)	2014/11/10					<0.50	mg/kg	5.0	30		
ONSITE	Cylinder Rental Fee								0	N/A		
ONSITE	Each	2014/09/30							0	N/A		
ONSITE	No Parameter								0	N/A		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

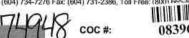
- (1) RDL raised due to high concentration of solids in the sample.
- (2) Blank Spike outside acceptance criteria (10% of analytes failure allowed).

TECK RESOURCES LTD.

Client Project #: SA DENA HES

Site Location: SA DENA HES, YUKON

Sampler Initials: BB


VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

THAIN OF CUSTODY RECORD

ln	voice To: Require	Report? Yes	140	d			Reg	oort 1	To:													-		74								
Company Name:	Teck Resources	s Ltd		Company N			_		_		nenta	Ser	vices	5			_	-	0#			_							_			
Contact Name:	Dave Ryder			Contact Nar	ne:		_	mie E	-	-		_	_	_	_		_	-	luota	-	_				_		_				_	
Address:	Bag 2000		LAN.	Address:			-	Box	-	-		115	No.	SOLOTIO	2000	_		-	roje	-		2000	ERNICA.	Nave of		_	_		_	_	_	
	Kimberley, BC	PC: V1A 3	Marie Commission		46.0		Wh	iteho	-		aan.		_	(1A	-	coco	_	-			-	-	-	Hes	211	0210	_	_	_	_	_	
Phone / Fax#: E-mail	Dave.Ryder		67-6906	Phone / Fax E-mail	H.		ho	nnie			-6836 20or					6956	-	-	ocat	-		-	-	Burns	, Yuk	оп		_	_	-	-	
	-	Taget and the same of the same	OUTETER	-			MA	ULITE	200	Live	0,1101	21.177	2015	2111.15	200			10	Ci. Inp	ii.	-y.	2011	110	e de la la	<u> </u>		_	_			_	_
REGULATORY R ☐ CSR	EQUIREMENTS				_	_			-	_	_	_	_		-	ANA	IV	210	DE	ΔI	ice	TE	<u>n</u>	-		_	_		_	_	_	
OCME		Regular T			Н					-	-	_	-		-1	ANA	1	13	7	1	723	116	_						\neg		-	-
BC Water Qui	ality	(5 days for		oct the lah)	Z	Z	물		c		5			- 1	- 1	11.	1		1	- 1						- 1		- 1				
Other	anty	O 1 Day			Ż	Ó	Ó		Stree		e fc						Н			- 1	- 1					- 1						
DRINKING W	ATER	Date Required	(8	çp	1	sh si		Sie	-1	-	- 1	- 1		П	1	-	- 1	- 1	-6				- 1		- 1			- 1	П
SPECIAL INSTRU	ICTIONS:	111111111111111111111111111111111111111			Field Filtered?	Acidified?	Field Acidified?	×	mes	(size 0.15 mm)	portion passing sieve for	1	- 1					1	-	- 1	- 1					- 1					- 1	
Return Cooler	127 CONTROL 1970	ample Bottles (p	lease spe	cify)	표	Aci	Aci	/ mix	00		338	- 1			- 1		1	1	1	- 1	- 1					- 1			- 1		- 1	
					Tiel.	Field,	景	rough	181	2	J HO	- 1	- [1	1		- 1	- 1	Ш				- 1				8		
					Г	0	als	ouo	uat	E	orti		-			- 1	1	1	ı	-1	- 1	ш								ш	П	- 15
		Lab Use Only			Pa N	(DM)	Mei	t p	thric	0.45	Se p	on I			П		Т		-	-1	- 1	Ш			-1		10					
Pactyoness	HARRIST CHARLES	Liab	Sample	Date/Time(24hr)	Dissolv	Metals (Fotal Metals	dry and thor	BVB	529	analyze p	metais	-		- 1		ı	1	-	- 1	- 1	ш	i b			- 1					- (
Sample	dentification	Identification	Type	Sampled	0	ž	ř					E	+	+	-	+	+	+	+	+	-	-	-	_	-	-	\dashv	\dashv	-	-	+	_
1 MH-13A		KLASSI		12/08/14 11:15	_	_	_	Х	X	L	Х	_	_	_	_		_	_	_	4	_					_	_	_	\dashv	_	_	
2 MH-13B	Marine St.	KL23(d)	100	12/08/14 11:15	DS.	38	.65	х	X		X	1		VIII 1	I.							E6)				55.	30	3				B
3 MH-13C		KL2361		12/08/14 11:15				x	x		х																					
4 MH-16A	The little	(12302	24.	12/08/14 13:00	S	300	79	х	x		x		5	n.	ě		g S		T	in l			ΙŪ	8	130		45	8	bt.	PI,	ē	ā la
5 MH-16B		KL2363	,	12/08/14 13:00				х	x		х							T							1							
6 MH-16C		124		12/08/14 13:00	1,5	28	Ď,	х	х		х	j.E	Ė	1		e I	I	L	I								100		16	Fig.	(1)	Ø 3
7 MH-20A		KL2365		12/08/14 15:30				х	x		х																		ij			3
8 MH-20B	X2.05.15	K1231do	H-GGHLI	12/08/14 15:30	3	38	12	х	x		х	1	4	84	200	5.	ì		UIU.	1111	un	100.00	300	an c	11 (01	AMEL I	M 130			H	3	3 8
9 MH-20C		K12367		12/08/14 15:30	Г					П			I					ı,	N	MAN	Ш	W	W	*		10	Ш		j			
10 NOTE THESE	E ARE SOIL SAM	PLES BUT THE	RE IS NO	DESIGNATION FO	RT	HAT.	W.		70		10				8		1	ll i's	N	1	31	10	M.	Jally.	W	W					3	0 2
11		Market	79	U.	1			П		Г			1	\neg	7	\top	10				14 811	11.0	HIL EN		11 1 101	This see			i	T	\neg	7
12			-75-0	WANT CONT	33	100	121		15	150	10		ā,	ail.	5	12.	I	47	194	8											8	3
Print name and sign			Print o	ame and sign		1	100								_	_					-		162	bara	ory U	III On	ly	100				
Relinquished By	/: Date (yy/mr	n/dd): Time (24)	nr):/	Received by :		Date	# (y)	/mm	(dd)	W. I	Tin	ne (2	thr)	130		'ime		mp	egati	re	on R	ece	pt (°	C)		Cus	tòdy	Sea		Yes		No
				LIMITED TOXE	118	1	201	ulo	81	26	17	45		1/3	Se	nsitive	A		4	BI	9		C)	0		Pres	ent?	N.				Z
			DI 10	- Charles and the same	-		-	4	1	8	-	-			179		J	at 5	amp	led	& 10	c'd c	ın ic			Intac	17	Y	3 P			
IT IS THE RESPONSIBILIT	Y OF THE RELINQUISHE	R TO ENSURE THE ACC	URACY OF THE	CHAIN OF CUSTODY REG	CRDS	, AN IN	COMP	LETE	CHAI	OF CU	STODY	MAY R	SULT	IN AN	ALYT	ICAL TA	DEL	Y5.											1			
BY FCD-00077R1_C				Me	naxo	Annlyt	ics :	Succes	ss Th	rough:	Science	:6							in	0	0	1	0	1	1				1	4=		

-			Strategic Printers	recommendation.	Tel: (604) 734 7276	The Park Harries			ingl / Bra	ou want	(MAXIMUTE)-40	1							Page
401111100	3,000	ICE INFORMATION:		V and the state of the	#D0049 I	Report int			TAL D	TO HOE		10000000000			nformation			Laboratory Use	Battle Order
oany Name	Purchasing Kin	RESOURCES LTD.	-	Company Na	DOMESTIC D		ENVI	ONME	NIAL S	KVILE		juotanien #		B30782	-			DUTTIONS	1,11+1-221-124-124-0-0-4
sut Name	BAG 2000 601			Address	P.O. BOX		_	_	-	-	-	O #		SA DEN	AHES			1541/494X	446148
188	KIMBERLEY E			Modrets	WHITEHO		tA6P	7				roject # Project Name	0					Chain Of Custody Record	Project Manag
e:	(250) 427-8409	9 Fax (250) 427-8451	.÷hone	(867) 668-	5838		Fac				ite#							Ken Pameros
	Roxanne Mene	ean@teck.com		Email	BONNIEB	JRNS@No	orthwe	stel net				Sampled By						C#446148-01-01	
pulatory Co	ritoria:			Specia	Instructions					ANA	LYSIG RE	QUESTED (PLEASE B	E SPECIFIC	Y			Turnamund Time (TAT) Re	
CSR ECIME BC Wat Other	nor Guality		Sed is	don't he ic Sorn liment s soud o	we evolusing samples Ligitall	the coc	(N () Denetil			nded Solids		. 0:		issolved Metals with CV rdness)	Level Total Metals with CV Hg		(will be a Standard Pleasa n daya - co	(Standard) TAT: (Standard) TAT: Inpulsed if Rush TAT is not specified: If AT = 5-7 Working days for most feets. If AT = 5-7 Working days for most feets. If AT = 5-7 Working days for most feets. If A = 5-7 Working days for most feets. If A = 5-7 Working days for most feets. If A = 5-7 Working days for most feets. If A = 5-7 Working days fee	IO and Olexins/Furans
000	MPLESMUST BEKE e Baroode Lebel	PT COOL (< 10°C) FROM TIME	STATE OF THE PARTY	NTIL DELIVERY T	O MAXXAM	Matrix	Metals Field	Ammonia	Sulphate	Total Suspended Solids	Alkalinity	Conductance	Hd	Low Level Dissolved Hg (incl. Hardness)	Low Level T		Runh O	onfirmation Number:	all lab for NJ
KL	2370	MH-13				H20	v	L	L	L	ι	レ	L	L	L		8		
KL	2371	MH-16	,			HZO	L	L	L	L	L	L	L	L	L		8		
KL	2372	MH-Z	0			420	V	L	~	-	L	L	L	L	L		8	,	
KL	231/3	Field BI	ank			F120	L	L	L	L	L	L	L	V	L		18		
-	There	ent Sam Shipme	al of	15												-			
`	sedim	ent Sam	ples.	incl	ided										_				
ci	this	Shipme	nt.															III KARANANANANANAN	
		1.00					Н											M.M. (59.587) 547(5) 45	W.W.
																		B474948	
					Y														
* * REL	INQUISHED BY: (Sign	nature/Print)	Date: (YY/MN	VOO) Time	Yhout	WILL BY	YHV	JSignatu W	re/Print)		1	014 10	126	12:45	200401110	sed and bmitted	Time Sensilive	Lab Use Only Temperature (C) on Receipt Cu	etody Sa lly A r on

Page 26 of 28

маху	am	Burnaby: 46		Way, Burnaby, BC		3L		04) 7	34-77 9 4	276 F	ax: (604) CO						 62						un e			of :		REC	ORD	200	
Company Name: D Contact Name: D Address: B Ki Phone / Fax#: Pr	ce To: Require R sck Resources ave Ryder ag 2000 imberley, BC ave Ryder@	PC: V1A 3	∏ Nc □	Company N Contact Nat Address: Phone / Fax E-mail	ne:		Bor P.O Wh	nie E Bor Iteho	Env 3um x 210 rse, 867	072	-683	38	PC:	Y17	-66	7 7-695	56		Proje Proj. Loca	tation act # Nan ation:	: ne:	Sa D	ena	Hes	, Yul	kon						
REGULATORY REQ	UIREMENTS:	SERVICE REC	UESTED:															10. 10														
CSR CCME BC Water Quality Other DRINKING WATE		(5 days for RUSH (Pla 0 1 Day	most test: ease conta	s) ct the lab)	VISIN .	1625	N N V N								30	AN	AL	YSI	SRI	EQL	IES	TEL										
SPECIAL INSTRUCT Return Cooler	IONS:	mple Bottles (p		cify)	Fleid Filtered?	Field Acidified?	als Fletd Acidified?			F			(II)		Low level dissolved metals	otal metals	1															Number of Containers
Sample Ide	entification	Lab Use Only Lab Identification	Sample Type	Date/Time(24hr Sampled	Dissolved	Metals (DM)	Total Metals	Ammonia	SO4	TSS	Alkalinity	Hardness	Conductivity	Hd	Low level	low level total			-1													Mumber
1 MH-13		KL2370		12/08/14 10:45	X	x	х	х	x	x	x	x	x	х	x	x												\Box		\Box		- 6
2 MH-16	500	KL2371	P. Landy	12/08/14 12:30	x	x	x	x	x	x	X	x	x	x	x	x	95	24	3	20	5	13	(A)	2	柯	戲	德	30	6	10	8	
3 MH-20		KL2372		12/08/14 15:15	×	x	x	x	x	x	x	x	x	x	X	x																
4 BD (blind duplicat	e) com	KL2373	31.121	12/08/14	X	x	x	x	x	x	X	x	x	x	x	x	福	往	18	ME	8.	10		夏	1	(8)	衞		왕	100		99
5		TWIS E				_						-	L	-	_		1			\perp	Ц	\perp		Ц				\perp	Ц	1	_	_
6			5000		38	1085	8	-		-	Œ.	189	135	9	155	13%	-													- 1	6213	
7	Franceira		evi kelle		-	150	180			-	100	200	-	-	100	100	Η.		2000	and the	20 W.C.		10.00				100 P	601				50
8	10000			-	199	200	280			-	(計)	127	MB	80	100	100	+ 1	W	٥K	IJ,	N	pi.	w	W	W	M					200	0 5
9	- 50m Co.		evi alleci	with a Sharphanian	nothic	14111	200	11000	VALUE OF	-	Silico	100	Dia	33	=	100	+	Ш	l Min	n Rij	Ш	N.	Tin.	M.	W	W.	М	Al .			+	170 %
10	DESCRIPTION OF THE PERSON OF T		1000	Utesetsete	460	98335	103	200	1920	980	85	158	199	87	188	98	-		al III	thin.	ran	Yh	YHO	(IIII	TITL	il im	O.	II.		-	1145	01 5
11	Lar all		U.S. COOK	200000000000	40		Late	3240	605	122	100	100	50	9.5	el.		H	B47	494	8											41	315
12 Print name and sign	N CAMEVILLER	Ex III II	Prot sa	me and sign	921	100	90	760	981	100	100	100	100	225	150	100	1.06.	E 12			- 12	- 1	Lat	ouret	ory D	se On	ly	-		-1	200	100
*Relinquished By:	Date (yy/mm	/dd): Time (24h	r): //		A	NI.	e (v)		Vad)	14/2	Ţ	ime (241)		Tim iensi	South	A)	q g	B)	9		9)	9		ACCRECATE VALUE OF	tody ent?	-		Yes	1	Va /
THE RESPONSE LITY OF	THE REUNQUISHER T	TO ENSURE THE ACCUR	RACY OF THE C	HAIN OF CUSTODY RECO	RDS.	AN INC	OMPLI	THE CH	AIN OF	cust	ODY N	AAY RE	BULT	N ANA	LYTIC	AL TAT	DELA							-								
BBY FCD-00077R1_C				Ma	UCCUM	Analy	tica	Suoce	os Th	rough	Scien	nce ©									10	80	9,	10	19	19	Ì					

Page 27 of 28

Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5 Ph; (604) 734-7276 Fax: (604) 731-2388, Toll Free: (800) 665-8566

CHAIN OF CUSTODY RECORD

Click here to get the COC number

(,)	, ci i i	•	M	axxam Job #:	B	,4	14	94	18		(COC	#:								_	F	age	١.	1	of	2				
In	olce To: Require	Report? Yes	✓ No [Ĩ		ä	Rep	ort '	To:																						
Company Name:	Teck Resources		10010	Company N	lame	E				ironm	ienta	Servi	ces					PO	#:		_	_		_			_	_		_	
Contact Name:	Dave Ryder			Contact Na			Bon	nie E	3um:	s							20		tation	1#:	B14	152	-KP								
Address:	Bag 2000			Address:			P.O	. Box	210	72									ect#												
	Kimberley, BC	PC: V1A	3E1	=1			Whi	teho	-	_		_	_	A 6P	_			Proj	. Nar	_	_	-		_							
Phone / Fax#:	Ph: 867-668-683		-667-6956	Phone / Fa	κ#:		Phr			-668-				7-66	7-69	56		-	ation		-	-	Hes	-	con					_	
E-mail	Dave.Ryder(E-mail			bor	nnie	bur	ns(a	nor	thwe	stel	<u>net</u>		_	10	San	pled	by:	Boni	iie E	Surns		_	_	_			_	
REGULATORY RE	QUIREMENTS:	SERVICE R	EQUESTED	:																											
☐ CSR		 Régular 	Turn Around	(TAT) emiT		-	_		_			_	_	_	AN	VAL	YSI	S R	EQI	JES	TE	D	_			_	_				
☑ CGME			for most test		Ţ				(Sig	me				1																	
BC Water Qua	ity		Please conta		Ş	ń	ń		screen (si.	für		1	1							- 1								-1	-1	1	
Other	TED	O10		Day O3 Day	Σ	Σ	Σ		SCF	eve	- 1		1	1		1	١.			- 1		- 3		- 1					- [1	
DRINKING WA		Date Require	ea:		cpa pa	Field Acidified?	Field Addiffed?		mesh	passing sleve for me			1	1		ı				- 1				Н						1	90
SPECIAL INSTRU			Parti	5000	Field Filtered?	Page	PIP	ΧĚ	0 11	SSIL	- 1		1	1						- 1		- 0		a II		- 1	- 1		- 1		ner
Return Cooler	Ship Sa	mple Bottles	(please spe	cify)	Ble 8	ple /	eld /	gly I	a 100	pa i			1	1						- 1		- 81			- 1	- 1			-1	Т	ntai
			_		E	Œ	II.	rom	ghe	portion			1	1						- 1				- 1						1	ပိ
		Eab Use Only			72	(DM)	Metals	dry and thorough	through	od a			1													- 1					Number of Containers
		Lab	Sample	Date/Time(24hr			M I	and	te th	analyze	- 1		1									- 1		- 1		- 1		-1		1	nbe
Sample	Identification	Identification	Type	Sampled	180	Metais	Total	dry	sieve	ana			L																\perp		N N
1 MH-13A			Soil	14/08/23 13:10				X	X	x																					1
2 MH-13B			Soil	14/08/23 13:10	44	党	龙	x	X	x		9 9	13	13%	100	13	18	1	35	4	70	20	(3)		36	12	1	75	19	9	1
3 MH-13C			Soil	14/08/23 13:10				X	X	x																					1
4 MH-16A		Hales.	Soil	14/08/23 14:30	48	12	100	X	X	x	2	9	13	8	1		13	K	3	1		ed.	34	(d)	34	Sá	5	43	4		1
5 MH-16B			Soll	14/08/23 14:30				X	X	x			1																		1
6 MH-16C			Soil	14/08/23 14:30	183	32	-9	X	X	х		1													4	15	10		8	12	1
7 MH-20A			Soil	14/08/24 12:10				X	X	x			1		M)	1	u Av	w	dire	Ш		1			1						1
8 MH-20B			Soil	14/08/24 12:10	100	700	300	X	X	x		3 3		ш		MO.	Till	1		W	di.	Jà	Ш		1						
9 MH-20C			Soll	14/08/24 12:10				X	X	x			1	2	I TAIT		non	iii h	NI W	1117.1	rim	1111			1						1
11 MH-11			Soll	14/08/25 11:30				X	X	x			1	B4	749	48									1						1
11 MH-30			Soil	14/08/23 11:00				х	X	x				1	L			= 1													1
12 CC at Confluen	ce		Soil	14/08/23 10:30	15	油	100	x	X	x		3	10	105		100	150	40	86	48	05m	71	16		器	83	1				1
Print name and sign		and the second	1	me and sign					1		der de la constant		2010				Section 2	200	tures			100	Accordance.		sa Un	Name and				100	HISTORY.
*Relinquished By:	Date (yy/mm	/dd): Time (24	thr):	Received by:	94	Date	* (yy/	mm	dd)		Tim	e (24	nr)	11.	Tim		Ten	pera	ture	an P	BOB	ot (°	Ç)	-	COCCUS	90000	Seal	Y	95		Vo.
			100			0		1	4.			- SE	3	S	ensit	ive	A)		B			31			Pres	ent?					
Bonnie Burns	14/08/25	19:00				1				- 1							NAME OF	Ser	1990	March	05455465	125719	200		Iritae	152.1				100	100

6BY FCD-00077R1_C

Maxxam Analytics Success Through Science ©

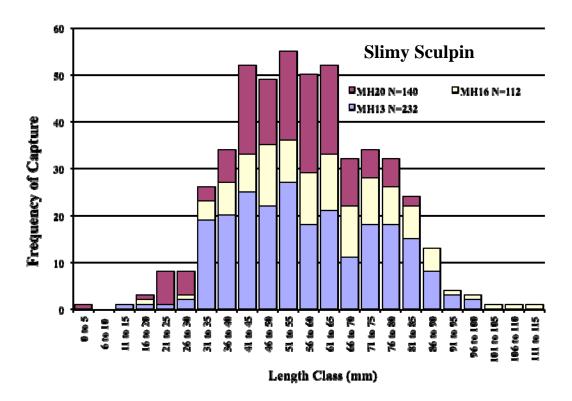
APPENDIX C BENTHIC INVERTEBRATE DATA, 2014

BENTHIC INVERTEBRATE DATA, 2014

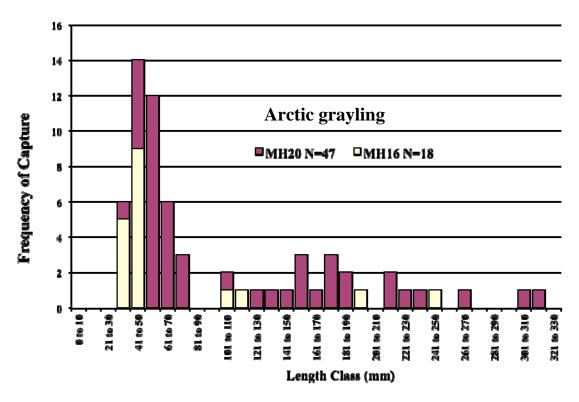
Site:	MH-13	MH-13	MH-13	MH-16	MH-16	MH-16	MH-20	MH-20	MH-20	Totals
Sample:	А	В	С	Α	В	С	Α	В	С	
SubSample %:	100	62.5	25	31.25	25	18.75	100	100	100	
Phylum: Arthropoda										
Subphylum: Hexapoda										
Class: Insecta										
Order: Ephemeroptera										
Family: Ameletidae										
<u>Ameletus</u>	11	11	20	3			2			47
Family: Baetidae										
Acentrella sp.								1		1
<u>Baetis</u>	73	70	712	99	196	283	27	44	37	1541
Family: Ephemerellidae		3	8	138	308	256	3		1	717
<u>Drunella doddsii</u>					4					4
Drunella sp.					4					4
<u>Drunella spinifera</u>				22	16	11		3	2	54
<u>Ephemerella</u>		2		3						5
Ephemerella dorothea									3	3
Serratella						5			-	5
Family: Heptageniidae	5	5	24	10	12	16	2	8	2	84
<u>Cinyamula sp.</u>	1				4					5
Epeorus sp.					•			1		1
Rhithrogena					4	11	1	2	2	20
Family: Siphlonuridae		2			т		•	_	-	2
i anniy. Sipinonundae		2								0
Order: Plecoptera									1	1
Family: Capniidae	5	35	208	10	12	16	7	23	12	328
Family: Chloroperlidae	3	33	200	6	12	10	1	4	2	13
Haploperla sp.				O			'	6	1	7
			4	2				0	1	
Sweltsa sp.		0	4 144	3	200	400	5	•		8
Family: Nemouridae	2	8	84	109	200	192 53	э	3	2	665
Zapada	1		84	22	80				2 1	242
Zapada cinctipes		•	4	13	44	43		4		101
Zapada oregonensis group		2	4	40	00	50	4	1	2 1	9
Family: Perlodidae	1		20	10	36	53	1		1	122
<u>Diura sp.</u>		3	00							3
<u>Isoperla sp.</u>	2	10	32					1		45
Megarcys sp.				4.0		07		1	1	2
Family: Taeniopterygidae				19	44	37				100
Order: Trichoptera										
Family: Brachycentridae								1		1
Brachycentrus americanus					12	5				17
Brachycentrus sp.					16	11	1			28
<u>Micrasema</u>						5				5
Family: Glossosomatidae										
<u>Glossosoma</u>					4					4
Family: Hydropsychidae					8	5				13
Family: Hydroptilidae										
<u>Hydroptila</u>									1	1
Oxyethira sp.							1			1
Family: Limnephilidae	10			6	8		1			25
Hesperophylax sp.		3								3
Family: Rhyacophilidae								1		1
Rhyacophila					12	5		-		17
Rhyacophila brunnea/vemna group					4	-				4
zaspinia zrannea, venina group					•					r
Order: Coleoptera	1	2								3
Order: Diptera	3	3	8							14
Family: Ceratopogonidae										0
<u>Ceratopogon sp.</u>	3									3
, 	•									

SubSample 96: 100 62.5 25 31.25 25 18.75 100 100 100 100	Site:	MH-13	MH-13	MH-13	MH-16	MH-16	MH-16	MH-20	MH-20	MH-20	Totals
Family Chronomidae	Sample:	Α	В	С	Α	В	С	Α	В	С	
Family Chironomide	SubSample %:	100	62.5	25	31.25	25	18.75	100	100	100	
Subtramity: Chrismominiae	<u>Probezzia</u>					4		1	1		6
Trible: Chironomini Polygeridim 30.	Family: Chironomidae										0
Polymer Poly	Subfamily: Chironominae										0
Tribe: Tanytarian Microspectro 2 188 84 64 3 3 341 Bleedandorsus 17 6 52 204 165 11 22 504 Subtamily: Diamesinae 17 6 52 27 1 103 Subtamily: Diamesinae 17 6 52 27 1 103 Subtamily: Diamesinae 17 6 52 27 1 103 Subtamily: Diamesinae 2 2 40 11 7 73 Subtamily: Orthocladinae 2 2 40 11 7 73 Subtamily: Orthocladinae 2 2 2 40 11 7 73 Subtamily: Orthocladinae 2 2 2 40 11 7 7 73 Subtamily: Orthocladinae 2 2 2 2 2 2 2 2 2	Tribe: Chironomini										0
Microspectro	Polypedilum sp.							1			1
102 204 165 11 22 504 25 25 25 25 25 25 25 2	Tribe: Tanytarsini										0
Signatur Signatur	<u>Micropsectra</u>		2	188					3		341
Tomotocisus 17					102	204	165	11		22	504
Subfamily: Diamesinae											
Tribe: Diamesini		17	6	52			27	1			103
Damessa 2											
	·										
Subfamily: Orthocladinae Prilliús 92. 28 6 16 16 16 16		2			00	40	44				
Bellio Sp. 28					22	40	11				73
Dipole distributing		28	6	16	16						66
Eukieffreirle 268 186 43 3 4 504 Heterotrissocladius sp. 1 2 3 3 4 504 Heterotrissocladius sp. 1 2 3 3 4 504 Remilition sp. 208 152 112 4 9 6 491 Remilition sp. 16 3 47 47 Synorthocladius sp. 2 47 47 Synorthocladius sp. 2 47 47 Synorthocladius sp. 3 1 1 1 1 Triele: Corynoneurini Corynoneurini Corynoneurini Corynoneurini Corynoneurini I 1 1 1 Triele: Pentaneurinini Thiele: Pentaneurinini Thiele: Pentaneurinini Thiele: Pentaneurini Thiele: Pentaneurini Republica 5 3 8 1 1 1 56 Family: Empididae 5 3 8 1 1 1 56 Periconof Telmotoscopus sp. 1 2 42 68 53 1 1 1 56 Periconof Telmotoscopus sp. 1 2 42 68 53 1 1 46 Metton-cephia sp. 4 1 2 1 4 4 Family: Tipulidae 5 3 1 4 4 Periconof Sp. 1 2 42 68 53 1 1 4 4 Periconof Telmotoscopus sp. 1 2 42 68 53 1 1 4 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 6 8 5 1 1 4 Periconof Sp. 1 2 4 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4 4 4 4 Periconof Sp. 1 4 4 4 4		20		10	10						
Meterotisscoladius sop. 1	<u> </u>		2	268	186		43		3	4	
Subtamily September Subtamily September		1	2	200	100		40		J	7	
208 152 112 4 9 6 491 686 491 497		·									
Parametriconemus 16	-				208	152	112	4	9	6	
Rheosmittic sp.	*			16							16
Tribe: Corynoneurini	Rheosmittia sp.									47	47
Tribe: Corynoneura	<u>Synorthocladius</u>									2	2
Convoneura 1 1 1 1 1 1 1 1 5 1 1	<u>Tvetenia</u>		11						1		12
Thienemamiella	Tribe: Corynoneurini										
Subfamily: Tanypodinae										1	
Ablabesmyia				4					1		5
Tribe: Pentaneuriini Thienemannimyia group											
Thienemannimyia group 3									1		1
Family: Empididae	'					0					4.4
Neoplasta sp. 26 12 16 1 1 56 Family: Psychodidae 12 42 68 53 1 167 Family: Simulidae 12 12 21 1 1 46 Metacnephia sp. 4 2 5 2 1 46 Metacnephia sp. 4 2 5 2 1 46 Immophila sp. 5 2 1 46 Immophila sp. 7 7 7 7 Class: Entognatha 7 7 7 7 Order: Collembola 5 7 7 7 7 Order: Trombidiformes 5 7 7 7 7 Family: Aturidae 7 7 7 7 Family: Aturidae 7 7 7 7 Family: Aturidae 7 7 7 7 Family: Aturidae 7 7 7 7 Family: Feltriidae 7 7			2			8					
Family: Psychodidae Pericoma/Telmatoscopus sp. 1 2 42 68 53 1 167		3	3		26	12	16		1	1	
Pericoma/Te/matoscopus sp. 1					20	12	10		'	ı	30
Family: Simuliidae		1	2		42	68	53		1		167
Metacnephia sp. 4 4 Family: Tipulidae 8 18 12 5 2 1 46 Limnophila sp. 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 6 6 8 21 1 1 37 7 1 1 37 1 1 37 1 1 3 3 8 2 2 2 2 2 2 1 1 1 3 4 <td></td> <td>·</td> <td>_</td> <td>12</td> <td></td> <td></td> <td></td> <td>1</td> <td>·</td> <td></td> <td></td>		·	_	12				1	·		
Family: Tipulidae Dicranota											
Class: Entognatha											
Class: Entognatha	<u>Dicranota</u>	8	18	12			5	2		1	46
Order: Collembola 5	<u>Limnophila sp.</u>							1			1
Order: Collembola 5											
Subphylum: Chelicerata Class: Arachnida Order: Trombidiformes 6 8 21 1 1 1 37 Family: Aturidae 42 40 21 103 Family: Feltriidae 42 40 21 103 Family: Feltriidae 2 2 2 Family: Hygrobatidae 3 8 11 Hygrobates 20 18 16 3 4 61											
Class: Arachnida	Order: Collembola	5						1			6
Class: Arachnida											
Class: Arachnida											
Class: Arachnida	Subphylum: Cholicorata										
Order: Trombidiformes											
Family: Aturidae	=				6	8	21	1	1		37
Aturus 42 40 21 103 Feltria sp. 2 2 2 Family: Hygrobatidae 3 8 11 Hygrobates 20 18 16 3 4 61					•	•			•		·
Family: Feltriidae	<u>Aturus</u>				42	40	21				103
Feltria sp. 2 2 Family: Hygrobatidae 3 8 11 Hygrobates 20 18 16 3 4 61											
Family: Hygrobatidae	Feltria sp.		2								2
Atractides 3 8 11 Hygrobates 20 18 16 3 4 61											
	<u>Atractides</u>					8					11
Family: Lebertiidae		20	18	16	3	4					61
·	Family: Lebertiidae										

BENTHIC INVERTEBRATE DATA, 2014


SubSample %: 100 62.5 25 31.25 25 18.75 100 100 100 Lobertio 1 3 6 4 16 1 31 1 80 30 4 11 1 80 30 4 11 1 80 30 4 11 1 1 80 30 4 11 1 1 80 30 4 11 1 1 80 30 4 11 1 1 80 30 4 11 1 1 80 30 4 11 1 1 80 30 4 11 1 1 1 1 1 1 1 1 1 1 1 263 3 263 3 263 3 263 3 263 3 263 3 263 3 263 3 263 3 263 3 263	Site:	MH-13	MH-13	MH-13	MH-16	MH-16	MH-16	MH-20	MH-20	MH-20	Totals
Family: Sperchontidae	Sample:	Α	В	С	Α	В	С	Α	В	С	
Family: Sperchontidae Sper	SubSample %:	100	62.5	25	31.25	25	18.75	100	100	100	
Seerchon	<u>Lebertia</u>	1	3		6	4	16	1			31
Seerchongoists Sp.	Family: Sperchontidae										
Pamily: Torrenticolidae	<u>Sperchon</u>			48	16	4	11		1		80
Family: Torrentcolidae	Sperchonopsis sp.				3	4	11				18
Order: Samily: Hydrozetidae	Family: Torrenticolidae										
Family: Hydrozetidae	<u>Testudacarus sp.</u>				22	56	32				110
Family: Hydrozetidae	Order: Sarcoptiformes										
Class: Ostracoda 50 80 400 6 536 10 10 12 12 10 12 10 12 10 12 10 12 10 10		16	35	204	3		5				263
Class: Ostracoda 50 80 400 6 536 10 10 12 12 10 12 10 12 10 12 10 12 10 10	Suhnhylum: Crustacea										
Class: Branchiopoda		50	80	400	6						536
Order: Cladocera	1 =	00	00	400	O						000
Class: Copepoda		10							2		12
Phylum: Mollusca Class: Gastropoda									_		
Class: Gastropoda	Class: Copepoda	70	320	300							690
Phylum: Annelida Subphylum: Clitellata Class: Oligochaeta Class: Oligochaeta Class: Oligochaeta Code: Lumbriculida Family: Lumbriculida Family: Lumbriculida Family: Lumbriculida Family: Lumbriculida Family: Enchytraeidae Fridericia 37 219 28 13 297	Phylum: Mollusca										
Subphylum: Clitellata Class: Oligochaeta Class:	Class: Gastropoda								1		1
Subphylum: Clitellata Class: Oligochaeta Class:	Phylum: Annelida										
Class: Oligochaeta Order: Lumbriculida Family: Lumbriculida 8	<u> </u>										
Order: Lumbriculida											
Family: Lumbriculidae											
Order: Tubificida	1 =			8		28	27	1			64
Family: Enchytraeidae 37 219 28 13 297	Rhynchelmis sp.										4
Family: Enchytraeidae 37 219 28 13 297	l Order: Tubificida										
Class: Hydrozoa Class: Hydrozoa Class: Hydrozoa Class: Hydrozoa Totals per sample: 462 1058 2880 1207 1780 1695 81 126 166	I -										
Phylum: Cnidaria Class: Hydrozoa Order: Anthoathecatae Family: Hydridae Hydro 1 12 3 16 Phylum: Nemata 8 48 3 12 27 3 8 109 Phylum: Platyhelminthes I Class: Turbellaria 3 1207 1780 1695 81 126 166 9455 Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101		37	219	28	13						297
Class: Hydrozoa Order: Anthoathecatae Family: Hydridae Hydra											
Order: Anthoathecatae											
Family: Hydridae Hydra											
Hydra 1 12 3 16 Phylum: Nemata 8 48 3 12 27 3 8 109 Phylum: Platyhelminthes I Class: Turbellaria 3 2 3 3 3 Totals per sample: Totals per site: 462 1058 2880 1207 1780 1695 81 126 166 9455 Totals per site: 4400 4682 373 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	•										
Phylum: Nemata 8 48 3 12 27 3 8 109 Phylum: Platyhelminthes I Class: Turbellaria 3 12 27 3 8 109 Totals per sample: 462 1058 2880 1207 1780 1695 81 126 166 9455 Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	Family: Hydridae										
Phylum: Platyhelminthes 1 Class: Turbellaria 3 3 Totals per sample: 462 1058 2880 1207 1780 1695 81 126 166 9455 Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	<u>Hydra</u>	1		12	3						16
I Class: Turbellaria 3 3 Totals per sample: 462 1058 2880 1207 1780 1695 81 126 166 9455 Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	Phylum: Nemata	8	48		3	12	27	3		8	109
Totals per sample: 462 1058 2880 1207 1780 1695 81 126 166 9455 Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	Phylum: Platyhelminthes										
Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	Class: Turbellaria				3						3
Totals per site: 4400 4682 373 Diversity per sample: 32 33 31 36 40 36 25 28 27 101	Totals per sample:	462	1058	2880	1207	1780	1695	81	126	166	9455
	Totals per site:	4400									
	Diversity per sample:	32	33	31	36	40	36	25	28	27	101
	Diversity per site:	52			55			53			

APPENDIX D FISH DATA, 2014


APPENDIX D TABLE 1: LENGTH DATA COLLECTED FROM FISH CAPTURED DURING SAMPLING OF FALSE CANYON CREEK, AUGUST 2014.

Species	Sample Site	Length (mm)	Weight (gms)
Arctic Grayling	MH16	52	15.0
Arctic Grayling	MH16	210	-
Arctic Grayling	MH20	55	1.4
Burbot	MH20	130	14.9
Burbot	MH20	210	52.2
Slimy Sculpin	MH13	61	2.3
Slimy Sculpin	MH16	20	0.1
Slimy Sculpin	MH16	37	0.5
Slimy Sculpin	MH16	38	0.8
Slimy Sculpin	MH16	38	0.5
Slimy Sculpin	MH16	43	0.9
Slimy Sculpin	MH16	47	1.1
Slimy Sculpin	MH16	69	3.4
Slimy Sculpin	MH16	70	4.2
Slimy Sculpin	MH16	76	4.4
Slimy Sculpin	MH16	76	4.8
Slimy Sculpin	MH16	81	6.3
Slimy Sculpin	MH16	88	7.1
Slimy Sculpin	MH16	115	15.6
Slimy Sculpin	MH20	47	1.1
Slimy Sculpin	MH20	51	1.3
Slimy Sculpin	MH20	55	1.4
Slimy Sculpin	MH20	57	2.1
Slimy Sculpin	MH20	57	2.0
Slimy Sculpin	MH20	62	2.2
Slimy Sculpin	MH20	64	2.7
Slimy Sculpin	MH20	65	2.8

Species	Sample Site	Length (mm)	Weight (gms)
Slimy Sculpin	MH20	66	2.9
Slimy Sculpin	MH20	67	3.0
Slimy Sculpin	MH20	77	5.0
Whitefish sp.	MH20	50	1.1
Whitefish sp.	MH20	52	1.2
Whitefish sp.	MH20	52	1.3
Whitefish sp.	MH20	52	1.3
Whitefish sp.	MH20	53	1.3
Whitefish sp.	MH20	54	1.4

APPENDIX D FIGURE 1: LENGTH FREQUENCIES OF SLIMY SCULPIN MEASURED AT SITES OF CAPTURE IN FALSE CANYON CREEK, YUKON, 1994 TO 2014.

APPENDIX D FIGURE 2: LENGTH FREQUENCY OF ARCTIC GRAYLING MEASURED AT SITES OF CAPTURE IN FALSE CANYON CREEK, YUKON, 1994 TO 2014.

APPENDIX F Nautilus Toxicity Testing Laboratory Reports

Sä Dena Hes Mixture testing

Final Report

Report date: July 17, 2015

Submitted to:

Azimuth Consulting Group

Vancouver, BC

Burnaby Laboratory 8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

		Pa	ge
TAB	LE OF CO	ONTENTS	i
SIG	NATURE	PAGE	. ii
1.0	INTROI	DUCTION	. 1
2.0	METHC	DDS	. 2
3.0	RESULT	TS	.5
4.0	QA/QC	,	.8
5.0	REFERE	INCES	.9
		LIST OF TABLES	
Tabl	e 1.	Summary of test conditions: Ceriodaphnia dubia survival and reproduction test	.2
Tabl	e 2.	Summary of test conditions: Pseudokirchneriella subcapitata growth inhibition test	t.3
Tabl	e 3.	Dilution series of MH-04 and MH-25.	
Tabl	-	Results: Ceriodaphnia dubia survival and reproduction test	
Tabl		Results: Pseudokirchneriella subcapitata growth inhibition test	
Tabl	e 6.	Reference toxicant test results.	.8
		LIST OF APPENDICES	
APP	ENDIX A	- Ceriodaphnia dubia Toxicity Test Data	
APP	ENDIX B	- Pseudokirchneriella subcapitata Toxicity Test Data	
APP	ENDIX C	- Chemistry Reports	
		- Chain of Custody	

SIGNATURE PAGE

Bonnie Lo, M.E.T.

Environmental Scientist

James Elphick, R.P.Bio.

Senior Reviewer

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

1.0 INTRODUCTION

Nautilus Environmental conducted sub-lethal toxicity tests for Azimuth Consulting Group on a mixture of samples identified as MH-04 and MH-25. The samples were collected on June 27th, 2014 from the Sä Dena Hes Mine Site (the "Site"), Yukon Territory and delivered to the Nautilus laboratory in Burnaby, BC on June 28th, 2014. Each sample was transported in a cooler containing one 20-L carboy and seven 1-L plastic containers and was received at a temperature of 8.5° C. The sample was stored in the dark at $4 \pm 2^{\circ}$ C prior to testing. The following sub-lethal toxicity tests were conducted on the sample:

- Ceriodaphnia dubia survival and reproduction
- Pseudokirchneriella subcapitata growth inhibition

This report describes the results of these toxicity tests. Copies of laboratory data sheets and printouts of statistical analyses for each test are provided in Appendices A and B. The chain-of-custody form is provided in Appendix C.

2.0 METHODS

Methods for the toxicity tests are summarized in Tables 1 and 2. Testing was conducted according to procedures described by Environment Canada (2007a and 2007b), with modifications made to testing concentrations and dilutions. Statistical analyses were performed using CETIS (Tidepool Scientific Software, 2013).

Table 1. Summary of test conditions: *Ceriodaphnia dubia* survival and reproduction test.

Test organism	Ceriodaphnia dubia
Test organism source	In-house culture
Test organism age	<24-hour old neonates produced within 12 hours
Test type	Static-renewal
Test duration	7 ± 1 day
Test vessel	20-mL test tube
Test volume	15 mL
Test replicates	10 test replicates per treatment
Number of organisms	1 per replicate
Control/dilution water	Diluted Perrier water (hardness 140 mg/L CaCO ₃)
Test solution renewal	Daily
Test temperature	25 ± 1°C
Feeding	Pseudokirchneriella subcapitata and YCT
Light intensity	100 to 600 lux at water surface
Photoperiod	16 hours light/8 hours dark
Aeration	None
Test protocol	Environment Canada (2007a), EPS 1/RM/21
Statistical Software	CETIS (2013)
Test endpoints	Survival and reproduction
Test acceptability criterion for controls	≥80% survival; ≥15 young per surviving control producing three broods; ≥60% of controls producing three or more broods
Reference Toxicant	Sodium Chloride

 Table 2.
 Summary of test conditions: Pseudokirchneriella subcapitata growth inhibition test.

Test organism	Pseudokirchneriella subcapitata, strain UTCC#37
	In-house culture, obtained from Canadian Phycological
Test organism source	Culture Centre, and originally isolated from Nitelva
	River, Norway.
Test organism age	4- to 7-d old culture in logarithmic growth phase
Test type	Static
Test duration	72 h
Test vessel	Microplate
Test volume	22 0 μL
Test replicates	4 test replicates per treatment; 8 replicates for control
Number of organisms	10,000 cells/mL
Control water	Deionized water with supplemented nutrients
Test solution renewal	None
Test temperature	24 ± 2°C
Light intensity	3600 to 4400 lux
Photoperiod	24 hours light
Aeration	None
Test protocol	Environment Canada (2007b) EPS 1/RM/25
Statistical software	CETIS (2013)
Test endpoint	Algal cell growth inhibition
-	≥ 16-fold increase in number of algal cells; CV ≤20%; no
Test acceptability criteria for controls	trend when analyzed using Mann-Kendall test

Zinc

Reference toxicant

A mixture of 85% MH-04 and 15% MH-25 was used as the highest concentration tested. This mixture, identified as "100% Mixture", was further diluted using MH-04 to 30, 10, 3, 1, 0.3 and 0.1%, resulting in seven concentrations of the mixture (Table 3). MH-04 was also tested as a site water control for this test.

Because there was a potential that the MH-04 sample might itself exhibit toxicity, this sample was also tested after dilution to 50 and 10%, with a laboratory-prepared control water that was prepared by diluting Perrier water to achieve a hardness consistent with that of the MH-04 sample.

Due to the different dilution waters (laboratory water and MH-04), the results were analyzed as two independent datasets; MH-04 and Mixture. Results of the MH-04 samples were compared to the laboratory control and the Mixture samples were compared to the results for MH-04.

Table 3. Dilution series of MH-04 and MH-25.

				0,	/ ₀										
10	10 50 100 0.1 0.3 1 3 10 30 100														
MH04	MH04 MH04 MH-04 Mixture Mixture Mixture Mixture Mixture Mixture Mixture														
	Low to High COPCs→														

Note: Mixture = 85% MH-04 and 15% MH-25

3.0 RESULTS

Results of the toxicity tests on samples MH-04 and the mixture of MH-04 with MH-25 are summarized in Tables 4 and 5, and provided in Appendices A and B, for *C. dubia* and *P. subcapitata*, respectively. Included in the appendices are summaries of organism response relative to measured concentrations of lead and zinc, which were identified by Azimuth as two of the main contaminants of interest for the site.

In the MH-04 tests, *C. dubia* survival was 100% in the undiluted MH-04 water and ranged from 90 to 100% in the MH-04 sample diluted with laboratory water, resulting in an LC50 of >100%. Similarly, no adverse effects were observed on reproduction in these dilutions resulting in the IC25 and IC50 values for MH-04 of >100%.

In the test of the Mixture (85% MH-04 and 15% MH-25, diluted with MH-04), *C. dubia* exhibited no survival in the 10, 30 and 100% Mixture concentrations, while survival ranged from 80 to 100% in the 0.1, 1 and 3% Mixture treatments. The calculated LC50 with 95% confidence limits was 4.1 (2.5-6.3)% Mixture. Adverse effects on reproduction were also observed, resulting in IC25 and IC50 estimates of 0.9 (0.6-1.6) and 2.3 (1.3-3.8)% Mixture, respectively.

The 72-h *P. subcapitata* toxicity test exhibited a decrease in cell yield in the MH-04 sample relative to the hardness-adjusted control; the IC25 and IC50 values were <10 and >100% for MH-04 relative to the hardness adjusted laboratory control. Although the IC25 was <10% sample relative to the hardness-adjusted control, it should be noted that the cell growth in all MH-04 treatments exceeded the standard laboratory control for this test, and based on a comparison to that control, the IC25 and IC50 would both have been >100% sample.

For the test of the mixture, adverse effects on cell growth were observed relative to the MH-04 sample (i.e., the site water control), as well as to both laboratory water controls. The IC25 and IC50 (and 95% confidence limits) were calculated to be 0.49 (0.27-0.60) and 0.82 (0.64-0.94)% Mixture, respectively, based on a comparison to performance in the MH-04 site water control. These estimates would have been higher, and have fallen between 1 and 3%, if the standard laboratory control water had been used for comparison in this test.

The concentration of zinc that was present in the Mixture appears to be sufficient to explain the adverse response reported for *P. subcapitata*. For example, zinc was present in the 1% dilution of the Mixture at $60.2 \,\mu\text{g}/\text{L}$ and in MH-04 at $7.3 \,\mu\text{g}/\text{L}$; consequently, at the IC50 of the sample of 0.82% Mixture, there was $50.7 \,\mu\text{g}/\text{L}$ of zinc present. This concentration exceeds the long term

Nautilus Environmental 5

average IC50 of 23.8 μ g/L zinc reported in reference toxicant tests with this species (Table 6). Similarly, for *C. dubia*, 132 μ g/L zinc would have been present at the IC50 of 2.3% Mixture. Although zinc is not used as a reference toxicant by the laboratory for this species, this is consistent with concentrations that exhibit adverse effects on this species (Nautilus Environmental, unpublished data). Of the 31 analytes measured in the metals scan, only five others (i.e., in addition to zinc) were present above detection limits in the Mixture diluted to 1% (barium, calcium, magnesium, silicon, and strontium [Appendix C]). The other five constituents would not be expected to have contributed to toxicity.

Table 4. Results: *Ceriodaphnia dubia* survival and reproduction test.

Concentration	Survival	Reproduction
(% v/v)	(%)	(mean ± SD)
Laboratory control	90	19.4 ± 5.1
10% MH-04	90	19.8 ± 7.2
50% MH-04	100	21.1 ± 4.8
100% MH-04 (site water control)	100	20.4 ± 3.9
0.1% mixture	100	20.2 ± 3.4
0.3% mixture	100	20.7 ± 2.8
1% mixture	90	14.7 ± 7.6
3% mixture	80	8.5 ± 6.3
10% mixture	0	
30% mixture	0	
100% mixture	0	
Test endpoint (% v/v)		
MH-04		
LC50	>100	
IC25		>100
IC50		>100
Mixture		
LC50	4.1 (2.5 - 6.3)1	
IC25		$0.9 (0.6 - 1.5)^{1}$
IC50		2.3 (1.0 - 3.7)1

SD= Standard Deviation, LC= Lethal Concentration, IC= Inhibition Concentration. Mixture = 85% MH-04 and 15% MH-25

¹ results calculated using 100% MH-04 as control

Results: Pseudokirchneriella subcapitata growth inhibition test. Table 5.

Concentration	Cell Yield (x 10 ⁴ cells/mL)	
(% v/v)	(Mean ± SD)	
Regular control water	55.4 ± 10.3	
Hardness-adjusted (dilution water control)	359.3 ± 36.5	
10% MH-04	224.8 ± 12.0	
50% MH-04	206.8 ± 11.5	
100% MH-04 (site water control)	201.5 ± 25.2	
0.1% mixture	297.0 ± 31.3	
0.3% mixture	185.5 ± 23.5	
1% mixture	77.0 ± 14.1	
3% mixture	5.5 ± 3.8	
10% mixture	1.25 ± 1.9	
30% mixture	1.75 ± 0.5	
100% mixture	0.75 ± 1.0	
Test endpoint (% v/v)		
MH-04		
IC25	<10 ²	
IC50	>100	
Mixture ¹		
IC25	0.49 (0.27 – 0.6) 1	
IC50	0.82 (0.64 - 0.94) 1	

SD= Standard Deviation, IC= Inhibition Concentration.

^{*=} Indicates cell yield that were significantly greater than the control.

Mixture = 85% MH-04 and 15% MH-25

¹ results calculated using 100% MH-04 as negative control

² note that although the IC25 is <10% relative to the hardness-adjusted control, there is stimulation in all concentrations of MH-04 relative to the normal laboratory control

4.0 QA/QC

The health history of the test organisms used in the exposures was acceptable and met the requirements of the Environment Canada protocols. The tests met all control acceptability criteria and water quality parameters remained within acceptable ranges specified in the protocols throughout the tests. The holding time of 72 hours was exceeded; however the samples were tested following discussion with Azimuth. Uncertainty associated with these tests is best described by the standard deviation around the mean and/or the confidence limits around the point estimates.

Results of the reference toxicant tests conducted during the testing program are summarized in Table 6. Results for these tests fell within the range for organism performance of mean and two standard deviation range, based on historical results obtained by the laboratory with these tests. Thus, the sensitivity of the organisms used in these tests was appropriate.

Table 6. Reference toxicant test results.

Test Species	Endpoint	Historical Mean (2 SD Range)	CV (%)	Test Date
C 1.1.	Survival (LC50): 1.8 g/L NaCl	1.7 (1.2 - 2.6)	23	L 26, 2014
C. dubia	Reproduction (IC50): 1.7 g/L NaCl	1.3 (0.9 - 1.9)	21	June 26, 2014
P. subcapitata	Growth (IC50): 19.0 μg/L Zn	23.8 (15.0 – 37.8)	26	July 11, 2014

SD = Standard Deviation, CV = Coefficient of Variation, LC = Lethal Concentration, IC = Inhibition Concentration.

5.0 REFERENCES

Environment Canada. 2007a. Biological test method: test of reproduction and survival using the cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition, February 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 74 pp.

Environment Canada. 2007b. Biological test method: growth inhibition test using the freshwater alga. Environmental Protection Series, Report EPS 1/RM/25. Second Edition, March 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 53 pp.

Tidepool Scientific Software. 2013. CETIS comprehensive environmental toxicity information system, version 1.8.7.16 Tidepool Scientific Software, McKinleyville, CA. 222 pp.

Ceriodaphnia dubia Summary Sheet

Client:	Azimuth	Start Date/Time:	June 30/14 @ 150ch
Work Order No.:	14399	Set up by:	KLP/EMM
Sample Informat	ion:	Test Validity Criteria:	
Campie informat		Mean survival of first general	ration controls is ≥80 %
Sample ID:	MH-04 (diluted w/ lab H)	1	ive produced three broods within 8 days
Sample Date:	Tune 27/14		ng produced per surviving female in the
Date Received:	A	control solutions during the fir	rst three broods.
Sample Volume:	1Lx7,20LX1	4) Invalid if ephippia observed	d in any control solution at any time.
		WQ Ranges:	
		T (°C) = 25 ± 1 ; DO (mg/L) =	3.3 to 8.4 ; pH = 6.0 to 8.5
Test Organism Ir	nformation:		
Broodstock No.:		062014 (3rd Ge	nerotion (Longel hardness perner)
Age of young (Day	y 0):	<24-h (within 12-h)	3
Avg No. young in	first 3 broods of previous 7 d:	20	
Mortality (%) in pro		10	
Individual female	# used ≥8 young on test day	1,2,4,5,67,8,10	
NaCl Reference	Toxicant Results:		
	64114		
Reference Toxica	1/1.11		
Stock Solution ID:			
Date Initiated:	June 26/14		
7-d LC50 (95% C	L): 1.8 (1.6-2.2	g/L NaCL	
7-d IC50 (95% CL		g/L NaCL	
7-0 1000 (00% 01	i. i. i. i. i. i.	gr Naor	
7-d LC50 Referen	ce Toxicant Mean and Historica	al Range: 1,7(1,2-2,6)	g/L NaCL CV (%): 23
	ce Toxicant Mean and Historica		
Test Results:			
		Survival	Reproduction
	LC50 % (v/v) (95% CL)	7100	
	IC25 % (v/v) (95% CL)		7100
	IC50 % (v/v) (95% CL)		7100
	1000 70 (V/V) (9070 CL)		
	1-		1 6 1 1 1 2 2 2 2
Reviewed by:	4.00	Date revi	ewed: September 18, 201
	/\		. //

Ceriodaphnia dubia Summary Sheet

Client: Azımuth Work Order No.: 14399	Start Date/Time:	June 30/14 a 150ch
Sample Information: (diluted w) Hi Sample ID: (MHCY/MH25/MMture) Sample Date: June 27/14 Date Received: June 27/14 Sample Volume: LX7/201X) Test Organism Information:	2) At least 60% of controls ha 3) An average of ≥15 live you control solutions during the fi	ave produced three broods within 8 days ang produced per surviving female in the rst three broods. d in any control solution at any time.
Broodstock No.: Age of young (Day 0): Avg No. young in first 3 broods of previous 7 Mortality (%) in previous 7 d: Individual female # used ≥8 young on test d	<24-h (within 12-h) d: 10	Generation 150mg/L Hardhook Pernix)
NaCl Reference Toxicant Results:		
Reference Toxicant ID: Stock Solution ID: Date Initiated: Cd 114 14NaO 14NaO 14NaO 100 14NaO 14	4	
7-d LC50 (95% CL): 1.7C1.3-2.0	g/L NaCL	
7-d LC50 Reference Toxicant Mean and History Toxicant Mean and History		g/L NaCL CV (%): 23 g/L NaCL CV (%): 21
Test Results:		
1 050 % (4) (05% 01)	Survival	Reproduction
LC50 % (v/v) (95% CL)	4.1 (2.5 - 63)	Zer 0,9 (0.6-1.6) em
IC25 % (v/v) (95% CL) IC50 % (v/v) (95% CL)		100 0.9 (0.6-1.6) em
[1030 % (WW) (33% OL)		2,3(1.3-3.8)
Reviewed by:	Date revi	iewed: September 18, 2014

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client: Sample ID: 12 muth

Start Date & Time: June 30114 @1500h Stop Date & Time: July 7/140 1500h

Work Order #:

MH-25

Test Species: Ceriodaphnia dubia

0/0(0/1)							Da	ays						
Concentration	0		1		2		3		4		5		6	7
160 mgil Hardness Regner Lab Control	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	74.0	24.5	24.0	15.6	24.0	25.0	24.0	25.0	24.0	2573	24/0	250	Nes	25.0
DO (mg/L)	7.9	7.8	8.2	7.7	8.2	70	8.2	4.4	83	72	Pa	25	2.2	7.6
pH	8.3	8.1	83	8.3	8.3	8.1	8.3	7.7	8.3	7.8	21	79	SA!	7.9
Cond. (µS/cm)	312	28	2	9	244	241	6	27	3	2	35	33	7	339
Initials	#mm,	EW	Emm		u	/	1	FM	m		p	~	>	EMW

							Da	ays						
Concentration	0		1		2		3		4		5		6	7
102500 MH-040	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	74.0	24.5	24,0	25.0	24.0	260	24.0	25.0	74.0	25,3	24,0	2570	24,0	25.0
DO (mg/L)	7.8	7.7	8.1	7.7	7.6	7.1	7-8	7.6	8.2	73	£L	75	8,2	7.6
pH	8.2	8.1	8.2	8.3	8.3	81	8.3	7.8	8.3	79	211	80	21	8,0
Cond. (µS/cm) 29	1230	28	282		5	20	76	27	3	3	49	32	1	326
Initials	EMM	FM	m	X	ul	K	5U	Em	m		Pi	M		Emm

			35.70				Da	ays						
Concentration	0				2		3		4		5		6	7
50% MH-04	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	14.0	24.5	24.0	25.0	25.5	250	भीर	25.0	24.0	250	24,0	2500	24,0	25.C
DO (mg/L)	7.9	7.8	8.1	7.6	78	22	8-1	7.7	82	73	85	7.0	8,2	7.5
pH Umi	8.2	8.2	8.2	8.3	8,2	8.2	8-2	7.8	8.2	79	81	20	81	8.1
Cond. (µS/cm)280	294	283)	9	61	29	2	27	6	3€	3	3	09	317
Initials	mm	FM	m		ul	Yo	V	EM	NO		~	1		Emm

					196		Da	ays						
Concentration	0		1		2		3		4		5	(6	7
100% mH-040	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	24.5	24.0	25.0	26.0	2000	25.0	25.0	74.0	250	24,3	2570	240	25.0
DO (mg/L)	7.9	7.8	8.1	7.6	8.0	7-3	8-1	7.7	3.2	72	2,2	7,6	81	7.6
pH	8.2	8.2	8.1	8.3	8.1	6,2	8-1	7.9	8.2	77	21	8,0	21	8.1
Cond. (µS/cm)	277	28	9	9	83	2	86	28	0	2	78	28	0	285
Initials	Emm	FM	m	1	up	100	SU	FM	M	1 1 1 1 1	M	~		FMM

(160 mgil Hardness)

Control 100% Mixture MH-04 100%. MH-25 1001. (48 Hardness* 152 140 146 78 Alkalinity* 114 32

Analysts:

EMM, RUP, AWD

Reviewed by: Date reviewed:

* mg/L as CaCO3

WQ Ranges: T (°C) = 25 ± 1 ; DO (mg/L) = 3.3 to 8.4 (mg/L); pH = 6 to 8.5

Sample Description:

MH-048-clear

MH-258dear

Comments:

OMH-OM diluted wil las water

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client: Sample ID:

Work Order #:

Azimuth

M399

MH-OYIMH-25

Start Date & Time: June 30/14@ 1500h

Stop Date & Time: July 7/1400 1500

Test Species: Ceriodaphnia dubia

9/0(UIV)							Da	ays						
Concentration	0		1		2		3		4		5		6	7
0.1% mixture	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	24.5	24.0	25.0	36.0	250	25.0	25 .0	24.5	200	us	150	wp	25.0
DO (mg/L)	7.9	7.8	8.3	7.4	7.8	72	8,0	7.6	81	73	er	7,6	81	7.4
pH pm	8.3	8.2	8.3	8.3	8.3	82	8-3	7.9	8.2	7.9	81	Sop	81	8.1
Cond. (µS/cm)274	312	28	3	9	78	28	4	29	0	2	84	2	88	300
Initials	Emm	EM	m	K	il	K	ケレ	EM	m		A	A		€mm

							Da	ays						
Concentration (0		1		2		3		4		5		6	7
0.3% Mixture	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	24.5	24.0	25.0	24.0	25.0	26.0	25.0	25.0	2500	wo	2500	Wo	25.0
DO (mg/L)	7.9	7.8	8.3	7.6	7.8	7,1	8.0	7.6	1.8	73	2.2	7.6	8.1	7.5
рН	8.4	8.2	8.4	8.4	8.5	24	8.3	7.9	8.2	79	22	2	RI	8.1
Cond. (µS/cm)275	280	28	3	3	173	25	30	28	9	2	75	28	0	284
Initials	tmm	EMI	M	X	ep	45	L	EMI	M		A	/	4	EMM

							Da	ays						
Concentration	0		1		2		3		4		5		6	7
1% Mixture	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.8	24.5	24.0	25.0	24,0	250	26.0	25.0	75.5	250	240	250	240	25.0
DO (mg/L)	8.0	7.9	8.3	7.6	7.8	71	8.1	7.6	8.1	72	2.2	7.5	21	7.5
Ha	8.4	8.2	8.4	8.4	8.6	24	8.3	7.9	8.2	7.9	52	20	81	8.2
Cond. (µS/cm)	2990	1 29	33	9:	74	25	30	284	5	2:	75	28	3	284
Initials	emm	FW	m	Ku	P	Y	ブレ	EM	N		16	A		Emm

							Da	iys						
Concentration	0		1		2		3		4		5		3	7
3% Mixture	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	24,5	24.0	25.0	24.0	25,0	26.0	25.0	75.5	1000	wo	200	249	25.0
DO (mg/L)	7.9	7.8	8.3	7.6	7.8	7.2	8.0	7.6	8.1	7.3	2,2	7.6	21	7.5
pH	8.4	8,2	8.4	8.4	8.5	05	8-3	7.9	8.2	75	8.2	20	81	8.2
Cond. (µS/cm)	178°	2	17	6	175	25	0	281	0	27	7	23	21	280
Initials	tmm	EW	m	K	el .	K	ブレ	EM	m		A	A		Tmm

(160 mg/L Hardness)

m H-04 1001. Control look Mixture MH-25 100% 14 Hardness* 140 146 78 114 Alkalinity*

Analysts:

com, rus, mos

Reviewed by:

Date reviewed:

mg/L as CaCO3

WQ Ranges: T (°C) = 25 ± 1 ; DO (mg/L) = 3.3 to 8.4 (mg/L); pH = 6 to 8.5

Sample Description:

MH-048 CLEOR

MH-25: Clear

Comments:

Broodboard Used: Ob 9014 13rd generation 160ms/ Hodress Perrier)

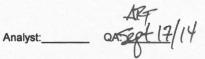
O'Mixaure' 10051545 of 85% MH-OY ? 15% MH-25; diluked wi MH-OY

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Do (mg/L) Do (Client:	Azim	uth					Sta	rt Date	& Time:	June	30/14	@ 150	200	
Concentration	이 제품 1. 선생님들은 함께 보고 있다면 하는데 되었다.			1-25				Sto	•						
Concentration 0	Work Order #:	1439	19				-		Test S _I	oecies:	Ceriod	aphnia d	dubia		
O								D	ays						
Temperature (°C) 14, 0 34, 5 15, 0 1		0		1	final	2	Est. pr	3		4		5		6	7
Temperature (°C) 14, 0 34, 5 15, 0 1	10% Mixture		old				old	new	old	new	old	new	old	new	fina
PH	Temperature (°C)	74.0	24,5	24.0		24.0									
Concentration Concentratio	DO (mg/L)	7.9	7.8			/				1					
Initials		8.2	1.8	8.1		85					/				
Initials	Cond. (µS/cm)	12870	1	79	D 2	47							/		
Days Days				m		ter									
Concentration 3					(2) 2=	18									
Sc/b MANGO Init. old new old								D	ays						
Sc/6 My Auc	Concentration	0		1	final	2		3		4		5		6	7
Temperature (°C) 14, 0 24,5 14,0 25,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 1	30% Mixture	init.	old	new		new	old	new	old	new	old	new	old	new	final
DO (mg/L) 2.0 2.8 3.2 7.8 3.2		14.0	24,5	24.0	25.0		1		1		1		1		
Days Days		1/ 41		8.2			1				1		1		a sa Ti
Cond. (µS/cm) 180 185 279 Initials 180 185 279 Initials 180 180 185 279 Concentration 0 1 2 3 4 5 6 7 (µ)				8.1		1	1		1				1		
Initials Think the dess of the first transfer of the first transf	A CONTRACTOR OF THE PROPERTY O	-	19	5		9		1		1		1	/	1	
Concentration init old new old new old new old new old new old new old new fine temperature (°C) 14.0 34.5 14.2 14.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15			EN	M	-			1		1		1		1	7/2
Concentration of init. old new	mudio	(CITAT)	LUI		-			,				,			
Concentration of init. old new								Da	avs						- 111
100 % Mixhade init. old new old	Concentration	0	(Coa)	1		2				4		5		6	7
Temperature (°C) 24.0 34/5 24.0 34/5 2		Process (2004)	S Standballin Addition			T						I			final
DO (mg/L) 2.9 7.8 2.3					1	11011	1	11011	1	11011	1	11011	10.0	11011	iiiidi
Days	THE STREET STATE OF THE STREET, SAN THE STREET			-			1	-	1		1		1		
Cond. (µS/cm) MA				18	1		1		1		,				
Days			-			1		1		1		1		1	
Days		-	-	11		1		1		1		1			1
Concentration 0	IIIIuais	KY/W/)	1 (11	(VP)		,		-		-					1
init. old new old new old new old new old new old new old new final state (°C) DO (mg/L) pH Cond. (μS/cm) Initials too myll the doess teamer								Da	ays						
Temperature (°C) DO (mg/L) pH Cond. (µS/cm) Initials too ms/L Hardness* Control mH-04 100 /	Concentration	0		1		2		3		4		5		6	7
DO (mg/L) pH Cond. (µS/cm) Initials \[\begin{array}{c ccccccccccccccccccccccccccccccccccc		init.	old	new	old	new	old	new	old	new	old	new	old	new	final
DO (mg/L) pH Cond. (µS/cm) Initials \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	Temperature (°C)														
PH Cond. (µS/cm) Initials too myst. the dress Control mt- out too mixture mt- out too Hardness* MO MU 150 Alkalinity* 78 114 124 32 Img/L as CaCO3 Date reviewed: May be a subject of the dress															
Initials			1												
Initials			0 0												
Control MH-04 100 /. 100 /. MH-25 100 /. Analysts: MM, LU, And		Line A							SA SA	1.1					
Control MH-04 100 /. 100 / Mixture MH-25 100 /. Hardness* MO		lem mall	Hardness)												39.00
Hardness* MO 146 (48 152 Alkalinity* 78 114 124 32 Reviewed by: Alkalinity* 78 114 124 32 Date reviewed: Date reviewed: MR-048 CACO MR-048		Perr	ier 1												
Alkalinity* 78 114 124 32 Reviewed by: mg/L as CaCO3 NQ Ranges: T (°C) = 25 ± 1; DO (mg/L) = 3.3 to 8.4 (mg/L); pH = 6 to 8.5 Sample Description: MH-048 CACO				E SERVICE CONTRACTOR OF THE PERSON OF THE PE		100,4	Mixture				Analys	its:	EMM,I	M, AWI	
Img/L as CaCO3 Date reviewed: Img/L as CaCO3 Date reviewed: Img/L as CaCO3 Img/L as CaCO3 Img/L as CaCO3 Date reviewed: Img/L as CaCO3 Img/L as CaCO3 Img/L as CaCO3 Img/L as C											Davida		1	14	
NQ Ranges: T (°C) = 25 ± 1; DO (mg/L) = 3.3 to 8.4 (mg/L) ; pH = 6 to 8.5 Sample Description: MH-048 CAPA (Mg/L) ; pH = 6 to 8.5		18		110	1		1	20		_			1	1/18	her.
Sample Description: MH-048 Clear MH-25% (Jear		- 25 ± 4	DO (-	ng/ \ - 2	3 40 0	A (mall) - pU =	6 to 9 5			Jale rev	riewed:	- St	110	14
				-		+ (mg/L)	, μπ –	0 10 0.0		MH	-25% (ROT	(
Comments: Broodboard Used: 068014 (3rd generation 160 mg/L Hordress ferrier)															
Diminsture, courses of 80.7 WH-OA & 12.7 WH-52. 471 TABLE OF WAT-UA	Comments:	Brood	board L	Jsed: N	MOBO	13rd as	noration	160	not Ho	thes le	rrier)				
		Diwin	INP " COLO	sick of	AC'IN	14-04 3	15.1 m	H-25 . /	botulis	MMI	-04				

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Client				nuth		25															Sta	art Da	te & 1	ime:	Dung	30	14(215	OOL	1			
	le ID: Orde				WH-	25		100 A	-												31							0 15	000	7		4017	_
WOIK	Orde		-14.	-11											9	own))							p = y	COL	CITY							
Days	Conc	### COPPORT RECORD COPY OF CONCENTRATION: CONS. CONV.C.M.C. CONCENTRATION: CONS. CONV.C.M.C. CONCENTRATION: CONS. CONV.C.M.C. CONCENTRATION: CONS. CONV.C.M.C. CONCENTRATION: CONCENTRATIO																															
Days	Α																																
1																																	
2	1																																
3	/																																
4	~	4		3	4	4	4	4	4	1		4	_	~	4		4	4	5	4	5	W	~	5	5	4	5	2	3	4	4	3	JW
5		1	6	/	/	/	/	/	/	6	-	6	5	×	5	5	V	/	/	6	3	B	/	/	1	/		1	5	1		5	AS
6	6/	B C D E F G H I J Intt A B C D E F G H I J Int																															
7	/		14	11	12	-(1	12	12	-11	13	thin	15	13		13	10	12	11	13	12	14	thm	V	10	10	14	14	14	13	11	13	14	Emon
8			1	0.2										1							-												
Total	11	94	1																														
	-	######################################																															
Days		Set up by: <u>U.P.F.(PM)</u> *** *** *** *** *** *** *** *** ***																															
1	A /	Set up by: \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1} \																															
2	1	./	/	1	,					- 3	37200	/	1				1	/	1	/	1	7.000				/		/	./		1		
3	1	1	1	/	1	1	7	1	1	/	207	/	/	-	1	-	1	/	/	/	/	A		1	-	X	/					/	1
	4/	11	U	1	u	IL	3	Ц	1	2	11	3	T	ú	ú	2	/	2	u	u	4	TIA	4	3	3	13	ú	3	4	3	4	u	TIAL
5	X	7	/	5		7	1	/	4	1				/		/	5	/	/	/	5	- Carlotte		/	/	12	-		-	/		1	- X 1997 CO
6	6	2	-	-	1	10	-	-	b	6	-	1	5	6	6	68	/	6	7	5	1		-	-1	5	17	-	6	5		5	5	
7	-	12	12	10	10	11	12	14	1			13					0		11		12	-	IÚ			Tri		_		12	12		Fhn
8	10	10	12	10	1 a	"	10	-	~	10	UV-	1	10	, ,	13	1	0	10	1	10	10	CIMI	1	10	10	12	10	1	1/2	100	10	10	unit/
	22	22	27	19	20	21	21	12	10	22	Fimm	21	19	24	22	16	13	21	21	27	12:	mm	23	21	20	264	N	22	22	21	11	19	Fhan
Total	4 -	2	C D E F G H I J Intt A B C D E F G H I J Intt																														
Days	Cond	entra	B C D E F G H I J Intt A B C D E F G H I J Int																														
Days	A	В	ation: 160 m 1 - 0 m 1																														
1	V	Concentration: Conc																															
2	1	B C D E F G H I J Intt A B C D E F G H I J Int																															
3	/	B C D E F G H I J Intt A B C D E F G H I J Int																															
4	4	B C D E F G H I J Intt A B C D E F G H I J Int																															
5	/	/	/	/	/	/	/	/	1	/	M	2		/		/		4	1	-	-	h	1									\perp	
6		-	5	5	6		6			-	-		3	_	1	5		4	4		4	~			1						\perp		
7	10	10	11	11	V	10	V	10		8	Emm	9	V	9		V		V	6	8	/	EMM	1		1							\perp	
8			7.0		,		,		1				0	1		_	1	0	13	1-		Trains	1	1	1	1	1	1		101	1	1	-10
Tota	19	19		20		21			0	1+	Emm	H			OK		0				14		0	-		0		Ox	0,		Ox	0	tmm
Note	s: X =	morta	lity.) " (Mi	Xtme	51, (1	onsis	AS	ot	85%	MH-	04	ç 159	o MI	1-25	', di	iuted	w	MH-						dilu	ted	w la	ub u	wate	3			
Sam	ple De	scrip	3 3 4 4 4 4 30 4 3 7 4 4 4 3 7 5 4 5 3 8 7 5 5 4 5 2 3 4 4 3 50 7 6 3 8 7 7 6 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7																														
			3 3 4 4 4 4 4 4 4 4 30 4 3 7 4 4 4 4 5 4 5 70 7 5 5 4 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7																														
David	owed	hw:		5 3 4 4 4 4 4 4 4 30 4 3 7 4 4 4 4 4 5 4 5 4 5 4 5 4 5 2 3 4 4 3 50 4 6 5 6 7 6 7 6																													
			4.00.00	7	0 4 C		X				-											Dale	FIGAIG	weu.			7)	(1				
Vers	sion 2.1 I	ssuea Ju	ury 29, 20	009			()																									Naut	lus Environme


Chronic Freshwater Toxicity Test C. dubia Reproduction Data

2 3 4 5 6 6 7 8 8 Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I J Init	Conce	B X	c X	100°	E E		G C	H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X		A	p by: B entrate B entrate B	C	D	E	F	G	H		J	Init
Days	Ox 67 Am	A ? ×	B ×	C ×	100°	E X	F X	G ×	# X + + - &	- X	J X	Init	Conc	entrat B	tion:	D	E	F	G	H		J	
Days	Ox 67 Am	A ? ×	B ×	C ×	D X	E X	F X	G ×	# X + + - &	- X	X	Init Kee	Conc	B	C tion:						1		
1	Ox 67 Am	Conce	× h	× h	X	0x	X 6 ^x	Ox X	8	×	X	Flavo	Conc	entrat	tion:								
2 3 4 5 6 7 8 Total Days Concentration: A B C D E F G H 2 3 4 5 6 7 8 Total Days Concentration: A B C D E F G H 2 3 4 5 6 7 8 Total Days Concentration: A B C D E F G H 5 6 7 8 Total	OX 6x Am	Conce	∂X entrat	tion:	ď	7 1 3	43			6'	0^	Flavo				D	E	F	G	Н	1	J	Init
3 4 5 6 6 7 8 8 Total Days Concentration: A B C D E F G H 2 3 4 4 5 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Conce	entrat	tion:		7 1 3	43			0		(Y.)				D	E	F	G	H	1	J	Init
4		Conce	entrat	tion:		7 1 3	43			0		(Y.)				D	E	F	G	H	1	J	Init
5 6 7 8 Total Concentration: Days Concentration: A B C D E F G H 2 3 4 4 5 6 6 7 8 8 Total Days Concentration: A B C D E F G H 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Conce	entrat	tion:		7 1 3	43			0		(Y.)				D	E	F	G	H	1	J	Init
6		Conce	entrat	tion:		7 1 3	43			6		(Y.)				D	E	F	G	H	1	J	Init
7 8 8 7 7 7 8 8 7 7 7 7 7 7 7 7 7 7 7 7		Conce	entrat	tion:		7 1 3	43			6		(Y.)				D	E	F	G	H	1	J	Init
B Days Concentration:		Conce	entrat	tion:		7 1 3	43			0		(Y.)				D	E	F	G	Н	1	J	Init
Total		Conce	entrat	tion:		7 1 3	43			1		(Y.)				D	E	F	G	H	1	J	Init
Days Concentration:		Conce	entrat	tion:		7 1 3	43			1		(Y.)				D	E	F	G	H	1	J	Init
A B C D E F G H 1	I J Init				D	E	F	G	H	1	J	Init				D	E	F	G	Н	1	J	Init
A B C D E F G H 1	I J Init	A	В	С	D	E	F	G	H	1	J	Init	A	В	С	D	E	F	G	Н	1	J	Init
2																			13				
3											23												
4									31	i i	13								15				
5										201	23								10		14		
6									1000											4 T			
7 8						100										1							
8				100 100																			
Total																							
Days Concentration: A B C D E F G H																							
3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6																							
A B C D E F G H 1		lo													41		-						
1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	I J Init	Conce	B	C C	р	E	F	G	н	1	J	Init	A	entrat B	C	D	E	F	G	н	1	J	Init
2 3 4 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	T J IIIIC	1						-		1	1		_			0	14		-	"			
3 4 5															1			18.37					
5								6							4			17.00					
5			(7)							199		-											
		71				100	6		1														
		100	1 1							200								100					
7		70																		200		113	
8			4												35	1	No.	10	197.				3
Total		100								1	10	180		1						1	7		
Notes: X = mortality. O "mix+une" consists of MH-OH's Chooses.	F 857. MH						ilute	ed wi	HM I	-04		N	0H-9	15%	Cle	ov-	9						
Comments: Total # Young only based on the first 3 Broods. Fo		ent broods	not inc	luded in	n total co	ount.													1	.,/			1
Reviewed by: Version 2.1 Issued July 29, 2009	ourth and subseque														<	-				4			

Report Date: Test Code: 11 Sep-14 18:35 (p 1 of 2)

14399 | 09-5449-2254

Ceriod	aphnia	7-d Survival and	d Repro	duction Te	est						N	autilus En	rironmenta
Analys Analyz		00-3349-2105 11 Sep-14 18:3		ndpoint: nalysis:		urvival Rat ar Interpola		١)		TIS Version		1.8.7	
Batch I	D:	19-3955-3931	Т	est Type:	Repi	roduction-S	Survival (7d)	An	alyst: Em	ma Marus		
Start D	ate:	30 Jun-14 15:00		rotocol:					1/em/2/Di		oratory Wa	ter	
Ending	Date:	07 Jul-14 15:00	S	pecies:	Ceri	odaphnia d	ubia ec		Br	ine:			
Duratio	n:	7d 0h	S	ource:	In-H	ouse Cultu	re		Ag	e: <24	lh		
Sample	D:	05-7149-1570	C	ode:	2210	44F2			CI	ent: Azi	muth		
Sample	Date:	27 Jun-14 15:05	5 N	laterial:	Efflu	ent			Pr	oject:			
Receiv	e Date:	28 Jun-14 10:00	S	ource:	Azim								
Sample	Age:	72h (8.5 °C)	S	tation:	MH-	04							
_inear	Interpo	lation Options						1					
(Trans		Y Transform		eed		mples	Exp 95%		thod				
_og(X+	1)	Linear	1	507363	200		Yes	Tw	o-Point Inte	rpolation			
		ility Criteria											
Attribu	te	Test Stat				Overlap	Decision	1					
Control	Resp	0.9	0.8 - NI	-		Yes	Passes A	Acceptabilit	y Criteria			1	
Point E	stimate	es											
_evel	%	95% LCL	95% U	CL TU		95% LCL	95% UCL						
EC5	>100	N/A	N/A	<1		NA	NA						
EC10	>100	N/A	N/A	<1		NA	NA						
EC15	>100	N/A	N/A	<1		NA	NA						
EC20	>100	N/A	N/A	<1		NA	NA						
EC25	>100	N/A	N/A	<1		NA	NA						
EC40 EC50	>100	N/A N/A	N/A N/A	<1 <1		NA NA	NA NA						
			INA			NA.		1.4.134					
		te Summary	0					ulated Vari		0)/0/	0/ ====		_
C-%		ontrol Type egative Control	Count 10	Mean 0.9		Min 0	Max 1	O.1	0.3162	CV% 35.14%	%Effect 0.0%	A	10
0	IN.	egative Control	10	0.9		0	1	0.1	0.3162	35.14%	0.0%	9	10
50			10	1		1	1	0	0	0.0%	-11.11%	10	10
100			10	1		1	1	0	0	0.0%	-11.11%	10	10
d Sur	vival Ra	te Detail								7			
2-%		ontrol Type	Rep 1	Rep 2		Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	N	egative Control	1	0		1	1	1	1	1	1	1	1
10			1	1		0	1	1	1	1	1	1	1
50			1	1		1	1	1	1	1	1	1	1
100			1	1		1	1	1	1	1	1	1	1
d Sur	vival Ra	te Binomials											
C-%		Control Type	Rep 1	Rep 2		Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)		Negative Control		0/1		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
10			1/1	1/1		0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
50			1/1	1/1		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
100			1/1	1/1		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

Report Date: **Test Code:**

11 Sep-14 18:35 (p 2 of 2)

14399 | 09-5449-2254

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

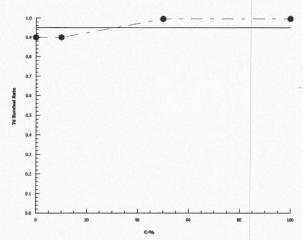
Analysis ID: Analyzed:

00-3349-2105

11 Sep-14 18:34

Endpoint: 7d Survival Rate

Analysis:


Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

Report Date: **Test Code:**

2)

1 Sep-14 14399	09-5		
1.000	1000	 	

Ceriod	laphnia	7-d Survival and	d Reproduc	ction Te	st								Nautilus Env	/ironmenta
Analys		20-6228-1997		point:	15 13 15	oduction					IS Version		Sv1.8.7	
Analyz	ed:	11 Sep-14 18:3	5 Ana	lysis:	Linea	ar Interpola	tion (ICPIN	1)		Offic	cial Result	s: Yes		
Batch	ID:	19-3955-3931	Test	Type:	Repr	oduction-S	urvival (7d))		Ana	lyst: Er	nma Marus	S	
Start D	ate:	30 Jun-14 15:00	Prot	ocol:	EPA	/821/R-02-	013 (2002)	31		Dilu	ent: La	boratory V	Vater	
Ending	Date:	07 Jul-14 15:00	Spe	cies:	Cerio	daphnia d	ubia EC/E	.PS 1	/RM/2	Brin	e:			
Duratio		7d 0h	Sou	rce:	In-H	ouse Cultur	re			Age	<2	4h		
Sample	e ID:	05-7149-1570	Cod	e:	2210	44F2				Clie	nt: Az	imuth		
Sample	e Date:	27 Jun-14 15:05	5 Mate	erial:	Efflu	ent				Proj	ect:			
Receiv	e Date:	28 Jun-14 10:00	Sou	rce:	Azim	nuth								
Sample	e Age:	72h (8.5 °C)	Stat	ion:	MH-	04								
Linear	Interpo	lation Options												
X Trans	sform	Y Transform	See	d	Resa	amples	Exp 95%	CL	Metho	od				
Log(X+	-1)	Linear	1026	362	200		Yes		Two-F	Point Interp	olation			
Test A	cceptab	ility Criteria												
Attribu	ite	Test Stat	TAC Limit	s		Overlap	Decision							
Control	Resp	19.4	15 - NL			Yes	Passes A	ccept	ability C	Criteria				
Point F	Estimate	es												
Level	%	95% LCL	95% UCL	TU		95% LCL	95% UCL							
IC5	>100	N/A	N/A	<1		NA	NA							
IC10	>100	N/A	N/A	<1		NA	NA							
IC15	>100	N/A	N/A	<1		NA	NA							
IC20	>100	N/A	N/A	<1		NA	NA							
IC25	>100	N/A	N/A	<1		NA	NA							
IC40	>100	N/A	N/A	<1		NA	NA							
IC50	>100	N/A	N/A	<1		NA	NA							
Reproc	duction	Summary					Ca	lculat	ed Var	iate				
C-%	C	ontrol Type	Count	Mean		Min	Max	Std	Err	Std Dev	CV%	%Effec	ct	
0	N	egative Control	10	19.4		9	23	1.60		5.082	26.19%	0.0%		
10			10	19.8		0	25	2.27	7	7.177	36.25%	-2.06%		
50			10	21.1		8	26	1.53		4.841	22.94%	-8.76%)	
100			10	20.4		10	23	1.23	31	3.893	19.08%	-5.16%)	
Reproc	duction	Detail												
C-%		ontrol Type	Rep 1	Rep 2	_	Rep 3	Rep 4	Rep	5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
	N	egative Control	11	9		23	20	21		21	23	22	21	23
0	14										00	04	00	22
0 10			25	21		0	22	19		23	20	24	22	22
	i.		25 8	21 22		0 22	22	19		23	21	21	22	22

Analyst:_

Report Date:

11 Sep-14 18:35 (p 2 of 2)

Test Code:

14399 | 09-5449-2254

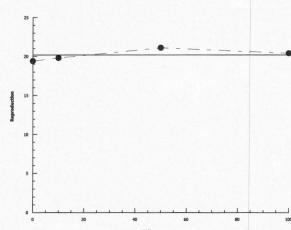
Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analysis ID: Analyzed: 20-6228-1997 11 Sep-14 18:35

Endpoint: Analysis:

Endpoint: Reproduction


Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

Report Date: **Test Code:**

11 Sep-14 18:36 (p 1 of 2) 14399 | 09-5449-2254

Ceriodaphnia 7	7-d Survival and	Repr	oduction Tes	t						Na	autilus Env	ironment
Analysis ID:	08-8403-1574		Endpoint: F	Reproduction				(CETIS Version	n: CETISV	1.8.7	
Analyzed:	11 Sep-14 18:3	5		Nonparametric	-Control v	vs T	reatments	(Official Resu	Its: Yes		
Batch ID:	19-3955-3931		Test Type: F	Reproduction-S	Survival (7	7d)		-	Analyst: E	mma Marus		
Start Date:	30 Jun-14 15:00)	Protocol:	PA/021/R-02-	013 (200	2)6	80	- 1		aboratory Wa	ter	
	07 Jul-14 15:00			Ceriodaphnia d		LE	PS1/RM/	21	Brine:			
	7d Oh			n-House Cultu				,	Age: <	24h		
Sample ID:	05-7149-1570			221044F2						zimuth		
(BEC 12. BENTAL BENTAL BOOK FOR HER SHEET)	27 Jun-14 15:05			Effluent					Project:			
	28 Jun-14 10:00)		Azimuth								
Sample Age:	72h (8.5 °C)		Station:	ИН-04								
Data Transform	n	Zeta	Alt Hy	Trials	Seed			PMS	NOEL	LOEL	TOEL	TU
Untransformed		NA	C < T	NA	NA			26.5%	6 100	>100	NA	1
Steel Many-On	e Rank Sum Te	st							,			
Control	vs C-%		Test St	at Critical	Ties	DF	P-Value	P-Typ	e Decisio	on(α:5%)		
Negative Contro			98	77		_	0.5283	Asym		gnificant Effec	t	
rioguaro coma	50		91.5	77			0.3140	Asym		gnificant Effec		
	100		102	77	4		0.6610	Asym		gnificant Effec		
Test Acceptabi	llity Critoria											
		TAC	Limita	Overlen	Decial							
Attribute	Test Stat			Overlap	Decision		oontobility.	Critorio				
Control Resp	19.4 0.2647	15 - 1	· 0.47	Yes Yes			ceptability					
PMSD	0.2647	0.13	- 0.47	165	rasses	S AC	Ceptability	Cillella				
ANOVA Table												
Source	Sum Squa	res	Mean S	-	DF		F Stat	P-Val		on(α:5%)		
Between	16.475		5.49166		3		0.1895	0.902	9 Non-Si	gnificant Effec	t	
Error	1043.3		28.980	56	36		_					
Total	1059.775				39							
Distributional ¹	Tests											
Attribute	Test			Test Stat	Critical	1	P-Value	Decis	ion(α:1%)			
Variances	Bartlett Ed	quality	of Variance	3.449	11.34		0.3275	Equal	Variances			
Distribution	Shapiro-W	/ilk W	Normality	0.6848	0.9236		<0.0001	Non-r	ormal Distrib	ution		
Reproduction	Summary											
	Control Type	Coun	nt Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effec
	Negative Control		19.4	15.76	23.04		21	9	23	1.607	26.19%	0.0%
10		10	19.8	14.67	24.93		22	0	25	2.27	36.25%	-2.06%
50		10	21.1	17.64	24.56		22	8	26	1.531	22.94%	-8.76%
100		10	20.4	17.62	23.18		21.5	10	23	1.231	19.08%	-5.16%
Reproduction	Detail											
	Control Type	Rep	1 Rep 2	Rep 3	Rep 4		Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
	Negative Control		9	23	20		21	21	23	22	21	23
10		25	21	0	22		19	23	20	24	22	22
50		8	22	22	24		26	22	21	21	23	22
												22
100		23	23	22	19		20	21	21	23	10	22

Analyst:_

Report Date: Test Code:

11 Sep-14 18:36 (p 2 of 2)

14399 | 09-5449-2254

Ceriodaphnia 7-d Survival and Reproduction Test

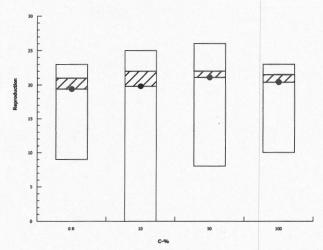
Nautilus Environmental

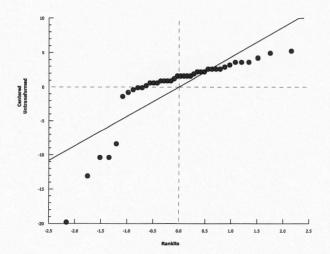
Analysis ID: Analyzed:

08-8403-1574

11 Sep-14 18:35 Analysis:

Reproduction **Endpoint:**


Nonparametric-Control vs Treatments


CETIS Version:

CETISv1.8.7

Official Results: Yes

Report Date: Test Code: 11 Sep-14 18:47 (p 1 of 3) 14399b | 12-6036-2619

								Tes	st Code:	14399b 12-6036-261
Ceriod	aphnia '	7-d Survival an	d Reproduc	ction Test						Nautilus Environmenta
Analys	is ID:	07-1329-2681	End	point: 7d	Survival Ra	te		CE	TIS Version	: CETISv1.8.7
Analyz	ed:	11 Sep-14 18:4	6 Ana	lysis: Lin	ear Regress	sion (MLE)		Off	icial Results	s: Yes
Batch	ID:	18-2891-1839	Test	Type: Re	production-S	Survival (7d)		Ana	alyst: Em	nma Marus
Start D	ate:	30 Jun-14 15:0		ocol: EP	№821/R 02	013 (2002)	2	Dile	uent: Site	e Water
Ending	Date:	07 Jul-14 15:00	Spe	cies: Ce	riodaphnia d	lubia E4/E	ess/RM2	Bri	ne:	
Duratio	on:	7d 0h	Sou		House Cultu			Age	e: <24	4h
Sample	e ID:	13-8577-1250	Cod	e: 529	9930F2			Clie	ent: Azi	muth
Sample	e Date:	27 Jun-14 15:4	5 Mate	erial: Eff	luent			Pro	ject:	
Receiv	e Date:	28 Jun-14 10:0	0 Sou	rce: Az	imuth					
Sample	e Age:	71h (8.5 °C)	Stat	ion: MF	125					
Linear	Regress	sion Options								
Model	Functio	n		Threshol	d Option	Threshold	Optimized	Pooled	Het Corr	Weighted
_og-Go	mpertz [[log(-log(1-P)=A	+B*log(X)]	Control Ti	nreshold	1E-07	No	Yes	No	Yes
Regres	sion Su	ımmary								
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision(α:5%)
13	-9.083	24.57	22.32	0.6921		0.9686				Lack of Fit Not Tested
Point E	stimate	es								
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL				
EC5	1.191	0.2274	2.108	83.96	47.44	439.7				
EC10	1.68	0.463	2.717	59.53	36.81	216				
EC15	2.066	0.7037	3.195	48.4	31.29	142.1				
EC20	2.404	0.9488	3.625	41.6	27.59	105.4				
EC25	2.714	1.198	4.037	36.84	24.77	83.5				
EC40	3.57	1.96	5.324	28.01	18.78	51.01				
EC50	4.131	2.478	6.341	24.21	15.77	40.36				
Test A	ceptabi	ility Criteria								
Attribu	te	Test Stat	TAC Limit	s	Overlap	Decision				
Control	Resp	1	0.8 - NL		Yes	Passes A	cceptability C	Criteria		
Regres	sion Pa	rameters								
Parame	eter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision	n(a:5%)	
Slope		4.821	1.318	2.237	7.405	3.657	0.0106		nt Paramete	
Interce	ot	-3.336	0.9659	-5.229	-1.443	-3.454	0.0136	Significa	nt Paramete	r
ANOVA	Table									
Source		Sum Squa		n Square	DF	F Stat	P-Value	Decision		
Vlodel		67.80976		0976	1	217.1	<0.0001	Significa	nt	
Residua	al	1.874311	0.31	2385	6					
Residu	al Analy	/sis								
Attribu		Method			Test Stat		P-Value	Decision		
Goodne	ess-of-Fi		hi-Sq GOF		1.874	12.59	0.9309		nificant Heter	
			Ratio GOF		1.656	12.59	0.9485		nificant Heter	rogenity
Distribu	tion		/ilk W Norma		0.8717	0.6805	0.1565		Distribution	
		Anderson-	Darling A2	Normality	0.6941	2.492	0.0699	Normal [Distribution	

Analysis ID: 07-1329-2681

Report Date:

11 Sep-14 18:47 (p 2 of 3) 14399b | 12-6036-2619

Test Code:

Nautilus Environmental

Ceriodaphnia 7-d Survival and Reproduction Test

Endpoint: 7d Survival Rate Analysis: Linear Regression (MLE)

CETISv1.8.7 **CETIS Version:**

Analyzed:	11 Sep-14 18:4	6 An	alysis: Li	near Regre	ession (MLE)		Offic	ial Results	: Yes		
7d Surviva	Rate Summary				Calcu	ulated Varia	ate(A/B)				
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	Negative Control	10	1	1	1	0	0	0.0%	0.0%	10	10
0.1		10	1	1	1	0	0	0.0%	0.0%	10	10
0.3		10	1	1	1	0	0	0.0%	0.0%	10	10
1		10	0.9	0	1	0.1	0.3162	35.14%	10.0%	9	10
3		10	0.8	0	1	0.1333	0.4216	52.7%	20.0%	8	10
10		10	0	0	0	0	0		100.0%	0	10
30		10	0	0	0	0	0		100.0%	0	10
100		10	0	0	0	0	0		100.0%	0	10

7d Survival Rate Detail

C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	1	1	1	1	1	1	1	1	1	1
0.1		1	1	1	1	1	1	1	1	1	1
0.3		1	1	1	1	1	1	1	1	1	1
1		1	1	1	1	1	1	1	1	0	1
3		1	1	1	0	1	0	1	1	1	1
10		0	0	0	0	0	0	0	0	0	0
30		0	0	0	0	0	0	0	0	0	0
100		0	0	0	0	0	0	0	0	0	0

7d Survival Rate Binomials

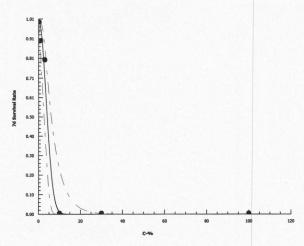
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
0.1		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
0.3		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
1		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1	1/1
3		1/1	1/1	1/1	0/1	1/1	0/1	1/1	1/1	1/1	1/1
10		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
30		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
100		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

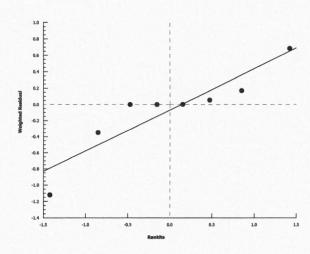
Report Date: Test Code: 11 Sep-14 18:47 (p 3 of 3) 14399b | 12-6036-2619

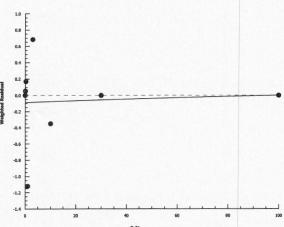
Ceriodaphnia 7-d Survival and Reproduction Test

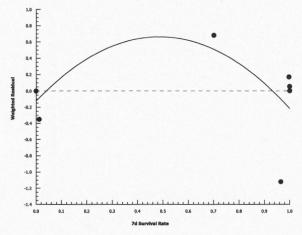
Nautilus Environmental

Analysis ID: Analyzed:

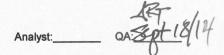

07-1329-2681 11 Sep-14 18:46 Endpoint: 7d Survival Rate
Analysis: Linear Regression (MLE)


CETIS Version: CET Official Results: Yes


CETISv1.8.7


Graphics

Log-Gompertz [log(-log(1-P)=A+B*log(X)]



Report Date: Test Code: 18 Sep-14 14:37 (p 1 of 2) 14399b | 12-6036-2619

										Test	Code:		14399b	12-6036-2619
Ceriod	aphnia	7-d Survival and	Reproduc	tion Te	st				·				Nautilus Er	nvironmental
Analys	ie ID·	17-2369-3812	Endi	point:	Repro	duction				CETIS	S Versio	n: CETIS	Sv1.8.7	
Analyz		18 Sep-14 14:3					tion (ICPIN)				ial Resu			
Datab I	ID.	18-2891-1839	Toot	Tunor	Ponro	duction S	urvival (7d)			Analy	et. E	mma Marus		
Batch I		30 Jun-14 15:00					013 (2002) [©]	RL		Dilue		Site Water		
Start D	13 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Spec			daphnia d		es 1/8	121	Brine		oile vvalei		
		07 Jul-14 15:00				use Cultur	ubiu					24h		
Duratio	on:	7d 0h	Soul	rce:	III-HO	use Cultur	е			Age:		-2411		
Sample		13-8577-1250	Code		52993					Clien		zimuth		
		27 Jun-14 15:45			Efflue					Proje	ct:			
Receiv	e Date:	28 Jun-14 10:00	Soul	rce:	Azimı	uth								
Sample	e Age:	71h (8.5 °C)	Stati	on:	MH25									
Linear	Interpo	lation Options												
X Trans	sform	Y Transform	Seed	i	Resa	mples	Exp 95%	CL N	Method					
Log(X+	1)	Linear	2045	163	200		Yes	Т	wo-Point	Interpo	olation			
Test A	cceptab	ility Criteria												
Attribu	te	Test Stat	TAC Limit	s		Overlap	Decision							
Control	Resp	20.4	15 - NL		,	Yes	Passes Ad	cceptab	ility Criter	ia				
Point E	Stimate	es												
Level	%	95% LCL	95% UCL	TU	9	95% LCL	95% UCL							
IC5	0.403	7 0.05247	0.713	247.7		140.3	1906							
IC10	0.515	7 0.208	1.074	193.9	9	93.11	480.8							
IC15	0.636	7 0.3572	1.179	157.1	8	34.81	279.9							
IC20	0.767	2 0.4595	1.374	130.3	7	72.77	217.6							
IC25	0.908	3 0.5508	1.564	110.1	(33.93	181.5							
IC40	1.627	0.8422	3.053	61.45	3	32.76	118.7							
IC50	2.301	1.346	3.786	43.45	7	26.41	74.31							
Reproc	duction	Summary					Cal	culated	Variate					
C-%	С	ontrol Type	Count	Mean		Viin	Max	Std E	rr Std	Dev	CV%	%Effec	:t	
0	· N	egative Control	10	20.4		10	23	1.231	3.8	93	19.08%	6 0.0%		
0.1			10	20.2	1	13	24	1.062	3.3	6	16.63%	6 0.98%		
0.3			10	20.7		14	24	0.8699	9 2.7	51	13.29%	6 -1.47%		
1			10	14.7	()	21	2.413			51.91%			
3			10	8.5	()	17	1.985	6.2	76	73.84%			
10			10	0	()	0	0	0			100.0%		
30			10	0	()	0	0	0			100.0%		
100			10	0	()	0	0	0			100.0%)	
Reprod	duction	Detail												
C-%	С	ontrol Type	Rep 1	Rep 2	F	Rep 3	Rep 4	Rep 5	Rej	0 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	egative Control	23	23	2	22	19	20	21		21	23	10	22
0.1			21	19		24	23	16	13		21	21	22	22
0.3			23	21	2	20	24	14	22		22	21	21	19
1			19	19	2	20	20	6	21		6	19	0	17
3			17	8		15	0	5	0		8	13	15	4
10			0	0	()	0	0	0		0	0	0	0
30			0	0	()	0	0	0		0	0	0	0
			•	•			•	0	•		0	0	0	0

100

Report Date:

18 Sep-14 14:37 (p 2 of 2)

Test Code:

14399b | 12-6036-2619 **Nautilus Environmental**

Ceriodaphnia 7-d Survival and Reproduction Test Analysis ID:

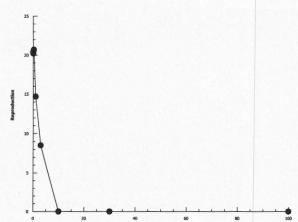
17-2369-3812

Endpoint: Reproduction

Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.8.7


18 Sep-14 14:37

Analysis:

Official Results: Yes

Graphics

Analyzed:

Client: <u>A2\mu4\h</u> w.o.#: <u>1440\ / 14394</u>

Hardness and Alkalinity Datasheet

			Alkalinity				Hardnes	S	
Sample ID	Sample Date	Sample Volume (mL)	(mL) 0.02N HCL/H ₂ SO ₄ used to pH 4.5	(mL) of 0.02N HCL/H₂SO₄ used to pH 4.2	Total Alkalinity (mg/LCaCO₃)	Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Technician
MHOY	June 30/14	50	5.8	5.9	114	50	7.3	146	ref
MH25	June 30/14	50	1.7	1.8	32	50	76	152	EMM
60 molltordress Perrier.	June 30/14	50	4.0	4.1	78	50	7.0	140	Kep
100% MIXTURE	June 3410		6.0	6.2	124	50	7.4	148	FMM
								11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					5				
alter men till som									
		Notes:							
Reviewed by:		1.	Tore.		Date Review	wed:	Septe	mbe (,2	014

Pseudokirchneriella subcapitata Summary Sheet

Client: Work Order No.:	Azimuth 14400	Start Date: Tyne 30/14 Set up by: FMM
Sample Information	on:	
Sample ID: Sample Date: Date Received: Sample Volume:	MH-04 diluted with laborate Tune 27/14 Tune 28/14 7×12,1×20L	y water (160mg/L hardness)
Test Organism Info	ormation:	
Culture Date: Age of culture (Day	0): <u>June</u> 27/14	
Zinc Reference To	xicant Results:	
Reference Toxicant Stock Solution ID: Date Initiated:	11D: SCIIY 142nol Tuy 11/14	
72-h IC50 (95% CL)	19.04 (16.6-21.9)	p19/12
72-h IC50 Referenc	te Toxicant Mean and Range: 23.8 (15.6	-37.8) jugli 2n CV (%): 26
Test Results:	IC25 %(v/v) (95% CL)	Algal Growth emm > 1000 + +10(2.8-6.3) < 10
	IC50 %(v/v) (95% CL)	>100% >100
Reviewed by:	1. Torg	Date reviewed: September 18, 2014

Pseudokirchneriella subcapitata Summary Sheet

Client: Work Order No.:	Azmuth	Start Date: Tune 30/14 Set up by: FMM
Sample Information	on:	
Sample ID: Sample Date: Date Received: Sample Volume:	MH25/MH-OU MIXTURE Coulted Tune 27/14 Tune 28/14 7x1L, 1x2cl	(with MH-ou sitewater)
Test Organism Inf	ormation:	
Culture Date: Age of culture (Day	0): <u>July 27/19</u>	
Zinc Reference To	oxicant Results:	
Reference Toxicant Stock Solution ID: Date Initiated:	10: SCUY 147001 July 11/14	
72-h IC50 (95% CL): 19.0 (16.6-21.9) mg	g112n
72-h IC50 Referenc	te Toxicant Mean and Range: 23,8(5.6-	37.8)49112h cv (%): 26
Test Results:	IC25 %(v/v) (95% CL) IC50 %(v/v) (95% CL)	Algal Growth 0.49 (0.27-0.66) 0.82 (0.64-6.94)
Reviewed by:	1. Tong	Date reviewed: September 18, 2014

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	WED	/AZIN	nuth		Setup by	: -	EMM	η		
Sample ID:	4404	MH2	5 MI	xture	Test Date	e/Time:	June	30/140	20 1230	t
Work Order No.:	14	400		rest	Test Spe		Pseudokiro	chneriella s	ubcapitata	
	~	3 4		,	3d 6	Mar		•	٨	
Culture Date:)						Culture Hea	alth:	<u> 6000</u>	<u>v </u>	
Culture Count:	1240	2 111	Average:	225.5	Culture C	Cell Density	(c1):	<i>225.</i> 5	XIO Yeel	S/M
	v1 =	220,000	cells/ml x	50	ml	= 51				
		(c1)		3X(0°)	cells/ml					
Time Zero Counts		118	2 17		Average:	_21_				
No. of Cells/mL:	21×1	01		Initial D	ensity:	# cells/mL -	÷ 220 μL x	10 μL =	9545	cells/mc
Concentration	'	Water Qua	lity Meas	urement	s	Micro	plates rota	atad 2Y na	r day2	
%(v/v)	рH		Temp	(°C)		WHO	piates rota	ateu zx pe	i dayr	
Control	0 h	0 h	24 h	48 h	72 h	0 h	24 h	48 h	72 h	
	7.0	24.0	25.0	72.0	25.5		1		/	
Dilution water Ctrl	8.3	24.0	1	A STATE OF THE PARTY OF THE PAR			/	~	· · · /	
DIO% MHOY	8.3	24.0		Programming from the state of			1/			ŕ
050 MH04	8.3	24.0		SCHOOL STATES STATES			1/			
100 MHCM	8.2	24.0		A Mary Marie Caralle			1/	<i>(/)</i>	1	
Po. 1 MUXTURE	83	24.0		A LONG AND A STATE OF THE PARTY					V	
D.3 Muture	-8.3	24.0		CHARLEST BANKEY			1	1	V	
Imixture		24.0		Thermourem			. /			
3 muture		24.0		and the second	6					
Domixture	a 1	24.0	-				V			•
Initials	Emm		tmm	Ann	Emm	EMM	Inm	AMM	Fmm	
Initial control pH:		7.0	1/// / 1	<u> </u>	Well 2:	7.0	<u></u>			
Final control pH:	Well 1:				Well 2:	7.0				
Light intensity (lux					Date mea		ikina	30/1	C/	
							oute			
Sample Description	(h) 1	"				: clear	ا در دای	~ . d	<i>u.</i>	1
Comments:	2) " M	H-04	consist auut	ed u		1H-04 & 1 watex	5%MH	-15;a	<u>lluted</u> w	MHOY
Reviewed:		·Ton	-		Date	e reviewed:	Sept	-17,	2014	
Version 1.0 Modified M	lay 8, 2008		()				U		Nautilus E	nvironmental

Nautilus Environmental

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client :	_WEY	2_/ A=	imuth	_	Setup by	r:	EMM)	-	_
Sample ID:		9-ИН			Test Date	e/Time:	June	30/14	1 as 12	130
Work Order No.:	1440			-	Test Spe	cies:		chneriella s		<u>.</u>
Culture Date:			Age of C	ulture:		Culture He	alth:			
	4					Cell Density				-
Culture Count:	1		_		_Culture (Jen Density	(61):			
	v1 =	(c1)	cells/ml x		ml cells/ml	- =				
Time Zero Counts	:	1	2	-	Average:					-
No. of Cells/mL:				Initial D	ensity:	# cells/mL	÷ 220 μL x	10 μL =		<u>.</u>
Concentration		Water Qua	ality Meas	urement	s	Micr	oplates rot	ated 2X pe	r day?],
%(v/v)	pН		Temp		1		1	· ·		
(i) —Gentrot	0 h	0 h	24 h	48 h	72 h	0 h	24 h	48 h	72 h	-
30 mutu	8.1	24.0	25.0		75.5	~				
loomutuis	7.9	24.0	25.0	75.5	25.5			~		
·										1
]
										1
										1
Initials	FMM	Emm	t mm	Emin	FMM	EMM	FMM	FMM	EMM	<u> </u>
Initial control pH:	Well 1:				Well 2:			refe emn	er to pa	qc1.
Final control pH:	Well 1:			•	Well 2:		/	•		
Light intensity (lux) :				Date mea	sured:				_
Sample Descriptio	n:				_/					_
Comments:										_
Reviewed:	<u> 1. To</u>	ing			Dat	e reviewed:	Sota	unber	17,20	14

Version 1.0 Modified May 8, 2008

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

sample 10'. MHOM / MHD5 MIXTURE Start Date/Time: June 36/14 a 12304 Client: ew Termination Date: 14400 2/14 a) 1230h Work Order #: comsample ID: client; AZIMUH (WEL) Test set up by: %(v/v) Concentration Count 1 | Count 2 | Count 3 | Count 4 Rep Comments Initials Control Α В 48 С D 64 44 E 36 54 F G Н 60 390 Α DIVITON 3991 В water С Control 341 D AY Dilution 368 FBW tol. MHOH 290 G & V H D~ Α 230 10% В 212 So MH24 221 C 240 D Α 206 209 В 50 MH04 194 С 222 D Α 232 199 В 100 MH09 208 С D 171 292 Α 258 В

Comments:	<u> </u>		
Reviewed by:	1. Tone,	Date Reviewed:	September 17,2014
· · · · · · · · · · · · · · · · · · ·		_	0

Version 1.0 Modified May 8, 2008

С

Α

В

 $\overline{\mathsf{c}}$

310

142

194

222

183

O. / MIXTUM

0.3

Mixture

Nautilus Environmental

Client:				Start D	ate/Time:		
Work Order #:				The state of the s			
Sample ID:	and the same of th						
%(v/v)							
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Comments	Initials
Control	<u>A</u>						
	В						
	C						
	D						
	E						
	F						
	G H						
	A	93	গুন				ANL
	B	89	5				113-
	С	63					
Mixture	D	69		-			
	A	3	5				
· ~	В	4					
3	С	11	12				
mixture	D	6					
nixture 10 mixture	Α	5					
10	В						
Mixture	С	2					
	D	1	,				
30 mixture	Α	3'					
a ixt. a	В	3					
WI Have	С	2			-		
	D	3					
100	Α	2					
mixture	В	0					
MICON	C	<u> </u>					- \
	D	3					- V
	A						
	B C						
	D						
	Α						
	В						
	C						
	D						
Comments:							
			2			Barto 10/10	1 2014
Reviewed by:	A	- 10	4	Date F	Reviewed:	September 17	-, 201T

Pseudokirchneriella subcapitata Algal Counts

Client: WO#: Sample ID:	Azimuth 14400	⊣-25 Mixture	. Test	Start Date/ Termination			@ 1230h @ 1230h		
Sample ID.	WII 1-04/ WII	1-20 WINTUIC	, 1030	Initial Cell [Density:	9545	5 cell/mL		210000 0.22 0.01
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Mean	Cell Yield	l	9545.455
(% v/v)	·	(x 10 ⁴)	(x 10 ⁴)	(x 10⁴)	$(x 10^4)$	$(x 10^4)$	$(x 10^4)$		
Control	A	` 58 ´	, ,	, ,	, ,	` 58 ´	`57.0 [°]	mean	55.4
D.I water with	В	74				74	73.0	SD	10.28088
nutrients	С	48				48	47.0	CV	18.55069
	D	64				64	63.0		
	Е	36	44			40	39.0		
	F	54				54	53.0		
	G	53				53	52.0		
	Н	60				60	59.0		
Dilution water	Α	390				390	389.0	mean	359.3
control	В	399				399	398.0	SD	36.51516
	C	344				344	343.0	CV	10.16299
	D	341				341	340.0		
	. E	396				396	395.0		
	F	368				368	367.0		
	G	290				290	289.0		
	Н	354				354	353.0		
10% MH04	Α	230				230	229.0		
	В	212				212	211.0		
	C	221				221	220.0		
	D	240				240	239.0		
50% MH04	Α	206				206	205.0		
	В	209				209	208.0		
	С	194				194	193.0		
	D	222				222	221.0		
100% MH04	Α	232				232	231.0		
	В	199				199	198.0		
-	С	208				208	207.0		
	D	171				171	170.0		

Set 17/14

Pseudokirchneriella subcapitata Algal Counts

Client: WO#:	Azimuth 14400	LOS Mintro	Toot	Start Date/ Termination			@ 1230h @ 1230h		
Sample ID:	MH-04/ MI	H-25 Mixture	e rest	Initial Cell [Density:	9545	cell/mL		210000 0.22 0.01
Concentration	Rep	Count 1	Count 2	Count 3	Count 4	Mean	Cell Yield		9545.455
(% v/v)		(x 10⁴)	$(x 10^4)$	(x 10⁴)	(x 10 ⁴)	(x 10 ⁴)	(x 10⁴)		
Control	Α	58				58	57.0	mean	55.4
D.I water with	В	74				74	73.0	SD	10.28088
nutrients	С	48				48	47.0	CV	18.55069
	D	64				64	63.0		
	Е	36	44			40	39.0		
	F	54				54	53.0		
	G	53				53	52.0		
	Н	60				60	59.0		
Dilution water	Α	390				390	389.0	mean	359.3
control	В	399				399	398.0	SD	36.51516
	C	344				344	343.0	CV	10.16299
	D	341				341	340.0		
	E	396				396	395.0		
	F	368				368	367.0		
	G	290				290	289.0		
	Н	354				354	353.0		
0.1% Mixture	Α	292				292	291.0		
U. 1% WIIXLUIE	B	258				258	257.0		
	C	310				310	309.0		
	D	332				332	331.0		
0.3% Mixture	A	173				173	172.0		
0.070 WIIACUTO	В	142	183			162.5	161.5		
	C	194				194	193.0		
	D	222	210			216	215.0		
1.0% Mixture	A	95	87			91	90.0		
	В	89				89	88.0		
	С	63				63	62.0		
	D	69				69	68.0		
3.0% Mixture	Α	3	5			4	3.0		
	В	4				4	3.0		
	С	11	12			11.5	10.5		
	D	6				6	5.0		
10% Mixture	Α	5				5	4.0		
	В	1				1	0.0		
	C	2				2	1.0		
	D	1				1	0.0		
30% Mixture	Α	3				3	2.0		
	В	3				3	2.0		
	С	2				2	1.0		
	D	3				3	2.0		
100% Mixture	A	2				2	1.0		
	B C	0				0	-1.0 0.0		
	C	1				1	0.0		
	D	3				3	2.0		

AGT 17/14

Report Date:

18 Sep-14 14:44 (p 1 of 2)

	, , , , , a.	y nour respe						Te	st Code:			14400	0 06-8074-7103
EC Alg	a Grow	th Inhibition Te	st						-		Na	utilus	Environmental
nalys	is ID:	21-4322-0234	End	point:	Cell Yield			CE	TIS Version	on:	CETISv1.	8.7	
nalyz		18 Sep-14 14:4	3 Ana	lysis:	Linear Interpola	tion (ICPIN)	Of	ficial Resu	ılts:	Yes		
atch	ID:	11-7849-5797	Test	Type:	Cell Growth			An	alyst:	Emm	a Marus		
tart D	ate:	30 Jun-14 12:30	0 Pro t	ocol:	EC/EPS 1/RM/2	25		Dil	uent: l	_abo	ratory Wate	er	
nding	g Date:	02 Jul-14 12:30	Spe	cies:	Pseudokirchner	riella subca	pitata	Br	ine:				
Ouratio	on:	48h	Sou	rce:	In-House Cultur	re		Ag	e: 3	3d			
ampl	e ID:	05-7149-1570	Cod	e:	221044F2			Cli	ent:	Azim	uth		
ampl	e Date:	27 Jun-14 15:0	5 Mat	erial:	Effluent	•		Pre	oject:				
Receiv	e Date:	28 Jun-14 10:0	0 Sou	rce:	Azimuth								
Sampl	e Age:	69h (8.5 °C)	Stat	ion:	MH-04								
inear.	Interpo	lation Options											
Tran	sform	Y Transform	See	d	Resamples	Exp 95%							
.og(X+	-1)	Linear	1002	2426	200	Yes	Two	-Point Inte	rpolation				
esidu	ıal Analy	/sis											
ttribu	ite	Method			Test Stat	Critical	P-Value	Decisio	n(α:5%)				
ontro	Trend	Mann-Ken	dall Trend				0.2751	Non-sig	nificant Tre	end i	n Controls		
Point I	Estimate	es											
.evel	%	95% LCL	95% UCL	TU	95% LCL	95% UCL							
C5	0.3775	5 0.312	0.4944	264.9	202.3	320.5							
C10	0.8974	4 0.7199	1.228	111.4		138.9							
C15	1.614	1.252	2.315	61.97		79.86							
C20	2.6	1.946	3.923	38.46		51.38							
C25	3.959	2.849	6.3	25.26		35.09							
C40	23.09	0.8401	N/A	4.33	NA	119							
C50	>100	N/A	N/A	<1	NA .	NA							
	eld Sum						culated Va						
-%		ontrol Type	Count	Mean		Max	Std Err	Std Dev		,	%Effect		
_	* No	egative Control	8	359.3		398	12.91	36.52	10.169		0.0%		
0			4	224.8		239	6.005 5.75	12.01	5.34% 5.56%		37.44% 42.45%		
0			4	206.8		221 231	5.75 12.6	11.5 25.2	5.56% 12.519		42.45% 43.91%		
00			4	201.5	170	231	12.0	20.2	12.517		73.3170		
	eld Deta	il											
-%		ontrol Type	Rep 1	Rep 2		Rep 4	Rep 5	Rep 6	Rep 7		Rep 8		
	≰ Ne	egative Control	389	398	343	340	395	367	289		353		
0			229	211	220	239							
0			205	208	193	221							
00			231	198	207	170							

* negative control = 16 cmg/L hardness water for dilution

Report Date: **Test Code:**

18 Sep-14 14:44 (p 2 of 2) 14400 | 06-8074-7103

EC Alga Growth Inhibition Test

Nautilus Environmental

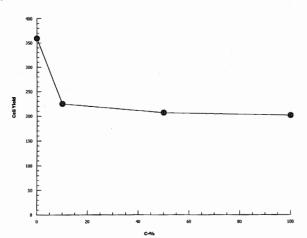
Analysis ID: Analyzed:

21-4322-0234

18 Sep-14 14:43

Endpoint: Cell Yield

Analysis:


Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

Report Date:

11 Sep-14 18:13 (p 1 of 2)

OL 110	Allai	y llour respe	,,,					-	Test C	ode:		14400k	0 20-6977-	-6650
EC Alg	a Grow	th Inhibition Te	st								N	lautilus	Environme	ental
Analysi	is ID:	08-7341-1968	End	point:	Cell Yield				CETIS	Version:	CETIS	v1.8.7		-
Analyze	ed:	11 Sep-14 18:1	3 Ana	lysis:	Linear Interpola	ation (ICPIN)	1	•	Officia	l Results:	Yes			
Batch I	D:	17-3028-5836	Tes	t Type:	Cell Growth				Analys	st: Emm	na Marus			
Start D		30 Jun-14 12:3		tocol:	EC/EPS 1/RM/	25		1	Diluen	t: Site	Water			
Ending	Date:	02 Jul-14 12:30) Spe	cies:	Pseudokirchne	riella subcap	itata	- 1	Brine:					
Duratio	n:	48h	Sou	rce:	In-House Cultu	re			Age:	3d				
Sample	e ID:	13-8577-1250	Cod	le:	529930F2			(Client:	Azim	uth			
Sample	e Date:	27 Jun-14 15:4	5 Mat	erial:	Effluent			. 1	Projec	t:				
		28 Jun-14 10:0	0 So u	rce:	Azimuth									
Sample	Age:	69h (8.5 °C)	Stat	ion:	MH25									
Linear	Interpo	lation Options												
X Trans	sform	Y Transform	n See	d	Resamples	Exp 95%		lethod						
Log(X+	1)	Linear	195	7888	200	Yes	T	wo-Point Ir	nterpola	ation				
Point E	stimate	es												
Level	%	95% LCL			95% LCL	95% UCL								
IC5	0.136		0.1624	732.5		820.9								
IC10	0.1742		0.2281	573.9		694.5								
IC15	0.213		0.2973	469	336.3	600.5								
IC20	0.253		0.3671	394.5		527.9								
IC25	0.295		0.4411	338.9		470.1								
IC40 IC50	0.4994 0.6554		0.6443 0.794	200.2 152.6		308.3 198.3								
			0.794	132.0	125.5		. 1-1-1							
	eld Sum	-						Variate				_		
C-%_		ontrol Type	Count	Mean		Max	Std Er			CV%	%Effect	!		
0	N	egative Control	4	201.5		231	12.6	25.2		12.51%	0.0%			
0.10			4	297	257	331	15.64	31.28		10.53%	-47.39%)		
0.3 ⁽⁾ 1 ⁽⁾			4	185.5		215	11.77	23.53		12.68%	7.94%			
3 6			4	77 5.5	62	90	7.047	14.09		18.31%	61.79%			
			4	5.5	3	11	1.893	3.786		68.84%	97.27%			
100			4	1.25	. 0	4	0.9465			151.4%	99.38%			
30 0			4	1.75	1	2	0.25 0.4787	0.5		28.57% 127.7%	99.13% 99.63%			
1000			4	0.75	0	2	0.4787	0.957	4	127.7%	99.03%			
	eld Deta													
C-%		ontrol Type	Rep 1	Rep 2		Rep 4								
0	N	egative Control	231	198	207	170		lo a	- د د الحداد					
0.1			291	257	309	331		re	ganve	Control	: 1007	'c MH-C	4 site w	ates
0.3			172	162	193	215		(i) 31	00%	Mirtimo "	March	< AF 6	35 % MH	
1			90	88	62	68	,	10	5% L	41-25	comost duct	ح ⊃دی د ناس	170 MH	-04 6
3			3	3	11	5	i	•	-100	-() p) created	au	MINON	

2

2

0

10

30

100

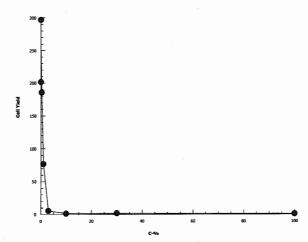
Report Date: Test Code: 11 Sep-14 18:13 (p 2 of 2) 14400b | 20-6977-6650

EC Alga Growth Inhibition Test

Nautilus Environmental

Analysis ID: Analyzed:

08-7341-1968 11 Sep-14 18:13 Endpoint: Cell Yield


Analysis: Linear Interpolation (ICPIN)

CETIS Version:

: CETISv1.8.7

Official Results: Yes

Graphics

Report Date:

11 Sep-14 18:22 (p 1 of 2)

	, , , , , ,	,						Test Code:		14400(ad	j) 05-1253-0187
EC Alg	a Growt	th Inhibition Te	st							Nautilus	Environmental
Analys	is ID:	09-5731-5419	End	point:	Cell Yield			CETIS Vers	sion:	CETISv1.8.7	
Analyz	ed:	11 Sep-14 18:2	2 Ana	lysis:	Linear Interpola	ation (ICPIN)		Official Res	sults:	Yes	
Batch I	ID:	11-7849-5797	Test	Type:	Cell Growth			Analyst:	Emm	a Marus	
Start D	ate:	30 Jun-14 12:30) Prof	ocol:	EC/EPS 1/RM/	25		Diluent:	Labor	ratory Water	
Ending	Date:	02 Jul-14 12:30	Spe	cies:	Pseudokirchne	riella subcapitata		Brine:			
Duratio	on:	48h	Sou	rce:	In-House Cultu	re		Age:	3d		
Sample	e ID:	00-7421-3635	Cod	e:	46C6903			Client:	Azimı	uth	
Sample	e Date:	11 Sep-14 18:2	1 Mat	erial:	Effluent			Project:			
Receiv	e Date:	11 Sep-14 18:2	1 Sou	rce:	Azimuth						
Sample	e Age:	NA	Stat	ion:	MH25(adj)						
Linear	Interpo	lation Options									
X Trans	sform	Y Transform	See	d	Resamples	Exp 95% CL	Method				
Log(X+	1)	Linear	1329	9488	200	Yes	Two-Point	Interpolation			
Point E	stimate	es									
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL					
IC5	0.222	N/A	0.4231	450.4	236.3	NA					
IC10	0.3216	6 N/A	0.4425	310.9	226	NA					
IC15	0.3755	5 0.09173	0.4922	266.3		1090					
IC20	0.4317	7 0.1884	0.5436	231.7	184	530.8					
IC25	0.4901	0.2692	0.5987	204	167	371.4					
IC40	0.6801	0.4867	0.7861	147	127.2	205.5					

Cell Yield	Cell Yield Summary			Calculated Variate						
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Negative Control	4	201.5	170	231	12.6	25.2	12.51%	0.0%	
).1		4	201.5	170	231	12.6	25.2	12.51%	0.0%	
0.3		4	185.5	162	215	11.77	23.53	12.68%	7.94%	
		4	77	62	90	7.047	14.09	18.31%	61.79%	
		4	5.5	3	11	1.893	3.786	68.84%	97.27%	
0		4	1.25	0	4	0.9465	1.893	151.4%	99.38%	
30		4	1.75	1	2	0.25	0.5	28.57%	99.13%	
00		4	0.75	0	2	0.4787	0.9574	127.7%	99.63%	

156.1

105.9

Cell Yield Detail

IC50

0.82

0.6406

C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	231	198	207	170
0.1		231	198	207	170
0.3		172	162	193	215
1		90	88	62	68
3		3	3	11	5
10		4	0	1	0
30		2	2	1	2
100		1	0	0	2

0.9442

121.9

Analyst: QASept 17/14

CETIS Analytical Report

EC Alga Growth Inhibition Test

Report Date:

11 Sep-14 18:22 (p 2 of 2) 14400(adj) | 05-1253-0187

Test Code:

Nautilus Environmental

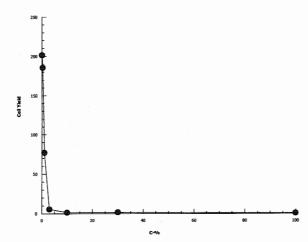
Analysis ID: Analyzed:

09-5731-5419

11 Sep-14 18:22

Endpoint: Cell Yield

Analysis:


Linear Interpolation (ICPIN)

CETIS Version:

n: CETISv1.8.7

Official Results: Yes

Graphics

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 02-JUL-14

Report Date: 14-JUL-14 11:55 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1480947

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 0936

Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1480947 CONTD.... PAGE 2 of 3

FINAL

14-JUL-14 11:55 (MT)

Version:

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1480947-1	L1480947-2		
	Description Sampled Date Sampled Time Client ID	H2O 02-JUL-14 16:00 MH-04	H2O 02-JUL-14 16:00 LAB WATER		
Grouping	Analyte				
WATER					
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	139	125		
	Chloride (CI) (mg/L)	<0.50	11.7		
	Sulfate (SO4) (mg/L)	10.9	18.4		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.57	<0.50		
Total Metals	Calcium (Ca)-Total (mg/L)	56.8	59.0		
	Magnesium (Mg)-Total (mg/L)	2.73	2.57		
	Potassium (K)-Total (mg/L)	<2.0	<2.0		
	Sodium (Na)-Total (mg/L)	<2.0	5.8		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480947 CONTD.... PAGE 3 of 3 4-JUL-14 11:55 (MT)

14-JUL-14 11:55 (MT)

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Des	cription	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike		Calcium (Ca)-Total	MS-B	L1480947-1, -2	
Matrix Spike		Sodium (Na)-Total	MS-B	L1480947-1, -2	
Qualifiers fo	r Individual Paramete	rs Listed:			
Qualifier	Description				

Test Method References:

MS-B

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	EPA 310.2
This analysis is carried	d out using proce	edures adapted from EPA Method 310.2 "Alkalinity"	Total Alkalinity is determined using the methyl grange

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". I otal Alkalinity is determined using the methyl orange colourimetric method.

Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-SO4-IC-VA Water Sulfate by Ion Chromatography APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

CARBONS-DOC-VA Water Dissolved organic carbon by combustion APHA 5310 TOTAL ORGANIC CARBON (TOC)

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

0936

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

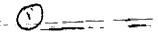
< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.


Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

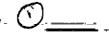
BRITISH COLUMBIA

Fax 604.357.1361

8664 Commerce Court Burnaby British Columbia Canada VSA 4N7 -Phone 604.420.8773

Chain of Custody

Date July 2/2014 Page 1 of 1


Sample Collection by:	6	وت							-	AN	ALYSIS F	REQUIRE	D	·	
Report to: Company Address City Contact bonnie hau Phone No. Kryste no	Prov		PC	CC	Address City Contact	ProvPC	Ca, Ha, Na, K+	2005	Alkalinity	ر					RECEIPT TEMPERATURE (°C)
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NUMBER OF CONTAINERS	COMMENTS	الئ	්ට	F	8					RECE
HH-04	67/02	1600	420	Bottle 1L	1		<u> </u>	~	7	V					
Lab water	1	<u> </u>		l l	1		V	~	~	\ <u>\</u>					
	<u> </u> !		<u> </u>	 	-		-							 	
Short Ho	oldin!	g Tir	ne –	:											
L1480	0947-CO	, [FC					+							 	
PROJECT INFORMAT	TION		SAM	PLE RECEI	(PT	RELINQUISHED BY (CLIENT)	<u></u>	_	RELIN	QUISH	ED BY (CC	OURIER)			
CLIENT		TOTAL	NO. OF C	ONTAINERS	s	(Signature) house of months and services	i, 38	Ţime)	(Signat	ure)					(Time)
P.O. NO.		REC'E	GOOD CO	NOITION		(Signature) Emma Marus Ju	173	(Patio)	(Printe	l Name)					(Date)
SHIPPED VIA:			# · ·			(Company) Nautilias Enlavonmo	ntal		(Comp						
SPECIAL INSTRUCTIONS/CO	MMENTS:					RECEIVED BY (COURIER)			- 1	VED B	Y (LABOR	ATORY)			
1						(Signature)		Time)	(Signat						4 () (T) (P)
						(Printed Name)	((Date)	(Printe	Naree)	 -		44		(Detle)
<u> </u>						(Company)			7				-		***

BRITISH COLUMBIA

Fax 604.357.1361

8664 Commerce Court - Burnaby-British Columbia-Canada V5A 4N7 -Phone 604.420.8773

Chain of Custody 0936

Date July 2/2014 Page 1 of 1

Sample Collection by:	6	ور_								ANAL	YSIS RE	QUIRED			
Report to: Company	Prov		PC	Ci	ddress ty ontact	ProvPC	Car, Ha, Na, K	Sour	Alkalinitus)					RECEIPT TEMPERATURE (°C)
SAMPLE ID	DATE	TIME	MATRIX		NUMBER OF CONTAINERS	COMMENTS	ৈ	්ර	Ŧ	00					RECEI
НН-0Ч	67/02	1600	H2-0	Bortle	ュ		1		7	7					
hab water	V	↓	\	1	1		V	~	7	<i>\\\</i>					
													1		
].		<u> </u>			manang, da	ļ					<u> </u>			
Short Ho	olding	g Tir	ne 🖰			***************************************							 		
	D	seina.					,								
L1480	947-CO	FC													
	<u>. </u>	٠	<u> </u>			<u> </u>									
PROJECT INFORMAT	ION	TOTAL	·	PLE RECEI		RELINQUISHED BY (CLIENT)				QUISHED	BY (COI	JRIER)			
P.O. NO.			GOOD CO	Cagning W		(Signalure) + MMQ MAYUS Ju	142/	(Date)	(Signat	ure) 					(Time) (Date)
SHIPPED VIA:						(Company) Nautice Thironne	1730	<u> </u>	(Compa						,
SPECIAL INSTRUCTIONS/CO	MMENTS:			. <u></u>		RECEIVED BY (COURIER)	<i>¥~\</i> 2(.4			OPC		TORY)			
						(Signature)		Time)	(Signat					10	1 () (U) (e)
						(Printed Name) (Company)		(Date)	(Printe	Nerres)				, مل	(Dete)
<u></u>															

NAUTILUS ENVIRONMENTAL

ATTN: Krysta Pearcy 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 30-JUN-14

Report Date: 09-JUL-14 10:09 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1479858

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 2, OL-1357

Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1479858-1	L1479858-2	L1479858-3	L1479858-4	L1479858-5
	Description Sampled Date Sampled Time Client ID	Water 30-JUN-14 13:00 10% MH-04 (LAB WATER DILUTION)	Water 30-JUN-14 13:00 50% MH-04 (LAB WATER DILUTION)	Water 30-JUN-14 13:00 100% MH-04 (LAB WATER DILUTION)	Water 30-JUN-14 13:00 0.1% MIXTURE (MH-04 DILUTION)	Water 30-JUN-14 13:00 0.3% MIXTURE (MH-04 DILUTION)
Grouping	Analyte	BIEGITON)	DILOTION)	DIEG HON)		
WATER	•					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Antimony (Sb)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Total (mg/L)	0.018	0.017	0.019	0.019	0.019
	Beryllium (Be)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.20
	Cadmium (Cd)-Total (mg/L)	<0.10	<0.010	<0.010	<0.010	<0.010
	Calcium (Ca)-Total (mg/L)	54.7	58.7	56.6	55.8	56.8
	Chromium (Cr)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cobalt (Co)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Iron (Fe)-Total (mg/L)	0.060	<0.030	<0.030	<0.030	<0.010
	Lead (Pb)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Lithium (Li)-Total (mg/L)	<0.030	<0.010	<0.030	<0.030	<0.030
	Magnesium (Mg)-Total (mg/L)	2.45	2.37	2.62	2.57	2.63
	Manganese (Mn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Nickel (Ni)-Total (mg/L)		<0.050			
	Phosphorus (P)-Total (mg/L)	<0.050		<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Selenium (Se)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silicon (Si)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Total (mg/L)	2.66	2.52	2.84	2.80	2.86
	Sodium (Na)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Strontium (Sr)-Total (mg/L)	<2.0	2.8	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	0.190	0.246	0.188	0.185	0.188
	Tin (Sn)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Titanium (Ti)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Vanadium (V)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Zinc (Zn)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
Dissolved Metals	Dissolved Metals Filtration Location	0.0053	<0.0050	0.0073	0.0170	0.0268
Hetais	Aluminum (Al)-Dissolved (mg/L)	LAB	LAB	LAB	LAB	LAB
	Antimony (Sb)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Beryllium (Be)-Dissolved (mg/L)	0.018	0.016	0.019	0.019	0.019
	20., main (20, 213301404 (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479858-6 Water 30-JUN-14 13:00 1% MIXTURE (MH- 04 DILUTION)	L1479858-7 Water 30-JUN-14 13:00 3% MIXTURE (MH- 04 DILUTION)	L1479858-8 Water 30-JUN-14 13:00 10% MIXTURE (MH-04 DILUTION)	L1479858-9 Water 30-JUN-14 13:00 30% MIXTURE (MH-04 DILUTION)	L1479858-10 Water 30-JUN-14 13:00 100% MIXTURE (85% MH-04, 15% MH-25)
Grouping	Analyte					WIH-23)
WATER	,					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Antimony (Sb)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Total (mg/L)	0.019	0.018	0.020	0.019	0.018
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Boron (B)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Calcium (Ca)-Total (mg/L)	<0.010	<0.010	<0.010	0.017	0.055
	Chromium (Cr)-Total (mg/L)	57.2	55.5	58.0	57.6	59.8
	Cobalt (Co)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	() ()	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Lithium (Li)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Total (mg/L)	2.61	2.52	2.67	2.60	2.59
	Manganese (Mn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	0.0050	0.0157
	Molybdenum (Mo)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silicon (Si)-Total (mg/L)	2.85	2.74	2.90	2.87	2.96
	Silver (Ag)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Strontium (Sr)-Total (mg/L)	0.186	0.180	0.191	0.183	0.174
	Thallium (TI)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Vanadium (V)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Total (mg/L)	0.0602	0.170	0.533	1.62	5.27
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Antimony (Sb)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Dissolved (mg/L)	0.018	0.019	0.019	0.019	0.017
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 4 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479858-11 Water 30-JUN-14 13:00 160MG/L HARDNESS PERRIER WATER		
Grouping	Analyte	(LAB WATER)		
WATER				
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20		
	Antimony (Sb)-Total (mg/L)	<0.20		
	Arsenic (As)-Total (mg/L)	<0.20		
	Barium (Ba)-Total (mg/L)	0.014		
	Beryllium (Be)-Total (mg/L)	<0.0050		
	Bismuth (Bi)-Total (mg/L)	<0.20		
	Boron (B)-Total (mg/L)	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.010		
	Calcium (Ca)-Total (mg/L)	59.7		
	Chromium (Cr)-Total (mg/L)	<0.010		
	Cobalt (Co)-Total (mg/L)	<0.010		
	Copper (Cu)-Total (mg/L)	<0.010		
	Iron (Fe)-Total (mg/L)	<0.030		
	Lead (Pb)-Total (mg/L)	<0.050		
	Lithium (Li)-Total (mg/L)	<0.010		
	Magnesium (Mg)-Total (mg/L)	2.10		
	Manganese (Mn)-Total (mg/L)	<0.0050		
	Molybdenum (Mo)-Total (mg/L)	<0.030		
	Nickel (Ni)-Total (mg/L)	<0.050		
	Phosphorus (P)-Total (mg/L)	<0.30		
	Potassium (K)-Total (mg/L)	<2.0		
	Selenium (Se)-Total (mg/L)	<0.20		
	Silicon (Si)-Total (mg/L)	2.12		
	Silver (Ag)-Total (mg/L)	<0.010		
	Sodium (Na)-Total (mg/L)	4.9		
	Strontium (Sr)-Total (mg/L)	0.298		
	Thallium (TI)-Total (mg/L)	<0.20		
	Tin (Sn)-Total (mg/L)	<0.030		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Vanadium (V)-Total (mg/L)	<0.030		
	Zinc (Zn)-Total (mg/L)	<0.0050		
Dissolved Metals	Dissolved Metals Filtration Location	LAB		
	Aluminum (AI)-Dissolved (mg/L)	<0.20		
	Antimony (Sb)-Dissolved (mg/L)	<0.20		
	Arsenic (As)-Dissolved (mg/L)	<0.20		
	Barium (Ba)-Dissolved (mg/L)	0.013		
	Beryllium (Be)-Dissolved (mg/L)	<0.0050		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 5 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

ersion:	FINAI
CI SIUII.	1 111

	Sample ID Description Sampled Date Sampled Time Client ID	L1479858-1 Water 30-JUN-14 13:00 10% MH-04 (LAB WATER DILUTION)	L1479858-2 Water 30-JUN-14 13:00 50% MH-04 (LAB WATER DILUTION)	L1479858-3 Water 30-JUN-14 13:00 100% MH-04 (LAB WATER DILUTION)	L1479858-4 Water 30-JUN-14 13:00 0.1% MIXTURE (MH-04 DILUTION)	L1479858-5 Water 30-JUN-14 13:00 0.3% MIXTURE (MH-04 DILUTION
Grouping	Analyte					
WATER						
Dissolved Metals	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Calcium (Ca)-Dissolved (mg/L)	56.2	56.4	56.2	55.4	55.4
	Chromium (Cr)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	2.51	2.26	2.58	2.57	2.54
	Manganese (Mn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silicon (Si)-Dissolved (mg/L)	2.72	2.42	2.81	2.80	2.76
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	<2.0	2.7	<2.0	<2.0	<2.0
	Strontium (Sr)-Dissolved (mg/L)	0.195	0.231	0.184	0.184	0.181
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	0.0056	0.0130	0.0234

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 6 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

<0.20 <0.10
0.052
56.7
<0.010
<0.010
<0.010
<0.030
<0.050
<0.010
2.46
0.0149
<0.030
<0.050
<0.30
<2.0
<0.20
2.82
<0.010
<2.0
0.164
<0.20
<0.030
<0.010
<0.030
5.01

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 7 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Client ID Dascription Sample ID Dascription Sample I Time Client ID Water So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 1-500 Not Mark So-JUN-14 Not Mark	
## WATER Dissolved Metals Bismuth (Bi)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Cobatt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Molybdenum (Mg)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved	
Dissolved Metals Bismuth (Bi)-Dissolved (mg/L)	
Boron (B)-Dissolved (mg/L)	
Cadmium (Cd)-Dissolved (mg/L)	
Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) A.8 Strontium (Sr)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) A.8 Strontium (Sr)-Dissolved (mg/L) Co.20 Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Chromium (Cr)-Dissolved (mg/L)	
Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) A.8 Strontium (Sr)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (Ti)	
Copper (Cu)-Dissolved (mg/L)	
Iron (Fe)-Dissolved (mg/L)	
Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sotrontium (Sr)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Analysium (Se)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Thallium (Ti)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Siliver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Titallium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vo.030	
Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (TI)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Volume (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Thallium (TI)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) <0.030 <0.030	
Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) <0.030	
Vanadium (V)-Dissolved (mg/L) <0.030	
7: (7.) 5: 1.1 (1.)	
Zinc (Zn)-Dissolved (mg/L) <0.0050	
	l l

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 8 of 8 09-JUL-14 10:09 (MT)

FINΔI

Version:

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier Description

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

2 OL-1357

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Page 2 of 2

(ALS)	Environmental				W	ww.alsglobal.co	om																	- 5 -	
, , , , , , , , , , , , , , , , , , ,	L1479858				·					,		,			naly	sis Re	ques	ts							
Sample	Sample Identification	Coord	Inates	Date	Time	Sample Type			etals		etals														
	(This will appear on the report)	Longitude	Latitude			' ''	Number of Containers	Total metals	Dissolved metals	Total Metals	Dissolved Metals	Plea	re ind	icate b	2011	Cillora	d Bro			ho!h/		(5)			
190 h							a S	_	F		F	1 100	se iiiu	icate u	EIDW	rillerei	u, Fle	18617	ea or) HIQU	, ,,	7,	Т	\neg	-
	30% Mixture (MH-04 dilution)			Jun-30-2014	01:00 PM	Water	2	R	R	 				_	\top		_	寸	\dashv		\dashv	1		十	
	100% Mixture (85% MH-04, 15% MH-25)			Jun-30-2014	01:00 PM	Water	2			R	R														
/%// · · · ·	160 mg/L Hardness Perrier Water (lab water)			Jun-30-2014	01:00 PM	Water	2	R	R																
geros -															\Box		\Box		\Box					\Box	
, massiphilipi			_					-	ļ	 					_	-	_	_]			_	_	\dashv	
## 3F C (S)	· · · · · · · · · · · · · · · · · · ·							ļ	<u> </u>	 	-	<u> </u>		\dashv	-	-	\dashv	\dashv		-	\dashv	\rightarrow	\dashv	\dashv	-
							11	11 111				Milli		en e	# 1 1 1	 	1		\dashv	- 1			+	\dashv	-
- A ()							1																1		
ist and and							Ι"	• • • • • •		•• ••• 1.1∠	470	858	-CO		N I II) [ı		\Box				_	\prod	
Man.							<u> </u>			L., 1 -	710	000	-00	-0					\dashv				_		
, a M		 		<u> </u>				\vdash		1	1				ı	1	ı	1	\dashv			+	\dashv	\dashv	+
500055 (MillSe)		-								╁╾		-		-	\dashv	╅	\dashv	\dashv	_	T	\dashv	-	\dashv	\dashv	-
en journales								_					П					1		1	_	7	1		
ž.Al																								\Box	
1										ļ		_			_	_		_	_			_		\dashv	_
								ļ.—	_	ļ	ļ			_		_	4	4					}	\dashv	
16880/7				,	· · · · · · · · · · · · · · · · · · ·					├	├	<u> </u>	\longrightarrow	_	\dashv		-	4					-+	-	
Millionitis ***		<u> </u> -	-						 	+			\vdash		-+	_	-+		-	\dashv	\dashv			\dashv	
**28.54 **		<u> </u>	 			<u> </u>	 -	 		+			\vdash		\dashv	-+	+	\dashv	-	\dashv	\dashv		\dashv	\dashv	+
		1	 -				-			† *	-				_	- -	\top	\dashv	-		\dashv	_	\dashv	\dashv	\top
ancacidi (Alli																								丁	
Manthalia																	\Box	\Box						\Box	
24 KS C-5""																		_ :							

_Chain of Custody / Analytical Request Form ___ Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 1 of 2

(ALS) Environmental

Report To				Reporting				Servi	ce Re	asup	ted										
Company:	Nautilus Environmental			Distribution:	□Fax	⊡Mail	☑ Email	⊚Reț	gular ((Stand	ard T	urnard	und T	imes -	Busi	ness Day	ys) - F	₹			
Contact:	Krysta Pearcy			□ Ciriteria on	Report (select from	Guidelines below)		OPrid	ority (3	3 Day	s) - su	rcharg	je will .	apply -	- P						
Address:	8664 Commerce Court	•		Report Type:	⊠ Excel	⊡ Digita	al .	O Prio	ority (2	2 Day	s) - su	rcharg	e will .	apply -	- P2						
	Imperial Square Lake Cit Burnaby, BC	ту		Report Forma	at:			OEm	ergen	ю (1	-2 day	/) — su	rcharg	e will	apply	- E					
	Canada, V5A 4N7			Report Email	(s): krysta@nautilu	senvironmental.com	n	O Sar	ne Da	ay or l	Vecke	nd En	nergen	icy - si	urcha	rge will a	эрріу	- E2			
								OSpe	ecify d	late re	quire	1 - X									
Phone;	604-420-8773	Fax: 604-357-1361											Αп	alysis	s Req	uests					
Invoice To	⊠ Émail	□Mail		EDD Format:				Γ.	11 11 11		1 6 1 6	II 8 16		1861	01 0 1/			11			
Company:	Nautllus Environmental			EDD Email(s) :	_	-				Ш	Ш					Ш				
Contact:	Krysta Pearcy																Ш	ll .			
Address:	8664 Commerce Court Imperial Square Lake Cil	<u>—</u> .]			L1	1479	9858	3-CC	OFC	;					
	Burnaby, BC	ıy		Project Info																	
	Canada, V5A 4N7			Job #:]	1					- 1	- 1		1				
				PO/AFE:]		۰		ا ی									
Email:	krysta@nautilusenvironn	nental.com		LSD:				يوا	یا	leta	, n	Aetal									
Phone:	604-420-8773			Quote #:				aine	ieta	led n	fetal	led l									
Le	b Work Order # **** (leb use only)	L1479858	MAN SACTION (ALS Contact:	Janie Lo	Sampler: Krysta F	earcy	Number of Containers	Total metals	Dissolved metals	Total Metals	Dissolved Metals									
Sample	Sam	ple Identification	Coord	finates	D-4-	*:	Cample Time	1 Pe		F	lease	indica	te bel	ow Fill	tered,	Preserv	red or	both(F	, P, F	/P)	
#	(This will	appear on the report)	Longitude	Latitude	Date	Time	Sample Type	Ž		Æ		丰	•		П				T		
	10 % MH-04 (lab water d	dilution)			Jun-30-2014	01:00 PM	Water	2	R	R		•							Т		
tin. 36 1	50% MH-04 (lab water di	flution)			Jun-30-2014	01:00 PM	Water	2_			R	R							T		
	100% MH-04 (lab water	dilution)			Jun-30-2014	01:00 PM	Water	2			R	R									
: 15.95	0.1% Mixture (MH-04 dila	ution)			Jun-30-2014	01:00 PM	Water	2	R	R											ĺ
	0.3% Mixture (MH-04 dili	ution)			Jun-30-2014	01:00 PM	Water	2	R	R											
25550 >	1% Mixture (MH-04 dituti	ion)			Jun-30-2014	01:00 PM	Water	2	R	R											
	3% Mixture (MH-04 diluti	ion)	<u> </u>		Jun-30-2014	01:00 PM	Water	2	R	R											
	10% Mixture (MH-04 dilu	rtion)			Jun-30-2014	01:00 PM	Water	2	R	R											
	<u></u>				(See page	2 for further samples	5)														
_	Special Instruct	tions/Comments	The ques	tions below n	ust be answered for	or water samples (c	heck Yes or No)	Guide	lines												
	46	NO Dece	Are any samp	ole taken from	a regulated DW syst	tem? □Yes	Σiνο]													
	or dissolved metals	oben likeres tinough orto um.	lf yes, ploase	use an author	ized drinking water (coc	·	<u> </u>										_			
Samples N	OT preserved.	ne ben filterel.			ed to be potable for	human DYes	ra/No					SAM	PLE C	ONDI	TION	(lab use	only)			
			consumption ^e	?	·		<u> </u>	□Fro	zen		□Co	ld		□Amt	bient	0	Coolir	ng Initia	ted_		
	SHIPMENT RELI	EASE (client use)	• 4, 1, 4	SHI	PMENT RECEPTIO	N (lab use only)					SI	KIPME	NT V	RIFIC	CÁTIC	ON (lab (186 O	nly)			
Released b	y:	Date: Time:	Received by:	. .	Date:	Time:	Temperature:	Verifie	d by:	_		Date:			ľ	Time:			Obs	ervation	ns:
\mathbb{N}_{+}	Dance	T 2211 1700	[``	YL .	25 my 20	177161	120,60								-				□Y ₁	es	
とうし	a reamy	Jue 30/14 / 4000			<u> </u>	, 1	0.0	<u> </u>											lf Ye	es add 9	SIF

BRITISH COLUMBIA

8664 Commerce Court Burnaby British Columbia Canada V5A 4N7 Phone 604.420.8773 Fax 604.357.1361

Chain	of	Custody	/
-------	----	---------	---

0952 Page <u>1</u> of <u>1</u>

					hone 604.420.87 ux 604.357.1361	73	999	3	<u> </u>	ate		P	age _	1 (of	
Sample Collection by:			-				五五	#1	五	ANALY		QUIRED				
Report to: Company Address City Contact Phone No.	Prov			C	City Contact	Azimuth Prov. PC	C.dubia w	h P. suscipitate we	48th Cdubia wolf 14 4							RECEIPT TEMPERATURE (°C)
SAMPLE ID	DATE	TIME	MATRIX		NUMBER OF CONTAINERS	COMMENTS	7-6	72	<u>\$</u>							REC
	1 .			1L × 30L × 1L × 20L	₹ 7 < 1 ×1	For mixture Test	X)S }S
Water Effects Ratio						Using mill-ord as six water			X					:		
PROJECT INFORMAT	ION	and in	SAM	IPLE RECE	JPT	RELINQUISHED BY (CLIENT)			RELIN	QUISHED I	BY (COL	JRIER)				
CLIENT		TOTAL	L NO. OF C	ONTAINER	IS \	(Signature)	. (Time)	(Signat	ure)					(T	ime)
P.O. NO.		REC'E	D GOOD CC	NOITION		(Printed Name)	((Date)	(Printed	d Name)		· · · · · · · · · · · · · · · · · · ·			(C	Date)
SHIPPED VIA:						(Company)			(Compa	any)						
SPECIAL INSTRUCTIONS/COI	MMENTS:			All on		RECEIVED BY (COURIER)			RECE	VED BY (L	ABORA	TORY)	L 1994		100c	
				ansay.		(Signature)	**((Time)	(Signat	ure) [M	See l	Bary.		J	1628/I	ime)
					again ann Maisceach	(Printed Name)		(Date)	(Printer	d Name)					(C	ate)
	Salah da			Main		(Company)								sers tradition is		

Water Effect Ratio Testing for Sä Dena Hes Mine

Final Report

Report date:

August 27, 2015

Submitted to:

Azimuth Consulting Group

Vancouver, BC

8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

		Page
TAB	LE OF CO	ONTENTSi
SIGN	NATURE	PAGEii
1.0	INTROI	DUCTION1
2.0	Method	s1
	2.1 Sa:	mples1
		st methods2
3.0		4
4.0	Discussi	ion10
5.0	Reference	ces
		LIST OF TABLES
Table	e 1.	Summary of test conditions: 48 hr Ceriodaphnia dubia test
Table	e 2.	Results of Water Effect Ratio tests for Ceriodaphnia dubia using aluminum6
Table	e 3.	Results of Water Effect Ratio tests for Ceriodaphnia dubia using cadmium
Table	e 4.	Results of Water Effect Ratio tests for Ceriodaphnia dubia using chromium7
Table	e 5.	Results of Water Effect Ratio tests for Ceriodaphnia dubia using copper7
Table	e 6.	Results of Water Effect Ratio tests for Ceriodaphnia dubia using iron8
Table	e 7.	Results of Water Effect Ratio tests for <i>Ceriodaphnia dubia</i> using lead8
Table	e 8.	Results of Water Effect Ratio tests for Ceriodaphnia dubia using zinc9
Table	e 9.	Water chemistry measurements9

LIST OF APPENDICES

APPENDIX A - Water Effect Ratio Toxicity Data

APPENDIX B - Chemistry Data

APPENDIX C -Chain of Custody

SIGNATURE PAGE

Bonnie Lo, M.E.T.

Environmental Scientist

James Elphick, B.Sc., R.P.Bio.

Senior Reviewer

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

1.0 INTRODUCTION

The British Columbia Ministry of Environment has published guidelines for deriving sitespecific water quality objectives. The purpose of a site specific objective is to account for physico-chemical properties of the site water which affect the toxicity of the chemical or differences in biological communities between the site and those used to derive the guideline.

In cases where characteristics of the site water alter the toxicity of the chemical, a Water Effect Ratio (WER) study can be conducted. A WER test involves evaluating the toxicity of a parameter of interest added separately into site water and into laboratory water. The results of the testing provide an estimate for toxicological endpoints, such as LC50 values, which can then be compared between the site water and laboratory water. The ratio between these values can be used to adjust a water quality guideline to account for site specific water quality characteristics. For example, if the toxicity of copper was two-fold lower in the site water than in the laboratory water, the calculated WER value would be two, and it would be appropriate to adjust the water quality criterion by a factor of two to derive the site specific objective.

Testing was conducted to determine whether a WER approach would be warranted for water quality objectives for seven metals (aluminum (Al), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb) and zinc (Zn)) for water collected from the Sa Dena Hes Mine. Sample water from the MH-04 site was collected in June, 2014 and was tested using the *Ceriodaphnia dubia* 48-hour acute test.

2.0 METHODS

2.1 Samples

Sample was collected from site MH-04 on June 27th, 2014, and delivered by courier to the Nautilus Environmental laboratory in Burnaby, BC the following day. The sample was collected in a 20-L collapsible carboy and transported in coolers containing ice-packs to chill the sample.

2.2 Test methods

The initial tests were conducted using each metal on June 30, 2014; however, for some of the metals, the tests required repeating because there was either no adverse response, or a complete adverse response in all test concentrations, which prevented calculation of LC50 estimates. The remaining testing was performed by July 13, 2014. Acute toxicity tests with *C. dubia* were conducted according to procedures summarized in Table 1. Testing was conducted according to procedures described by the USEPA protocol (2002) for measuring acute toxicity of effluents and receiving water to freshwater and marine organisms. Statistical analyses for all tests were performed using CETIS (Tidepool Scientific Software, 2013).

Prior to exposure, the MH-04 sample was spiked separately with reagent grade Al, Cd, Cr, Cu, Fe, Pb, and Zn in order to achieve the highest test concentration. Remaining test concentrations were prepared using the unspiked sample (MH-04) for dilution. Similarly, the metals were also spiked into laboratory-prepared water (reconstituted water prepared by addition of reagent grade salts to deionized water to match the hardness of the sample), and test concentrations were prepared using laboratory water for dilution. The tests using each metal were performed concurrently in laboratory and site waters. Test solutions were not renewed during the exposures.

Subsamples were collected from all concentrations at test initiation for measurement of the spiked metal (total and dissolved). At test termination, subsamples were collected for measurement of the total metal. Toxicity test end-points were calculated on the basis of measured total metal concentration, with the exception of Al, which was calculated based on the concentration of dissolved metal.

Table 1. Summary of test conditions: 48 hr *Ceriodaphnia dubia* test.

Test type Static Endpoints Survival

Organism source In-house culture
Organism age <24 hr old neonates

Feeding None

Test chamber Glass test tube

Test volume 15 mL Test temperature 25 \pm 1°C

Control water Moderately hard synthetic water, amended to

approximately 140 mg/L hardness to match the

hardness of the sample

Number of organisms/replicate 5
Number of replicates 4

Photoperiod 16 hours light/8 hours dark

Aeration None

Test acceptability criterion for controls ≥90% survival

3.0 RESULTS

Results of toxicity tests and calculated WER values are provided in Tables 2 through 8. The hardness of the sample collected from MH-04 was 146 mg/L and the laboratory water was 140 mg/L, as CaCO₃.

The effect of aluminum was very similar in the site and laboratory waters, with 45 to 55% survival in the lowest test concentration, and no survival in the remaining concentrations (Table 2). Thus, the LC50 was estimated by inspection of the data to be equivalent to the lowest test concentration in each test, and the WER for Al was approximately 1.0, indicating that there was no effect of the site water on toxicity of aluminum.

Concentrations of cadmium diminished during the test; measured concentrations at the start of the tests were close to target values, but measurements at test termination were approximately one quarter of the values that were present at initiation in both site and laboratory waters. The concentrations of total metal that were present at the start of the tests were used to calculate the test endpoints for this metal. The toxicity of Cd was higher in the lab water than the site water, resulting in a WER of 2.4 (Table 3).

Test endpoints for chromium were calculated on the basis of the average of measured total concentration of chromium at test initiation and termination (Table 4). The toxicity of chromium was higher in the site water than the laboratory water, resulting in a WER of 0.3.

Concentrations of total copper that were measured at test initiation were used to calculate the test endpoints for this metal, since copper diminished by approximately two-fold during the laboratory water test. The toxicity of copper was higher in the site water than the lab water, resulting in a WER of 1.9 (Table 5).

Concentrations of total iron measured at test termination were used to calculate the test endpoints for this metal. The measured concentrations of iron at test initiation were lower than the targeted values, whereas concentrations measured at test termination were in good agreement with the targeted values. This may have resulted from a subsampling or analytical error for the subsamples collected at test initiation, such as not mixing to ensure suspension of particulate iron. The organisms were somewhat less sensitive to iron in site water, resulting in a WER of 1.2 (Table 6).

The average of total lead concentrations measured at test initiation and termination were used to calculate the point estimates for lead. This metal exhibited low solubility and the test concentrations deviated from the target values. Regardless, the test organisms performed similarly in the two water types, producing a WER of 1.1 (Table 7).

The average of total zinc concentrations measured at test initiation and termination were used to calculate point estimates for zinc. The test organisms were somewhat more sensitive to zinc in site water, producing a WER of 0.7.

Raw data from the WER tests are provided in Appendices A. Supporting water quality variables are provided in Table 9 and are provided in Appendix B, along with total and dissolved metals concentrations for the samples and control waters.

Table 2. Results of Water Effect Ratio tests for *Ceriodaphnia dubia* using aluminum.

	Laborato	ry Water	Site Water	(MH-04)
	Measured		Measured	
Nominal	aluminum,	Survival	aluminum,	Survival
Aluminum	dissolved	(%)	dissolved	(%)
	(µg/L)		(µg/L)	
Control	<200	100	1.6	100
250	172	45	171	55
500	301	0	282	0
1000	312	0	329	0
2000	320	0	344	0
4000	344	0	399	0
LC50	~ 1	72	~ 1	71
WER		~	~1.0	

Table 3. Results of Water Effect Ratio tests for *Ceriodaphnia dubia* using cadmium.

	Laborato	ry Water		Site Water	(MH-04)
	Measured			Measured	
Nominal	cadmium,	Survival	Nominal	cadmium,	Survival
cadmium	total	(%)	cadmium	total	(%)
	(µg/L)			(µg/L)	
Control	< 0.05	100	Control	0.2	90
6.25	6.0	100	25	22.9	100
12.5	12.5	100	50	47.1	45
25	23.1	20	100	95.5	0
50	46.5	0	200	192.0	0
100	87.3	0	400	387.0	0
LC50	19.4 (17	.2-21.9)		46.1 (39	.3-54.0)
WER			2.4		

Table 4. Results of Water Effect Ratio tests for *Ceriodaphnia dubia* using chromium.

	Laboratory	y Water	Site Water ((MH-04)
Nominal chromium	Measured chromium, total (μg/L)	Survival (%)	Measured chromium, total (μg/L)	Survival (%)
Control	<0.5	100	<0.5	100
43.75	43.0	100	41.9	95
87.5	91.3	100	91.25	5
175	178.5	95	181.0	0
350	357.5	0	353.0	0
700	732.5	0	734.0	0
LC50	244.1 (228.4	- 260.9)	61.8 (58.3	- 65.6)
WER			0.3	

 Table 5.
 Results of Water Effect Ratio tests for Ceriodaphnia dubia using copper.

	Laborato	ry Water	Site Water	(MH-04)
Nominal copper	Measured copper, total (μg/L)	Survival (%)	Measured copper, total (µg/L)	Survival (%)
Control	<0.5	100	<0.5	100
1.56	3.15	100	2.97	100
3.13	3.31	100	4.70	100
6.25	5.91	95	8.89	100
12.5	10.8	0	15.8	40
25	22.8	0	28.8	10
LC50	7.8 (7.3	- 8.2)	15.2 (12.8	8 - 18.1)
WER			1.9	

 Table 6.
 Results of Water Effect Ratio tests for Ceriodaphnia dubia using iron.

	Laboratory	y Water	Site Water (MH-04)					
Nominal iron	Measured iron, total (mg/L)	Survival (%)	Measured iron, total (mg/L)	Survival (%)				
Control	0.05	100	0.02	90				
2.5	0.1	90	2.1	100				
5.0	3.8	65	4.9	65				
10.0	9.1	20	9.2	5				
20.0	18.1	10	19.5	5				
40.0	37.0	0	37.3	0				
LC50	4.6 (3.1	- 6.6)	5.7 (4.8	- 6.9)				
WER			1.2					

 Table 7.
 Results of Water Effect Ratio tests for Ceriodaphnia dubia using lead.

	Laborator	y Water	Site Water	(MH-04)
Nominal lead	Measured lead, total (μg/L)	Survival (%)	Measured lead, total (μg/L)	Survival (%)
Control	< 0.05	100	0.29	100
62.5	28.6	100	40.5	100
125	61.8	100	47.1	100
250	133.0	100	188.0	100
500	301.0	85	243.5	70
1000	329.0	0	623.0	0
LC50	294.0 (273.5	5 – 316.1)	325.4 (287.8	3 – 367.9)
WER			1.1	

 Table 8.
 Results of Water Effect Ratio tests for Ceriodaphnia dubia using zinc.

	Laborator	y Water	Site Water (MH-04)					
Nominal zinc	Measured zinc, total (µg/L)	Survival (%)	Measured zinc, total (μg/L)	Survival (%)				
Control	<3.0	100	7.0	100				
50	41.4	90	44.4	90				
100	73.9	80	81.2	65				
200	158.5	40	152.0	20				
400	332.5	25	330.0	0				
800	638.5	0	671.5	0				
LC50	146.7 (108.4	1 - 198.6)	97.7 (78.5 -	- 121.5)				
WER			0.7					

 Table 9.
 Water chemistry measurements.

	TOC (mg/L)	Hardness (mg/L)
MH-04	1.57	146
Laboratory water	<0.5	140

4.0 DISCUSSION

The results of this testing program demonstrated a relatively small effect of the site water on sensitivity to metals. For aluminum, iron, and lead, there was little-to-no difference in sensitivity between the water types. Chromium and zinc appeared to exhibit a higher degree of sensitivity in the site water, and copper and cadmium exhibited a lower degree of toxicity in site water relative to laboratory water. Thus, of the seven metals, it appears that a higher water quality guideline might be acceptable for only cadmium and copper on the basis of a WER approach. However, additional testing would be required to establish the actual WER for the site, since data is generally required for multiple species and seasons. It should be noted that the total organic carbon measured in the sample was relatively low (1.57 mg/L). Seasonal variation in TOC at MH-04 would be expected to alter the WER for copper and cadmium.

5.0 REFERENCES

Tidepool Scientific Software. 2013. CETIS comprehensive environmental toxicity information system, version 1.8.7.16 Tidepool Scientific Software, McKinleyville, CA. 222 pp.

USEPA (US Environmental Protection Agency). 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-821-R-02-012.

APPENDIX A - Water Effect Ratio Toxicity Data

Freshwater Acute

						48 Ho	ur Toxici	ty Test D	ata Shee	t							
Client:	A210	nuth					_			Start Dat	te & Time:	June 3	0 114@1 2 114@1 01a	1004			
Sample ID: Work Order No.:	Alum	inum WER (labwate	رح			_			End Dat	te & Time: Imanisms:	July	<u> </u>	4000			
WOIK Older IVo	199	<u> </u>					-			1000	rgarnomo.	_c.aue	<u>, , , , , , , , , , , , , , , , , , , </u>				
Conc.	Rep	Numb Live Org				erature C)			Dissolved (mg				p	Н			luctivity S/cm)
MgK Al		24	48	0			48	0		24	48	0	24		48	0	48
Control	Α		5	24.0		24.5	34.5	7.7			7.3	8,2	AND THE STATE OF T		8.3	30 7	302
	В		5						CONTRACTOR OF THE CONTRACTOR O								
	С		5						NECESSARY DESCRIPTION OF THE PROPERTY OF THE P				X XXIXXXYY X XXIXXXXX X XXIXXXX X XXIXXXX X XXIXXXX X XXIXXXX X XXIXXXX X XXIXXXX X XXIXXX X XXIXXX X XXIXXX X XXIXXX X XXIXXX X XXIXXX X XXIXXX X XXIXX X X XXIXX X X X X	/			
	D		5					X				Ž.		7			
250	Α	1	4	24,0		34,5	13415	7.7			7.3	8.3			8.3	312	307
	В		1							/							
	С		a						Parking religion	/			1.014 Ven Valle 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2				
	D		a							7				7			
500	Α		٥	24,0		24,5	24.5	7.7	MENTS BET TO SERVE AND THE SER	/	7.3	8.3		/	8.2	312	308
	В		٥										Press Constitution				
	С		0						See See See See See See See See See See				EMPER OF THE SECOND				
	D		Ö							7			100	1		8	
1000	A		0	24,0		24.5	24.5	7.7			7.3	8.1	. */ John Superes // /.		8,2	315	318
	В	./	0			,								/			
	c		Ŏ						2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	D		0			-		100	CONTRACTOR OF CO	7		8		7		100	
3000	A.	/	0	24,0	CANADA ON LAND	24,5	24,5	7.7	INTERACTION		7.3	7.9		/	182	318	390
0,000	В		0				1		SALES ASSESSED	7				1			
	С		O	9386				51									
	D		Ŏ.						P. P. INC. OR STREET	/				7			
400D	Α		0	24.0		24.5	24:5	7.7			7.3	7.6		7	8,2.	325	326
,,,,,	В		Ó										A CONTRACTOR				
	С		0														
	D.	/	0	A S						/				/			
Technician Initia	ls		rel	NUP	,	W	1 XIP	KUP			16	YUP			rup	<u>xuo</u>	YUL
	1 1	Hardness	Alkalinity				ר י			•							
Conc.			(mg/L a	s CaCO3)]		:	Sample D	escription:	Aluminu	m soiked led water	into 1	60 mg/L	hardne>s	
control	-	140	78				-{			Anch	at Initials.	terrier	KIB water	<u>در</u>			
highest conc.					A.S.		J			Analy	st mittals:	YLP,EM)/ [*])				
Comments:	Used	Stock 80	dutions	1000 mg/	Lamade	? Jue	a7114 (modefor	n AICLS)								

Date reviewed:

Nautilus Environmental

Version 1.0: Issued November 1, 2007

Reviewed by:

Freshwater Acute 48 Hour Toxicity Test Data Sheet

						48 Hot	ur Toxici	ty Test D	ata Sheet	t							
Client: Sample ID: Work Order No.:	AZI	nuth hinum WER OLA	(Site w	alec)			- -			Start Da End Da Test C	te & Time: te & Time:)rganisms:	July 3	0 140 2 1140	400h 1400h			
Conc.	Rep	Numb Live Org	er of		Tempe		_		Dissolved (mg	i Oxygen			р	Н			uctivity 6/cm)
NGIL AL	Kep	24	48	0		24	48	0		24	48	0	24		48	0	48
Control	Α		5	94.D		24.5	84,5	74			7,3	8,2	\$1,000 mm 770 mm		8.3	a 7 3	269
	В		5								<u>. </u>	460-000	100 100 100 100 100 100 100 100 100 100			- Constitution of the Cons	<u> </u>
	С		5					8									
	D	/	5						100.000								
250	Α		a	34D		245	34.5	7.9	CO. LAND DE COLOR	/	7.4	8.3	SERVICE OF SERVICE OF	/	8,4	275	380
	В		3				ļ			/_	ļ	Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir					<u> </u>
	C	/	a						7100000					/_		<u> </u>	<u> </u>
	D	/	4		2 783.2									<u> </u>		<u> </u>	
500	A		<u> </u>	24.0		24,5	34.5	P.F	3250	/	7,4	8,7	AND THE PROPERTY OF	/	8.4	276	380
	В		Ö							_/		San Charles	21.00 21.00 21.00				ļ
	<u> </u>	/	Q	<u> </u>					1200					/			<u> </u>
	D	<u>۲</u>	6			D: 10	-		10000000000000000000000000000000000000	/	,		SALES SALES	/			001
1000	^_		8	24,0	2 M. TRONS	24,5	24. 5	7.9	191662 20060	/	Y.F	8.1			8.4	277	186
	В		1				ļ	<u> </u>	STANK TAKEN		 					<u> </u>	
	C	/	Ö				 				 						ļ
0.000	₽	/	0		THE CHARGE PARTY AND A STATE OF THE CHARGE PARTY AND A STATE O	2115		7.0	2242 1 1242 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/	/ - /			/	100	201	1 0/1
3000	A		0	24,0		34.5	34.5	7.9	FIREACAL CA	/	7.4	7,9		/	8.3	981	284
	В	/_/_					<u> </u>					Ĭ	20.00				ļ
	<u> </u>	/	0					0 2	13.22	/	-	<u> </u>	Airentii .	/			
14500	D	/		3010	in in the second	21.5	- C	7.9	TANAGE TO STANK		77.1	3.		/	0.2	200	200
4000			0	24,0		24,5	24.5	7.7			77.4	7.6	AVAIVABILITIES TO	/	8,3	388	289
	В	- /	8				<u> </u>	8	788822	-/-	 			/-			
	C	/	ŏ					88 <u></u>		/			Buildin 1	/			-
Technician Initia			100	Vie	'n	R	YUP .	YUP			va	Kup			THE .	KLP	NIP
I	1	Hardness	Alkalinity				7										
Conc.			(mg/L as	CaCO3)			1		8	Sample D	escription:	Aluminu	m soiled	linto	site w	ater M	H-04
control		146	114				-						•				
highest conc.							1				st Initials:	KU,5m	<u> </u>				
Comments:	Usea	l stock s	olutions	made J.	me 27/14	100) Mgl	AL (made from	4103)					····	
																	
		1	-												7	17	00

Version 1.0: Issued November 1, 2007

Reviewed by:

Date reviewed:

CETIS Analytical Report

Report Date:

26 Sep-14 19:11 (p 1 of 2)

Test Code:

14401e | 09-2622-9655

Ceriod	aphnia 4	18-h Acute Surv	vival Test									Na	utilus	Environment
Analys Analyz				lpoint: lysis:	48h Survival R Linear Interpola					CETIS Version: Official Results:		CETISv1 Yes	.8.7	
Batch I	ID:	13-2051-8392	Tes	t Type:	Survival (48h)				Anal	Analyst: Emma Marus				
Start D	ate:	30 Jun-14 14:00		tocol:	EPA/821/R-02-	-012 (2002	!)		Dilue		Labor	atory Wat	er	
Ending	Date:	02 Jul-14 14:00	Spe	cies:	Ceriodaphnia o		,		Brine					
Duratio	-				In-House Cultu				Age:		<24h			
Sample	Sample ID: 12-7301-5978 Cod		le:	4BE0AEAA				Clier	nt:	Azimu	ıth			
Sample	Date:	30 Jun-14	Mat	erial:	Aluminum				Proje	ect:				
Receive	eceive Date: 30 Jun-14 Sou		rce:	Azimuth				_						
Sample Age: 14h St		Stat	ion:	Aluminum WE	R (lab wate	er)								
Linear	Interpol	ation Options			······································									
X Trans	sform	Y Transform	See	d	Resamples	Exp 95	% CL	Method						
Log(X+	1)	Linear	206	5631	200	Yes		Two-Point	Interp	olation	•			
Test Ac	ceptabi	lity Criteria												
Attribu	te	Test Stat	TAC Limi	ts	Overlap	Decisio	n							
Control	Resp	1	0.9 - NL		Yes	Passes	Accept	ability Criter	ia					
Point E	stimate	s												
Level	μg/L	95% LCL	95% UCL											
EC5	0.5976	0.2974	1.818											
EC10	1.552	0.6494	6.384											
EC15	3.077	1.038	17.6											
EC20	5.514	1.415	44.77											
EC25	9.406	1.672	110											
EC40	41.43	N/A	274.8											
EC50	107.3	N/A	261.9											
48h Su	rvival Ra	ate Summary				Calc	ulated	Variate(A/I	3)					
C-µg/L	Co	ontrol Type	Count	Mean	Min	Max	Std	Err Std	Dev	CV%		%Effect	Α	В
)	Ne	gative Control	4	1	1	1	0	0		0.0%	(0.0%	20	20
172			4	0.45	0.2	8.0	0.12	258 0.29	517	55.92%	6	55.0%	9	20
312		,	4	0	0	0	0	0				100.0%	0	20
48h Su	rvival Ra	ate Detail												
C-µg/L			Rep 1	Rep 2	Rep 3	Rep 4								
)	Ne	gative Control	1	1	1	1								
-			0.8	0.2	0.4	0.4								
172														
172			0	0	0	0								
172 312	rvival Ra	ate Binomials		0	0	0								
172 312 48h S ui		Control Type	0 Rep 1	0 Rep 2		0 Rep 4								
172 312			0 Rep 1											V
172 312 48h S ui C-µg/L		Control Type	0 Rep 1	Rep 2	Rep 3	Rep 4								

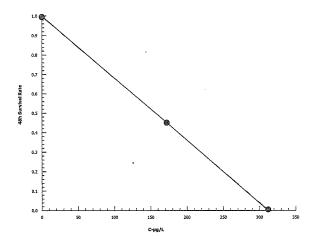
Ell 32/14

000-469-187-1

CETIS™ v1.8.7.16

Analyst:_____ QA:____

Report Date: Test Code: 26 Sep-14 19:11 (p 2 of 2) 14401e | 09-2622-9655


Ceriodaphnia 48-h Acute Survival Test

Nautilus Environmental

Analysis ID: 21-2476-0346 Endpoint: 48h Survival Rate CETIS Version: CETISv1.8.7

Analyzed: 26 Sep-14 19:11 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Graphics

the July 28/15

Analyst:_____ QA:____

Report Date: **Test Code:**

24 Sep-14 15:01 (p 1 of 2)

14401f | 15-8269-3297

erioda	nhnia 4												
	Pinna 4	48-h Acute Surv	ival Test								Na	utilus E	Environmenta
nalysis	ID:	00-7583-9002	End	point:	48h Survival R	ate			CET	S Version	n: CETISv1	.8.7	
nalyze		24 Sep-14 15:00		lysis:	Linear Interpol	ation (ICPIN	V)		Offic	ial Result	ts: Yes		
Batch ID):	08-9935-2457	Tes	t Type:	Survival (48h)				Anal	yst: Er	nma Marus		
start Da	te:	30 Jun-14 14:00	Pro	tocol:	EPA/821/R-02	-012 (2002))		Dilue	ent: Si	te Water		
nding	Date:	02 Jul-14 14:00	Spe	cies:	Ceriodaphnia	dubi a			Brin	e:			
Ouration	n:	48h	Sou	rce:	In-House Culti	ıre			Age:	<2	24h		
ample	ID:	15-0489-7655	Cod	le:	59B2EA77				Clier	nt: Az	zimuth		
Sample	Date:	27 Jun-14 14:00	Mat	erial:	Aluminum				Proje	ect:			
		02 Jul-14 14:00	Sou	rce:	Azimuth								
Sample	Age:	72h	Stat	ion:	Aluminum WE	R (MH-04 s	ite wate	er)					
inear lı	nterpol	ation Options											
Trans		Y Transform	See	d	Resamples	Exp 95%	% CL	Method					
.og(X+1)	Linear	789	309	200	Yes		Two-Poi	nt Interp	olation			
Point Es	stimate	s											
.evel	μg/L	95% LCL											
C5	3.142	2.414	6.135										
C10	5.6	3.406	17.29										
C15	9.515	4.555	44.15										
C20	15.75	5.772	107.9										
C25	25.69	6.844	258.2										
C40	107	2.272	247.7										
C50	181.5	26.35	231.5										
8h Sur	vival R	ate Summary				Calc	ulated '	Variate(/	VB)				
-μg/L		ontrol Type	Count	Mean		Max	Std I		td Dev	CV%	%Effect	Α	В
.6	Ne	egative Control	4	1	1	1	0	0		0.0%	0.0%	20	20
71			4	0.55	0.4	8.0	0.09		.1915	34.82%	45.0%	11	20
29			4	0	0	0	0	0			100.0%	0	20
8h Sur	vival R	ate Detail											
-μg/L		ontrol Type	Rep 1	Rep 2		Rep 4							
.6	Ne	egative Control	1	1	1	1							
71			0.4	0.6	0.4	8.0							
29			0	0	0	0						0.,-	
8h Sur	vival R	ate Binomials			2								
-μg/L		Control Type	Rep 1	Rep 2		Rep 4			Sur				
.6	I	Negative Control	5/5	5/5	5/5	5/5							

Analyst:

2/5

0/5

171

329

000-469-187-1

3/5

0/5

2/5

0/5

4/5

0/5

Report Date:

24 Sep-14 15:01 (p 2 of 2)

Nautilus Environmental

Test Code:

14401f | 15-8269-3297

Ceriodaphnia 48-h Acute Survival Test

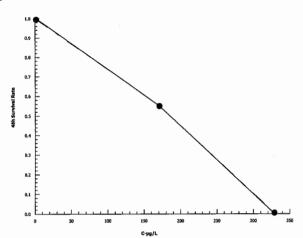
00-7583-9002

24 Sep-14 15:00

Endpoint: 48h Survival Rate

Analysis:

Linear Interpolation (ICPIN)


CETIS Version:

CETISv1.8.7 Official Results: Yes

Graphics

Analyzed:

Analysis ID:

Analyst:

CETIS™ v1.8.7.16

Client: Sample ID: Work Order No.:	AZ	imuth 401e	abwata	er we	7 <u> </u>			-		End Dat	e & Time: e & Time: rganisms:	Juli Juli C. di	4 11/ April	14 a) 1430 14301	h 1	
Conc.	Rep	Numb Live Org				erature C)			Dissolved (mg				F	Н		Condu (uS/	* 1
(Mg/Lcd)	IVeh	24	48	0		24	48	0	SILLER AND SILLER	24 /	48	0	2 - 31 - W X X X X X X X X X X X X X X X X X X	24	/ 48	0	48
Control	Α	5	5	24.0		200	250	8.2			ふく	8.2			8,0	302	- 295
	В	1	(
	С								din 12 sq.				######################################				
	D		1.						TERRITA AND				2007 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
6,25	Α			24.0		200	200	8.2		1	25	8.1			7,9	301	295
0.00	В						7			7							
	С								CATTONIA CA	7							
	D			300					100 H	7				Π			
12.5	Α			24.0		200	250	8.1		7	76	8.2		17	2,0	300	297
	В													T^{-}			
	С								STONE STATE OF STATE					1			
	D		<u> </u>					ā l	Section 1			8	25/ 1 4 R	1			
25	Α		2	24.0		2000	25,0	8.2			76	8.2			LO	300	296
	В		1											À			
	С		ı														
	D		0					Š.						Side of the side o			
50	Α		٥	24.0	Tinut:	207.0	250	8,2			7-6	81			80	296	296
3	В		1			2. 											
	С												10 H 10 H 10 H 10 H 10 H 10 H 10 H 10 H				
	D													6 5 5			
100	Α			240		25.0	25.0	8.2			7.6	81	34/		8.0	295	297
	В					,			His 2				1				U
	С	1		343					WENT TO THE PERSON NAMED IN COLUMN T								
	D	y	J			1											
Technician Initial	s	A	_ m] EWW		~	m-	Emm	1/	00-	An	EWW	<u> </u>		m	Enny	_
	T	Hardness	Alkalinity]	•						^			أما
Conc.			(mg/L as	CaCO3)			1		8	Sample D	escription:	Awo,	ENVIN-1	C	admun	spilled	<u>into (</u> ab Horaness)
control highest conc.		.8	120				-			Analy	st Initials:	-		,u	varer (wong/L	Horaness)
Comments:	us	ed stock	-30luti	en: ca	13.6m	gli C	d) 14	icdo3	ca								
Reviewed by: Version 1.0: Issued	- Noverd		org		-			4.			Dat	e reviewed	:	<u></u>	<i>/</i>)	USEL (19,20%

Client: Sample ID: Work Order No.:	Cadm	nuth oun wer old	(site w	atec)			- -			End Da	te & Time: te & Time: Organisms:	July 3	2 1140	1400h 1400h			
Conc.	Rep	Numb Live Org			Temper				Dissolved (mg				F	Н			uctivity (cm)
1191LCd		24	48	0	1.000 (C)	24	48	0		24	48	0		24	48	0	48
Control	Α		4	34.0		345	25.0	7.9		/	7.5	8.2	A COMMENSATION OF THE PROPERTY		8.3	273	279
	В		Ч										1000				
	С		5						1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	/							1
*****	D		5						11000	/-				 		1	<u> </u>
25	A		5	24.0		24.5	25.0	7.9		/	7.5	8,4	300000000000000000000000000000000000000	/ /	8.4	274	278
α)	В		5	0410		<u>a4.7</u>	23.0	<u> </u>	322 222	/	1.2	0,7	2000 C C C C C C C C C C C C C C C C C C	 	12.7	411	2 10
		 / 	5		er ere ere ere ere ere ere ere ere ere		 			/			\$500 MARK \$500 M	 			<u> </u>
	С	 /	2							/	1		10.00 miles	 /	-		ļ
	₽	V		-		0.15	700		100000	/			(20.000.000.000	/	—		
50	A		3	240		<u> </u>	25.0	7.9		/	7.5	8,4		 /	8.4	273	280
	В		3	_						/_							ļ
	С								5 (500) - 500 (5) (5) (5) (5) (5) (5) (5)				2 (3) 3 (3) 4 (3)				
	D		2		NAME (* 22-8 DE) 22-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2									1/			<u> </u>
100	Α		0	24,0		34,5	25.0	7.9	598600 S		7.2	8,4		f /	8.4	773	279
	В		0														
	С		O										1911 1122	17			
	D		0		100000000000000000000000000000000000000					/				1/	1		1
<i>200</i>	A	 	Ŏ	24,0		24.5	25.0	7.9	20200 - 214662 20200 - 2146 21262 - 226		7.3	8.4		 	8.4	273	280
400	1 B		0	<u> </u>		3-117	20.0	111	700000000000000000000000000000000000000		1	0.,	200 000 000 000 000 000 000 000 000 000	 	10	417	1200
	c	 / - 	0						84 X 19020, V	-/-	 		26 APA 16 20 A	 / 	+	ļ	
	В	/	0							/	-			 /		<u> </u>	
11000		/		21.5		2115	600	7.0		/	190	0.1		/		717	-0
400	Α		<u> </u>	<u>ବ୍ୟୁ</u>		<u> </u>	25.0	7,9		/	7.3	8,4	\$ 35 E	/	84	273	278
	В		0	-11					2745032 244503 24500 24503 24503 24503 24503 24503 24503 24503 24503 24503 24503 245								<u> </u>
	С	/								/						<u> </u>	ļ
	D	<u>/</u>	0								1			/		<u> </u>	<u> </u>
Technician Initia	s		EMM	w	<u> </u>	W	Emm	Lw			tmm	W	<u> </u>		anm	m	EMM
		Hardness	Alkalinity]										
Conc.		B. 10	(mg/L as	CaCO3)			4		•	Sample D	escription:	Cadmiur	n spile	<u>d into</u>	<u>side w</u>	iter M	#-0 <u>Y</u>
control	 	140	114				4			Anah	mė imitiala.	141.0 -					
highest conc. Comments:	User	d stock s	colutions	Midal	93.6	mally	ر بر			Analy	st Initials:	KUY, FM	16.)				
					1												
															,		
Reviewed by:		A. TO	N		-						Date	reviewed		Sept	lewbe	~19	,2014

Nautilus Environmental

Version 1.0: Issued November 1, 2007

Report Date: Test Code: 23 Sep-14 18:12 (p 1 of 2) 14401c | 07-6687-4047

Ceriodaphnia 48-h Acute Survival Test **Nautilus Environmental** Endpoint: 48h Survival Rate **CETIS Version: CETISv1.8.7** Analysis ID: 12-7792-7916 Analyzed: Analysis: Untrimmed Spearman-Kärber Official Results: 11 Sep-14 16:36 Yes Batch ID: 06-3803-1020 Test Type: Survival (48h) Analyst: Emma Marus Start Date: 11 Jul-14 14:30 Protocol: EPA/821/R-02-012 (2002) Diluent: Laboratory Water Ending Date: 13 Jul-14 14:30 Ceriodaphnia dubia Brine: Species: **Duration:** 48h Source: In-House Culture Age: <24h Sample ID: 09-1081-2136 Code: 3649E3E8 Client: **Azimuth** Sample Date: 11 Jul-14 Material: Cadmium Project: Receive Date: 11 Jul-14 Source: **Azimuth** Cadmium WER (lab water) Sample Age: 14h Station: Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0	0.00%	1.287	0.02552	19.38	17.23	21.79

Decision

Overlap

Test Acceptability Criteria

Test Stat TAC Limits

Attribute

Control Res	sp 1	0.9 - NL		Yes	Passes	Acceptability	Criteria				
48h Surviv	al Rate Summary			-	Cal	culated Varia	ite(A/B)				
C-ug/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	Negative Control	4	1	1	1	0	0	0.0%	0.0%	20	20
6.04		4	1	1	1	0	0	0.0%	0.0%	20	20
12.5	•	4	1	1	1	0	0	0.0%	0.0%	20	20
23.1		4	0.2	0	0.4	0.08165	0.1633	81.65%	80.0%	4	20
46.5		4	0	0	0	0	0		100.0%	0	20
87.3		4	0	0	0	0	0		100.0%	0	20

48h Survival Rate Detail

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Negative Control	1	1	1	1	
6.04		1	1	1	1	
12.5		1	1	1	1	
23.1		0.4	0.2	0.2	0	
46.5		0	0	0	0	
87.3		0	0	0	0	

48h Survival Rate Binomials

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Negative Control	5/5	5/5	5/5	5/5	
6.04		5/5	5/5	5/5	5/5	
12.5		5/5	5/5	5/5	5/5	
23.1		2/5	1/5	1/5	0/5	
46.5		0/5	0/5	0/5	0/5	
87.3		0/5	0/5	0/5	0/5	

Analyst: QA: 2014

CETIS™ v1.8.7.16

Report Date:

23 Sep-14 18:12 (p 2 of 2)

Test Code:

14401c | 07-6687-4047

Ceriodaphnia 48-h Acute Survival Test

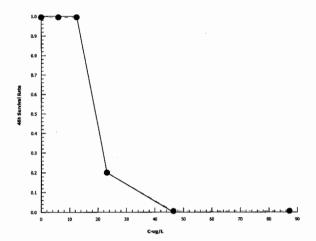
Nautilus Environmental

Analysis ID: Analyzed:

12-7792-7916

11 Sep-14 16:36

48h Survival Rate Endpoint: Analysis:


Untrimmed Spearman-Kärber

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

Report Date: Test Code:

11 Sep-14 16:39 (p 1 of 2) 14401d | 08-3058-4924

						•
Ceriodaphnia	48-h Acute Surviva	l Test				Nautilus Environmental
Analysis ID: Analyzed:	02-8514-9976 11 Sep-14 16:38	Endpoint: Analysis:	48h Survival Rate Untrimmed Spearman-Kärber	CETIS Ver Official Re		CETISv1.8.7 Yes
Batch ID:	03-4073-4844	Test Type:	Survival (48h)	Analyst:	Emma	a Marus
Start Date:	30 Jun-14 14:00	Protocol:	EPA/821/R-02-012 (2002)	Diluent:	Site V	Vater
Ending Date:	02 Jul-14 14:00	Species:	Ceriodaphnia dubia	Brine:		
Duration:	48h	Source:	In-House Culture	Age:	<24h	
Sample ID:	11-9658-4485	Code:	47526E25	Client:	Azimu	uth
Sample Date:	27 Jun-14 15:05	Material:	Cadmium	Project:		

Receive Date: 28 Jun-14 10:00

Source: Station:

Azimuth

Spearman-Kärber Estimates

Sample Age: 71h

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.1	0.00%	1.663	0.03462	46.06	39.27	54.02

Cadmium WER (MH-04 site water)

48h Survi	val Rate Summary				Cal	culated Varia	ite(A/B)				
C-ug/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0.214	Negative Control	4	0.9	0.8	1	0.05774	0.1155	12.83%	0.0%	18	20
22.9		4	1	1	1	0	0	0.0%	-11.11%	20	20
47.1		4	0.45	0.2	0.6	0.09574	0.1915	42.55%	50.0%	9	20
95.5		4	0	0	0	0	0		100.0%	0	20
192		4	0	0	0	0	0		100.0%	0	20
387		4	0	0	0	0	0		100.0%	0	20

48h Survival Rate Detail

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0.214	Negative Control	0.8	0.8	1	1
22.9		1	1	1	1
47.1		0.6	0.6	0.2	0.4
95.5		0	0	0	0
192		0	0	0	0
387		0	0	0	0

48h Survival Rate Binomials

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0.214	Negative Control	4/5	4/5	5/5	5/5
22.9		5/5	5/5	5/5	5/5
47.1		3/5	3/5	1/5	2/5
95.5		0/5	0/5	0/5	0/5
192		0/5	0/5	0/5	0/5
387		0/5	0/5	0/5	0/5

Analyst:_

CETIS™ v1.8.7.16

Report Date:

11 Sep-14 16:39 (p 2 of 2)

Test Code:

14401d | 08-3058-4924

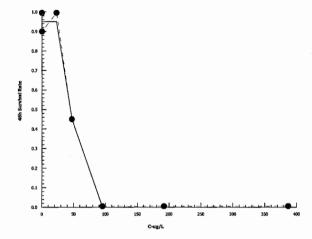
Ceriodaphnia 48-h Acute Survival Test

Nautilus Environmental

Analysis ID: Analyzed:

02-8514-9976

Endpoint: 48h Survival Rate


Untrimmed Spearman-Kärber

CETIS Version:

CETISv1.8.7 Yes

Analysis: Official Results: 11 Sep-14 16:38

Graphics

Freshwater Acute

						48 Hou	r Toxici	y Test D	ata Sheet								
Client: Sample ID: Work Order No.:	Chrom	nuth ium wer(o) i	<u>labwater</u>	Σ						Start Date End Date Test O	e & Time: e & Time: rganisms:	June ? July . C. dub	0 146° 2 1140° 2 10	July July	1114@ 1 3114@	400b 1400b	
Conc.	Rep	Numb Live Org			Tempe (°0	C)			Dissolved (mg	/L)	2000		p	Н		(uS	uctivity /cm)
Mg12 Cr		24	48	0		24	48	0	12 S. 25 - 27 P. 1	24	48	0		24	48	0	48
Control	Α		<u> </u>	34.0			25/2	8,0	SECRETARY AND	/	23	8.1		/	8-1	280	280
	В					/			MATERIAL STATES	_/_				/			
	C					/		2		/				/		<u> </u>	
112 75	D	/		200		/		0.0	A STANDARD		25	8.2	CALLER OF STREET	/	-,-	281	280
43.75	A '			34.0	199 36 31		1െ	8,0		/	7-3	D, X		-/	8,1	aoı	100
	В	/	<u> </u>			-/-			CONTRACTOR OF THE PROPERTY OF					-/-			
	C	/				/_				/			A STANSON NEWS IN	/		\$ <u></u>	
M7.5	D			24,0		/	10-	8,0		/	72	8,2	2.20073003	/	22	980	281
87.5	A	/		9410		- /	160	0,0		_/	70	0100	Section 1	/	-	<u> </u>	100
	В				F10 (# 1511)	 / 				_/_	-			 		1	
	C	/			0.44 20.45	/		8 2		/				/			
175			4	24,0	74.77.884 1. EN	/	250	8.0		'	73	8,2	5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	/	f-2	280	280
17.5	A B		3	0410		 	100(0	0,0		_/	175	0,8	in languages	 	7	000	100
			2		CANCEL RESERVE	/								/			
	C	/	- 7		10 Mg & 60	/		第		/				/			
350	A		0	24,0	1410		16°P	6,0	155 2 CASA 6	'	72	8.2		/	5,2	281	279
330	В		1	4-10			107	- 6.O	20 C 2000	/	1	0.0		/	0.	401	 ''''
	T _c		<u> </u>			/				_/_				 			
	l D	/			STREET CITY OF STREET	/				/			2000000	/			
700	A			24,0		/	26 P	8.0	25 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		72	8,2		1	ar.	ลซล	280
100	В			- 110	CONTRACTOR OF THE SECOND	/	1	0.0	CONTRACTOR OF THE STATE OF THE		1,5	0.4					
	c					/							ADDRESS OF THE AND ADDRESS OF THE AD				
-	T D	/	<i>y</i>			/				/				/			
Technician Initia	ls		٣	Yur			~	W			MS	Kel			~	w	1 po-
		Hardness	Alkalinity]			· ·							
Conc.		k 15	(mg/L as (CaCO3)			,		8	Sample De	escription:	Chromin	m spiked	Linto 10	00 mg/L	hardness	
control highest conc.	+-	140	78	<u> </u>			1			Analy	st Initials:	YIP SA	MD WA	<u>er</u>			
Comments:	Usec	Stock so	Rutions	(00 mg1C	cr naell	Jue	31H	(made	from Kz								
Reviewed by:		1. 10	nor								Date	reviewed	<u>:</u>	Seo	temb	2(19	,201

Version 1.0: Issued November 1, 2007

Nautilus Environmental

Client: Sample ID: Work Order No.:	Chromi	MUTH MM WER	. (site wa	ter)				,		Start Dat End Dat Test O	e & Time:- e & Time: rganisms:	June 3 July Codub	0 14 e ^t 2 14 e	Lily July	1/14@14 3/14 @14	100h	
Conc.	Rep	Numb Live Org				erature C)				d Oxygen g/L)			p	Н			luctivity S/cm)
Mg1L Cr	Keh	24	48	0	LINESHEEL CO	24_^	48	0		24	48	-	T. No. of Chief Cong	24	48	0	48
Control	A		3	24.0		243	25\0	8,0	7.079256	/	カレ	8.મ		7	Rr	278	281
	В		<u>(</u>							/				/	^~~	10	
	С					, .			3104.5					/			
	D				1600 x 120 x 2	5 ~								/			
43.75	Α		\$	94.0	7218 X	24,0	250	6,0		7	72	8.4		/ /	52	217	281
	В		¥					,							, i		
	С		6										100				
•	Œ		my/5											/			
87.5	Α		(b)	94.0		200	257	8.0			7,0	8,4			Sr	277	2/2
	В		0														
	С		S														
	D		0											/			
175	Α		0	240		2670	2570	S'O	902637		22	8,4		1	5.2	277	282
	В																
	С																
	ם	<i>V</i>								/				/			
350	Α			24 0	ir Guid indi Guid and III Guid and III Guid and III	16.3	257	8,0			72	8,4		/	FZ	9 1 8	281
	В								2 1 (12 (10 (10 (10 (10 (10 (10 (10 (10 (10 (10					/			
	С																
	D	/		8			r.		ALMAN CONTROL OF THE PROPERTY	/				/			
700	Α			240		25.2	250	8.0		7	72	8.4		'	RZ	380	281
	В																
	С																
	D	/	9		A CENTRAL CONTRACTOR												
Technician Initia	s			Lyul	I	<u></u>	~~	W			<u>~</u>	u				w	~
		Hardness	Alkalinity]							۸ .			
Conc.	ļ	1035 -	(mg/L as C	CaCO3)					;	Sample D	escription:	<u>Chromiun</u>	∩ spillec	d into	site w	ater M	H-04
control highest conc.		146	114	_	· · · · · ·		l			Analy	st Initials:	W1 D C -0	~				
Comments:	User	l stock s	olutions	100 mg/	Cr rod) Jue 1	2/14	mode fro	m Kel			FU ,77					
Reviewed by:		1.70	2/4		_		<u>.</u> .		······································		Date	reviewed:		Septe	eurbe	(19	,201

Nautilus Environmental

Version 1.0: Issued November 1, 2007

Report Date: Test Code: 11 Sep-14 16:58 (p 1 of 2)

14401i | 09-2360-2337

Ceriodaphnia	48-h Acute Sur	vival Test							Na	utilus Er	nvironmenta
Analysis ID:	07-4690-7704	End	point:	48h Survival R				ΓIS Version:	CETISv1	.8.7	
Analyzed:	11 Sep-14 16:5	8 Ana	lysis:	Untrimmed Sp	earman-Kä	rber	Offi	cial Results	Yes		
Batch ID:	00-8476-6902	Tes	t Type:	Survival (48h)			Ana	ilyst: Emi	na Marus		
Start Date:	01 Jul-14 14:00	Pro	tocol:	EPA/821/R-02	-012 (2002))	Dilu	ıent: Lab	oratory Sea	water	
Ending Date:	03 Jul-14 14:00	Spe	cies:	Ceriodaphnia o	dubia		Bri	ne:			
Duration:	48h	Sou	ırce:	In-House Cultu	ıre		Age	e: <24	h		
Sample ID:	10-7274-3035	Cod	le:	3FF0C27B			Clie	ent: Azir	nuth		
Sample Date:	30 Jun-14	Mat	erial:	Chromium			Pro	ject:			
Receive Date:	30 Jun-14	Sou	ırce:	Azimuth							
Sample Age:	38h	Sta	tion:	Chromium WE	R (lab wate	er)					
Spearman-Kä	rber Estimates			1							
Threshold Opt	tion T	hreshold	Trim	. Mu:	Sigma		EC50	95% LCL	95% UCL		
Control Thresh	old 0		0.00%	6 2.388	0.01444		244.1	228.4	260.9		
Test Acceptab	nility Critoria					· · · · · · · · · · · · · · · · · · ·					
Attribute		TAC Limi	te	Overlap	Decision	n					
Control Resp	1	0.9 - NL		Yes		Acceptability	Criteria	<u></u>			
48h Survival F	Rate Summary				Calc	ulated Varia	ite(A/B)				
	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
	legative Control	4	1	1	1	0	0	0.0%	0.0%	20	20
43.05		4	1	1	1	0	0	0.0%	0.0%	20	20
91.3		4	1	1	1	0	0	0.0%	0.0%	20	20
178.5		4	0.95	8.0	1	0.05	0.1	10.53%	5.0%	19	20
357.5		4	0	0	0	0	0		100.0%	0	20
732.5		4	0	0	0	0	0		100.0%	0	20
48h Survival R	Rate Detail			_							
C-µg/L C	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4						
	legative Control	1	1	1	1						
43.05		1	1	1	1						

Control Type	Rep 1	Rep 2	Rep 3	Rep 4
Negative Control	1	1	1	1
	1	1	1	1
	1	1	1	1
	8.0	1	1	1
	0	0	0	0
	0	0	0	0
		Negative Control 1 1 1 0.8 0	Negative Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8 1 1 0 0 0	Negative Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

48h Survival Rate Binomials

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Negative Control	5/5	5/5	5/5	5/5	
43.05		5/5	5/5	5/5	5/5	
91.3		5/5	5/5	5/5	5/5	
178.5		4/5	5/5	5/5	5/5	
357.5		0/5	0/5	0/5	0/5	
732.5		0/5	0/5	0/5	0/5	

Analyst: QASST 19/14

Report Date:

11 Sep-14 16:58 (p 2 of 2)

Test Code:

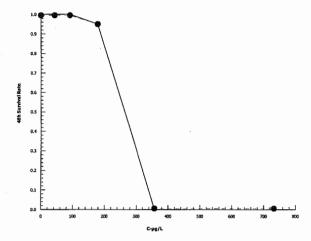
14401i | 09-2360-2337

Ceriodaphnia 48-h Acute Survival Test

Nautilus Environmental

Analysis ID: Analyzed:

07-4690-7704 11 Sep-14 16:58


Endpoint: 48h Survival Rate Analysis:

Untrimmed Spearman-Kärber

CETIS Version: Official Results:

CETISv1.8.7 Yes

Graphics

Report Date: Test Code: 11 Sep-14 17:00 (p 1 of 2) 14401j | 00-5563-8275

											00-3303-021
Ceriodaphnia	48-h Acute Surv	vival Test							Na	utilus En	vironmental
Analysis ID:	05-2793-6179	End	point:	48h Survival Ra	ate			S Version:	CETISv1	.8.7	
Analyzed:	11 Sep-14 16:5	9 Ana	lysis:	Trimmed Spear	rman-Kärbe	er	Offic	ial Results:	Yes		
Batch ID:	15-3617-3809	Test	Туре:	Survival (48h)			Anal	yst: Emn	na Marus		
Start Date:	01 Jul-14 14:00	Prot	ocol:	EPA/821/R-02-	012 (2002)		Dilue	ent: Site	Water		
Ending Date:	03 Jul-14 14:00	Spe	cies:	Ceriodaphnia d	ubi a		Brine	e:			
Duration:	48h	Sou	rce:	In-House Cultu	re		Age:	<24	า		
Sample ID:	05-0569-1222	Cod	e:	1E243C56			Clier	nt: Azin	nuth		
Sample Date:	27 Jun-14 15:0	5 Mate	erial:	Chromium			Proje	ect:			
Receive Date:	: 28 Jun-14 10:00) Sou	rce:	Azimuth							
Sample Age:	95h	Stat	ion:	Chromium WE	R (MH-04 s	ite water)					
Trimmed Spe	arman-Kärber E	stimates									
Threshold Op	tion Ti	nreshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL		
Control Thresh	nold 0		5.00%	1.791	0.01294		61.83	58.26	65.63		- '
Test Acceptal	bility Criteria										
Attribute	Test Stat	TAC Limit	te	Overlap	Decision						
			~	Overlap	Decision	1					
Control Resp	1	0.9 - NL		Yes		Acceptability	Criteria				
<u> </u>	1 Rate Summary	0.9 - NL			Passes A	·				-	
48h Survival	•	0.9 - NL	Mean	Yes	Passes A	Acceptability		CV%	%Effect	A	В
48h Survival C-μg/L (Rate Summary			Yes	Passes A	Acceptability	ite(A/B)	CV% 0.0%	%Effect	A 20	B 20
48h Survival C-μg/L (Rate Summary	Count	Mean	Yes Min	Passes A Calc	Acceptability ulated Varia	te(A/B) Std Dev				
48h Survival C-μg/L C	Rate Summary	Count 4	Mean	Yes Min	Passes A Calc	Acceptability ulated Varia Std Err	std Dev	0.0%	0.0%	20	20
48h Survival C-μ g/L C 0 N 41.9	Rate Summary	Count 4 4	Mean 1 0.95	Min 1 0.8	Passes / Calc Max 1	Acceptability ulated Varia Std Err 0 0.05	Std Dev 0 0.1	0.0% 10.53%	0.0% 5.0%	20 19	20 20
48h Survival C-μg/L C N N 1.9 91.25	Rate Summary	Count 4 4	Mean 1 0.95 0.05	Min 1 0.8	Passes A Calc Max 1 1 0.2	Std Err 0 0.05 0.05	Std Dev 0 0.1 0.1	0.0% 10.53%	0.0% 5.0% 95.0%	20 19 1	20 20 20

48h	Survival	Rate	Detail	
-----	----------	------	--------	--

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	1	1	1	1
41.9		1	8.0	1	1
91.25		0.2	0	0	0
181		0	0	0	0
353		0	0	0	0
734		0	0	0	0

48h Survival Rate Binomials

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Negative Control	5/5	5/5	5/5	5/5	
41.9		5/5	4/5	5/5	5/5	
91.25		1/5	0/5	0/5	0/5	
181		0/5	0/5	0/5	0/5	
353		0/5	0/5	0/5	0/5	
734		0/5	0/5	0/5	0/5	

Analyst: QA Sept 19/14

Report Date: Test Code:

11 Sep-14 17:00 (p 2 of 2)

Nautilus Environmental

Ceriodaphnia 48-h Acute Survival Test

14401j | 00-5563-8275

Analysis ID: Analyzed:

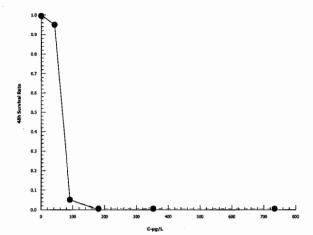
05-2793-6179

Endpoint: 48h Survival Rate

CETIS Version:

CETISv1.8.7

11 Sep-14 16:59


Analysis:

Trimmed Spearman-Kärber

Official Results:

Yes

Graphics

Client: Sample ID: Work Order No.:	AZ Cu	imuth	b water	(WE	(2)		- -			Start D End D Test	ate & Time: ate & Time: Organisms:	Juli C. a	4 11/1 4 13/1 461 a	40	1455	5	
Conc.	Ban	Numl				erature C)			Dissolved		n		р	Н		342	uctivity /cm)
(Mg/L Ch)	Rep	Live Org	48	1 0	E-Missien	24	48	0	(mg	<u>/L)</u> 24	48	0		24	48	0	48
Control	Α	~~	3	24.0		2000	2570	8.2	STATE OF THE CONTROL		175	8.2	A CONTRACTOR		60	302	
Control	В	, , , , , , , , , , , , , , , , , , ,	 	7		-	0,,-		SEE SEE	<u>.</u>	1 -1 - 3		SALSTINES AND AND AND AND AND AND AND AND AND AND	/	1		
	c		 		2014 0 41 0 3		<u> </u>	7.			 		TEACH E	/-	-		
	D		 												1		
1,56	A			24.0		200	2000	8.1		\neg	76	8.2		/	20	300	292
113 \(\sigma \)	В		 	12-(.0	MANY INNERS AND A		120				7,3	0,2	20.136.62	/	1 0 7		
	c		 	1										 	1		
	D		+-+-						CANCELLO CA			N	A STATE OF THE	 		16	
3,13	A			24.0	AS CHOCKERS	200-	250	8.1	CONTRACTOR CO	-	74	8.2	2,222,0,441	 	8-0	300	192
2113	В			29.0			720	<u> </u>			1,2	9.2	STATE OF THE STATE	H	+ * -	300	2.0
	c		1-17	1				S	2 1920 1 1920 1 1921 1 1922 1					 	·		
	D		 				 	ž –	10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A				150	 	-		
6.25	Ā		4	24.0	nder i degen	2600	2500	8.1			37 Y	8.1			20	362	294
6.65	В		5	1124.0		100	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			+	1 11				1	100	
*****	c						·			+			CONTRACTOR OF THE PARTY OF THE		 		
	D		 				 	経	5 / 43209.5	+-					+		
12:5	_		3	7.4.6	ME A COLOR	200	2573	8.1	Sar Sari	/ 	74	8.1			A.O	300	294
1615	В	 	1	74.0		1007	1314	0.	CONTROL OF THE STATE OF THE STA	 	 7-\	(G, \		-	120	300	
	-	l - 1,	 }			2	<u> </u>									ļ — ·	
	C		 						* 5.7% /				12 12 15 15 15 15 15 15 15 15 15 15 15 15 15				<u> </u>
25	-	4	 	24.0	Alle Eren h	2010	2550	G2 1			375	8.1	San Control		8,0	300	987
72	A B	3	 	124.0	28000 (MRS) 180 27 (24) (5.25) (18)	12375	12550	0.1			17,5	G. L			-	300	100
	С	3	 	-			 	<u> </u>					60 160 160 160 160 160 160 160 160 160 1				
	D	3	 	20			 	\$					1				
Technician Initial		-م	~	EMM	1373,5743	<u></u>	1~	emm	SERVI DASA		 	EMM	9409LCN3/12/	1	m	EMM	~
		Hardness	Alkalinity) Celtricity	· I ···································		1	· Comp	-							'	
Conc.	<u> </u>	Haluncss	(mg/L as	CaCO3)			1		5	Sample	Description:	AWD.	EMM	(Cuspik	ed into	<u>, lab</u> Chardres
control	168	3	120]							,	vater	Clamp	"L'hardres
highest conc.	ļ		<u> </u>				_			Ana	lyst Initials:			<u> </u>			·
Comments:		used	Copper	Stoc	K-Sch	atton	- 13	CuO	5								
Reviewed by:		A. TO	Sy.					*• h			Dat	e reviewed	;	Sept	tembe	419,5	2014
Vareion 1 0: lecues	Movemb	or 1 2007	/\											V	Nautil	us Environme	ntal

						48 Hot	ur Toxicit	y Test D	ata Shee	t							
Client: Sample ID: Work Order No.:	AZ Cu	imuth in site	e wate	× U	ual)		- - -			End Dat	te & Time: te & Time: rganisms:	Juli Thu C. di	1 11/11 1/3/14 1/3/14	4 00 as ll	1445	-	
Conc.		Numb				erature				d Oxygen			рŀ	1			uctivity
Gug/LCu)	Rep	Live Orga		0	(°	C) 24	48	0	(mç	g/L)	1 40	<u> </u>	NAMES OF STREET		1 40	(uS/	(cm)
Control	A	24_	48	24.0		260	250	8.2		24	76	8.2	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24	8.1	274	18
Control	В			L (700				/	7.0	0.2		-+	3 1		10.1
	C									/			CSEACOUNTESAL:				
	D																
1,56	Α			24.0		2570	2500	8.2	ACCURATION OF THE CONTROL OF THE CON		76	8.2	TRAID TRAIDERNANCE TO AND A PROGRESSION AND A PR		6.1	275	276
	В		1						CONTRACTOR OF THE CONTRACTOR O								
	С				2000 2000 2000 2000 2000 2000 2000 200			1	11 11 14 EF 197 127 27 28 14 17 16 127 28 28 27 17 16 127 28 28 27 17 16 127 28 28 27 17 16				EMMAN STATE				
	D												CONTRACTOR CONTRACTOR	.			
3,13	Α			24.0		200	257	8.1		/	76	8.1	91-668865-1 U.S.		8.7	278	281
	В									V							
	С				LUCA CONTRACTOR CONTRA	2											
	D				GERNAL TO A PERSON						36						300
6.25	Α			24.0		หลา	2000	8.1	1		7/3	8.2			£.0	278	279
	В		1-			7 7 8 8		2	COT DESCRIPTION		<u> </u>						
	С							-									
10 =	D			D1. 6				6.1	1		-				870	07.0	400
2.5	A		2	74.0		200	200	8.1			773	8.2			2.72	272	280
	В		2				-								-		
	C D		3		SEEL - LEGISSES										 		
75	A	ŭ	<i>f</i>	24.0		25 3	75 K	8.1			25	8.2			شع	272	202
	В	3	٥	1000	SACTOR STREET	N /	25 K				1-7	0.2	00000 4 - 10 - 11 - 12 - 12 - 12 - 12 - 12 - 12		- 0	ar the	13.5
	C	2	1	-													
	D	3	2						J								
Technician Initial	S	A	~	EMM		<u></u>		Emm			<i>P-7</i>	Emm.	<u></u>		~	Emm	Λ
		Hardness	Alkalinity]	_ ,									
Conc.			(mg/L as 0	CaCO3)			-			Sample D	escription:	AWD, E	mm		opper	spilled the M	into
control highest conc.		99	44				┨ .			Analy	st Initials:		- $+$	317	e wa	-16 M	H-001
Comments:	<u>u</u>	sed Copp	er stock	c solut	ion	13(u)	<u>5</u>										
Reviewed by:		A. TO	G								Date	e reviewed:	-	Sep	temb	2119	,2014

Nautilus Environmental

Version 1.0: Issued November 1, 2007

Report Date:

7.756

7.322

8.217

23 Sep-14 18:10 (p 1 of 2)

Test Code: 14401k | 14-4548-5365

Ceriodaphnia	48-h Acute Survival	Test		•		Nautilus Environmental
Analysis ID: Analyzed:	02-7809-8907 11 Sep-14 17:14	Endpoint: Analysis:	48h Survival Untrimmed S	Rate Spearman-Kärber	CETIS Ver Official Re	
Batch ID:	05-0718-0851	Test Type:	Survival (48))	Analyst:	Emma Marus
Start Date:	11 Jul-14 14:55	Protocol:	EPA/821/R-0	02-012 (2002)	Diluent:	Laboratory Water
Ending Date:	13 Jul-14 14:55	Species:	Ceriodaphni	a dubia	Brine:	
Duration:	48h	Source:	In-House Cu	lture	Age:	<24h
Sample ID:	18-6374-2452	Code:	6F1673F4		Client:	Azimuth
Sample Date:	11 Jul-14	Material:	Copper		Project:	
Receive Date:	11 Jul-14	Source:	Azimuth		_	
Sample Age:	15h	Station:	Copper WEI	R (lab water)		
Spearman-Kär	ber Estimates	•	4			
Threshold Opt	ion Thres	hold Trim	Mu	Sigma	EC50 95%	LCL 95% UCL

Test Acceptability Criteria	

0

Test Stat TAC Limits

0.00%

0.8897

Overlap

Control Threshold

Attribute

Control Resp	p 1	0.9 - NL		Yes	Passes	Acceptability	Criteria				
48h Surviva	Il Rate Summary										
C-ug/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Negative Control	4	1	1	1	0	0	0.0%	0.0%	20	20
3.15		4	1	1	1	0	0	0.0%	0.0%	20	20
3.31		4	1	1	1	0	0	0.0%	0.0%	20	20
5.91		4	0.95	8.0	1	0.05	0.1	10.53%	5.0%	19	20
10.8		4	0	0	0	0	0		100.0%	0	20
22.8		4	0	0	0	0	0		100.0%	0	20

0.01251

Decision

48h Survival Rate Detail

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Negative Control	1	1	1	1	
3.15		1	1	1	· 1	
3.31		1	1	1	1	
5.91		8.0	1	1	1	
10.8		0	0	0	0	
22.8		0	0	0	0	

48h Survival Rate Binomials

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	5/5	5/5	5/5	5/5
3.15		5/5	5/5	5/5	5/5
3.31		5/5	5/5	5/5	5/5
5.91		4/5	5/5	5/5	5/5
10.8		0/5	0/5	0/5	0/5
22.8		0/5	0/5	0/5	0/5

Report Date:

23 Sep-14 18:10 (p 2 of 2)

Test Code: 14401k | 14-4548-5365

Ceriodaphnia 48-h Acute Survival Test

Nautilus Environmental

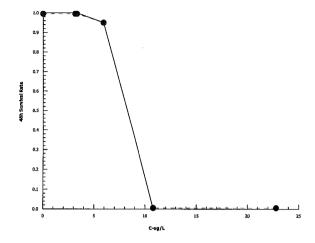
Analysis ID: Analyzed:

02-7809-8907

Endpoint: 48h Survival Rate **CETIS Version:**

CETISv1.8.7

Yes


Graphics

11 Sep-14 17:14

Analysis:

Untrimmed Spearman-Kärber

Official Results:

Report Date: **Test Code:**

11 Sep-14 17:15 (p 1 of 2)

144011 | 06-8419-7640

						•			
Ceriodaphnia	48-h Acute Surviva	l Test		4			Nautilus Environmen		
Analysis ID:	18-8609-0180	Endpoint:	48h Survival	Rate	CETIS Ver	sion:	CETISv1.8.7		
Analyzed:	11 Sep-14 17:15	Analysis:	Trimmed Spe	earman-Kärber	Official Re	sults:	Yes		
Batch ID:	12-8368-3192	Test Type:	Survival (48h)	Analyst:	Emma Marus			
Start Date:	11 Jul-14 14:45	Protocol:	EPA/821/R-0	2-012 (2002)	Diluent:	Site V	Vater		
Ending Date:	13 Jul-14 14:45	Species:	Ceriodaphnia	dubia	Brine:				
Duration:	48h	Source:	In-House Cul	ture	Age:	<24h			
Sample ID:	00-8039-3177	Code:	4CAB3D9		Client:	Azim	uth		
Sample Date:	27 Jun-14 15:05	Material:	Copper		Project:				
Receive Date:	28 Jun-14 10:00	Source:	Azimuth						
Sample Age:	14d	Station:	Copper WER	(MH-04 site water)					
Trimmed Spea	arman-Kärber Estin	nates							
Threshold Opt	tion Thres	shold Trim	Mu	Sigma	EC50 95%	LCL	95% UCL		
Control Thresh	old 0	10.00	% 1.183	0.03707	15.22 12.8	33	18.06		

Test Acceptability	Criteria	
Attribute	Test Stat	TAC Limits

Control Resp	I Resp 1 0.9 - NL Yes Passes Acceptability Criteria										
48h Surviva	I Rate Summary										
C-ug/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Negative Control	4	1	1	1	0	0	0.0%	0.0%	20	20
2.97	•	4	1	1	1	0	0	0.0%	0.0%	20	20
4.7		4	1	1	1	0	0	0.0%	0.0%	20	20
8.89		4	1	1	1	0	0	0.0%	0.0%	20	20
15.8		4	0.4	0.2	0.6	0.08165	0.1633	40.82%	60.0%	8	20
28.8		4	0.1	0	0.2	0.05774	0.1155	115.5%	90.0%	2	20

Decision

Overlap

48h Survival Rate Detail

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	1	1	1	1
2.97		1	1	1	1
4.7		1	1	1	1
8.89		1	1	1	1
15.8		0.4	0.2	0.4	0.6
28.8		0.2	0	0.2	0

48h Survival Rate Binomials

C-ug/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	5/5	5/5	5/5	5/5
2.97	•	5/5	5/5	5/5	5/5
4.7		5/5	5/5	5/5	5/5
8.89		5/5	5/5	5/5	5/5
15.8		2/5	1/5	2/5	3/5
28.8		1/5	0/5	1/5	0/5

Analyst:

Report Date:

11 Sep-14 17:15 (p 2 of 2)

Ceriodaphnia 48-h Acute Survival Test

Test Code: 144011 | 06-8419-7640 **Nautilus Environmental**

Analysis ID:

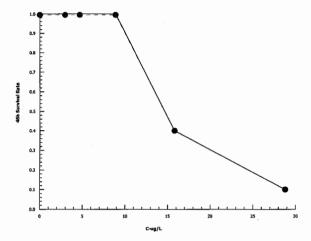
18-8609-0180

Endpoint: 48h Survival Rate **CETIS Version:**

CETISv1.8.7

Analyzed:

11 Sep-14 17:15


Analysis:

Trimmed Spearman-Kärber

Official Results:

Yes

Graphics

Freshwater Acute

Conc.		UOIM	water				Start Date & Time: End Date & Time: Test Organisms: Uly 16/U0 1315h C. duba										
mg/LFe	Rep	Numl Live Org 24	per of ganisms 48	0	Tempe (°		Dissolved Oxygen (mg/L) 48 0 24 48						ph	Conductivity (uS/cm) 0 48			
Control	A	24	5	74.5			24.0	8.2	THE THE THE THE THE THE THE THE THE THE		7.8	8.2	X CONTROL OF THE CONT	24	48 7 1 .8	205	206
Control	В		9 5			1	1		T. E		1				/ -		
	c		5														
	D	1	5														
2.5	Α	1	3	245			24.0	8		7	8.1	8.2			7.7	208	212
	В		5						TNA X. C. X					\neg			
	С		5											\neg			
	D		5										STORY AND THE STORY STOR	T			
5.0	Α		4	24.5			24.0	21			8.2	8.1			7.7	210	217
	В		3						TEXA CONTROL TO THE SECOND CONTROL TO THE SE								
	С		3							_/							
	D		3										SECTION OF THE SECTIO				
10.0	Α		ì	25.0			24.0	8.0		/	8.2	8.0	record had		7.6	218	226
	В		ŧ							/			EDGZ KRIMANIK KONET LATI ADGZ NASIANA SIŁ PATE KRIMANIK KONET KONET KRIMANIK KONET KONET KRIMANIK KONET KONET KRIMANIK KONET KONET KRIMANIK KONET KONET KRIMANIK KONET KONET KRIMANIK KONET KONET KONET KRIMANIK KONET KONET KONET KRIMANIK KONET KONET KONET KONET KRIMANIK KONET KONET KONET KONET KONET KRIMANIK KONET KONET KONET KONET KONET KRIMANIK KONET KONET KONET KONET KONET KONET KONET KONET KONET KONET KRIMANIK KONET KONE				
	С		2						20002000000000000000000000000000000000								
	D		0						WAXED TO SELECT								
20.0	Α		1	25.0			24.0	8.0			8.2	8.0	COMMAND 6. 1 12		7.2	232	240
	В		0			1	·						AND STREET STATE S				_
	С		1						149 N COTTO PRO 1	·	<u> </u>		REPORTER BOLDERS STANDARD STAN				
	D		0				(3)(4, 6)		1		0.5				12.11		11000
40.0	Α_		0	25.0		<u> </u>	24.0	8.1	1		8.2	8.0			3.4	441	450
	B <i> </i>		0	-												·	-
	C						-		1		 						
Technician Initia	D		0 Wc	EMM		E mm	JW	Emm			700	Emm			JW	thm	WE
rechnician milia				J ENTINY		THIN	7	[Cirili	<u></u>				<u> </u>				
Conc.	<u>-</u>	lardness	Alkalinity (mg/L as	CaCO3)			-		5	Sample D	Description:	For	باطفاد	vita	ri film	Cimali.	horde
control	10	-,۶	120												C (lb	- 7	water
highest conc.				-						Analy	yst Initials:	<u>Emr</u>	~ 100				
Comments:	use D	checked u	Ksolutta With anoth	ier ph n	omale neter.	Fe	made	e dau	1 of 1	restu	ng.	(Fec	13.6	H2C	5)		

Nautilus Environmental

Version 1.0: Issued November 1, 2007

Freshwater Acute

						48 Ho	ur Toxici	y Test Da	ata Sheet								
Client:	AZ	muth								Start Da	ate & Time:	Ju	14.16/1	uas	1315	^	
Sample ID:	F	ein site	water				_				ate & Time:	JU	ly 16/11	uw	13121		
Work Order No.:	t,	uuol n					-			Test (Organisms:	c. au	ba/				
Conc.		Numb			Tempe				Dissolved		1		pl	1		638	uctivity
mg/LFe	Rep	Live Org	anisms 48	0	(°C	;) 24	48	0	(mg	/L) 24	48		SKA C. JANESTER	24	48	(uS/	/cm) 48
Control	A	24	5	25.0		15.0	24.0	8.1		24	1 7.9	8.2	GGC - AMMONITE		7.9		281
Control	В	l	पँ	10), 0	THE STATE OF THE S	1	12(1.0	0,			1.1	0.0	Let (IS NATIONALLY IN A CONTROL OF THE CONTROL OF T		+ ' '		~01
	C		5			_				-+			ACCIONISTA		-		
	D	l	4			_	1	<u> </u>							<u> </u>		
2.5	Ā	-	3	755	There is a second of the secon		24.0	8.2			8.0	81	2012		0.8	2727	278
av J	В		5	(2)		_		0.2			100	()\	ACCURATE SAME OF THE SAME OF T		1		-10
	C		5			_					· 		1950	-			
	D	l	5		GANGE AND									1			
5.0	A	/	3	15.5			24.0	8.2	145 144 171 144 183 144	/ 	8.1	81			7.9	7.85	286
	В	 /	4	-						/	10,	0.\	750	_	1		
	C	 	1											1			
	D	/	5											/			
10.0	Α		Ŏ	25.5		7	24.0	8.1			8.1	8.2			7.9	290	289
	В		0				1		14 14								
	С	/	ĺ					2									
	D	/	O														
20.0	Α	17	1	25.5	CONTRACTOR OF CO		24.0	8.2			8.1	8-1			7.6	305	303
	В		0														
	С	1	0										/				
	D	/	0	200									ZCIN SH AD SO				
40,0	Α		0	76.5	CONTRACTOR	V	24.0	8.2			8.1	3.0	14		6.8	333	329
	В		0										f^{*}				
	С		0			~~~							1				
	D		0														
Technician Initial	S	L	CIE	EMM	1	tmm,	JW	Emm	L		JW	Emm			JW	emm	SW
_		Hardness	Alkalinity	0.000]		_							LAL C	u٦
Conc.	 	4(-)	(mg/L as	CaCO3)					5	ample L	Description:	-Fe	in sit	ewo	Tex C	MIC-C	-()
highest conc.			(15)				1			Anal	yst Initials:	EM	\sim				
			ناباب ابر مصد		00000		- 	بساسر	"r. L					1100	7		
Comments:	US	ed stack	LS OLUTTO	X7 100	ung/L	-tc	MODE	J ORCU	100	1763	ing.	(re	13.6	1120	/		
					~												
Davioused by		1-1	500								Det	e reviewed		-3/	Postoni	6001	2,20
Reviewed by:		706 (5	-		_				,		Dat	e ienemea	4	-	A (-	~ \ (

Nautilus Environmental

Version 1.0: Issued November 1, 2007

Report Date: Test Code:

23 Sep-14 18:08 (p 1 of 2) 14401m | 09-5074-0715

								Test	: Code:	1	4401m	09-5074-071
Ceriodaphnia	48-h Acute Surv	vival Test								Na	utilus Er	nvironmental
Analysis ID:	00-7943-3695	End	point:	48h S	urvival R	ate		CET	'IS Version:	CETISv1.	8.7	
Analyzed:	11 Sep-14 17:1	8 Ana	lysis:	Trimn	ned Spea	ırman-Kärbe	r	Offi	cial Results:	Yes		
Batch ID:	18-7278-2852	Tes	t Type:	Surviv	/al (48h)			Ana	lyst: Emn	na Marus		
Start Date:	16 Jul-14 13:15	Pro	tocol:	EPA/8	821/R-02	-012 (2002)		Dilu	ent: Labo	ratory Wate	∍r	
Ending Date:	18 Jul-14 13:15	Spe	cies:	Cerio	daphnia d	dubia		Brin	ie:			
Duration:	48h	Sou	rce:	in-Ho	use Cultu	ıre		Age	: <24h	1		
Sample ID:	00-7457-0522	Cod	le:	471DI	B1A			Clie	nt: Azim	nuth		
Sample Date:	: 16 Jul-14	Mat	erial:	Iron				Proj	ect:			
Receive Date	: 16 Jul-14	Sou	ırce:	Azimu	uth							
Sample Age:	13h	Sta	tion:	Iron V	VER (lab	water)						
Trimmed Spe	earman-Kärber E	stimates										
Threshold Op	otion Th	reshold	Trim	ı	Mu	Sigma		EC50	95% LCL	95% UCL		
Control Threshold 0			10.00	% (0.6586	0.08123		4.556	3.134	6.623		
48h Survival Rate Summary						Calcu	ılated Varia	te(A/B)				
C-mg/L	Control Type	Count	Mean	1 J	Viin	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0.049	Negative Control	4	1	1	1	1	0	0	0.0%	0.0%	20	20
0.929		4	0.9	-	0.6	1	0.1	0.2	22.22%	10.0%	18	20
3.84		4	0.65		0.6	0.8	0.05	0.1	15.38%	35.0%	13	20
9.08		4	0.2	C	-	0.4	0.08165	0.1633	81.65%	80.0%	4	20
18.1		4	0.1	C		0.2	0.05774	0.1155	115.5%	90.0%	2	20
37		4	0	C		0	0	0	············	100.0%	0	20
48h Survival	Rate Detail											
	Control Type	Rep 1	Rep 2	2 F	Rep 3	Rep 4						
0.049	Negative Control	1	1	1	I	1				•		
0.929		0.6	1	1	l	1						
3.84		0.8	0.6	C).6	0.6						
9.08		0.2	0.2	C).4	0						
18.1		0.2	0	C	0.2	0						
37		0	0	C)	0						
48h Survival	Rate Binomials	• • • •										
C-mg/L	Control Type	Rep 1	Rep 2	2 F	Rep 3	Rep 4						
0.049	Negative Control	5/5	5/5	5	5/5	5/5						

5/5

3/5

0/5

0/5

0/5

Analyst:_____ QA: \$14

0.929

3.84

9.08

18.1 37 3/5

4/5

1/5

1/5

0/5

5/5

3/5

1/5

0/5

0/5

5/5

3/5

2/5

1/5

0/5

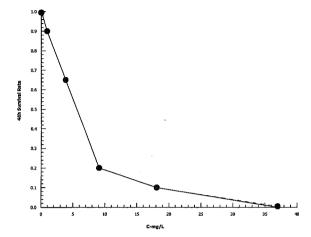
Report Date: Test Code:

23 Sep-14 18:08 (p 2 of 2) 14401m | 09-5074-0715

Nautilus Environmental Ceriodaphnia 48-h Acute Survival Test

Analysis ID: Analyzed:

00-7943-3695 11 Sep-14 17:18 Endpoint: 48h Survival Rate Trimmed Spearman-Kärber Analysis:


CETIS Version:

CETISv1.8.7

Official Results:

Yes

Graphics

Report Date: Test Code: 11 Sep-14 17:20 (p 1 of 2) 14401n | 04-9779-1062

Ceriodaphnia	48-h Acute Surviva	l Test					Nautilus Environmental
Analysis ID: Analyzed:	10-9299-2065 11 Sep-14 17:20	Endpoint: Analysis:	48h Survival F Untrimmed Sp	Rate bearman-Kärber	CETIS Vei Official Re		CETISv1.8.7 Yes
Batch ID: Start Date: Ending Date: Duration:	15-3962-0861 16 Jul-14 13:15 18 Jul-14 13:15 48h	Test Type: Protocol: Species: Source:	Survival (48h) EPA/821/R-02 Ceriodaphnia In-House Cult	2-012 (2002) dubia	Analyst: Diluent: Brine: Age:		a Marus Water
•	19-4546-0421 27 Jun-14 15:05 28 Jun-14 10:00 18d 22h	Code: Material: Source: Station:	73F55EC5 Iron Azimuth Iron WER (Mi	-I-04 site water)	Client: Project:	Azim	uth
Threshold Opt	Spearman-Kärber Estimates Threshold Option Threshold		Mu	Sigma		6 LCL	95% UCL
Control Thresh	old 0.1	0.00%	6 0.7585	0.03936	5.734 4.78	84	6.874

48h Survi	val Rate Summary										
C-mg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0.019	Negative Control	4	0.9	0.8	1	0.05774	0.1155	12.83%	0.0%	18	20
2.13		4	1	1	1	0	0	0.0%	-11.11%	20	20
1.89		4	0.65	0.2	1	0.1708	0.3416	52.55%	27.78%	13	20
0.23		4	0.05	0	0.2	0.05	0.1	200.0%	94.44%	1	20
9.5		4	0.05	0	0.2	0.05	0.1	200.0%	94.44%	1	20
37.3		4	0	0	0	0	0		100.0%	0	20

48h Survival Rate Detail C-mg/L **Control Type** Rep 2 Rep 3 Rep 4 Rep 1 0.8 0.019 **Negative Control** 1 8.0 2.13 1 1 1 1 0.6 8.0 0.2 1 4.89 0 0.2 0 9.23 0 0 0 0 0.2 19.5 0 0 0 0 37.3

48h Survival Rate Binomials C-mg/L **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 5/5 4/5 Negative Control 5/5 4/5 0.019 2.13 5/5 5/5 5/5 5/5 1/5 5/5 4.89 3/5 4/5 0/5 0/5 1/5 0/5 9.23 1/5 0/5 0/5 0/5 19.5 37.3 0/5 0/5 0/5 0/5

Analyst: QA Sept 19/14

Report Date:

11 Sep-14 17:20 (p 2 of 2)

Test Code:

14401n | 04-9779-1062

Ceriodaphnia 48-h Acute Survival Test

Nautilus Environmental

Analysis ID:

10-9299-2065

Endpoint: 48h Survival Rate

CETIS Version:

CETISv1.8.7

Analyzed: 11 Sep-14 17:20

Analysis: Untrimmed Spearman-Kärber Official Results:

Yes

Graphics

						46 HOL	IL I OXICIT	y lest L	ata Snee															
Client: Sample ID: Work Order No.:	Lea	nuth d wer 401 g	lab water	Σ					,	Start Da End Da Test C	te & Time: te & Time: Organisms:	July 3 C. dub	o 114@_* 114@_* ia	July Duly	July 1/14@1400h Tuly 3/14@1400h Conductivity (uS/cm) (uS/cm) 24 48 0 48 & 280 294 A2 280 291 A2 280 291 A2 280 294 A2 280 294 A2 280 294									
Conc.		Numb		様	Tempe	erature				d Oxygen		8	pH			Cond								
Mg/L Pb	Rep	Live Org		0	(°(C)		0	(m	g/L)	T 40		77 VALUE DEL DINK MARKEN		- 40									
	١.	24	4 <u>8</u> 5	24.0	4.00	26.3	2570	8,0		24	48	8.1		74										
Control	A		- (α 1.O		25.5	72 10	0.0		 /	72	011	ZZANYA ZAN	_/	25	AOU	2							
	В				WHITE AND THE SE			·		 /		<u> </u>	100 mm m	-/-			 							
****	C				8	/		8		/		3		/			 							
62.5	1			200		25,0	200	8.0	31 / SES ARRES	/	72	8,2	ST SECRETARY		~0.7	260	1 0 1							
68.5	A B			94.0	10 250 G 151	20,7	100	DiO		-/	172	8,2	SECTION STATE	_/	20	80C	351							
	С				2.920665 strakes 5				AND THE SECTION OF TH	-/-	 		EXCEPTION OF THE											
	D	/		類 第						//	 			/		<u> </u>								
125	A			24,0	2000 2000	25.0	25)3	80	25 (2) 46 (2) (26) 12 (2) (2) (2) (2) (2) 12 (2) (2) (2) (2) (2) (2)	/	7.2	8.2	Chirmonia Chirmonia		<i>E</i>)	260	201							
رها	В			9 1/0		1/3	123,1	0.0	AND THE SECTION OF TH	-/	17.0	0.0	Santas Principal		76	<i>α00</i>	127							
·	C						-			-	 -		FIRST CONTROL OF THE			<u> </u>	 							
	D	/								/	 	8		/			-							
<i>a</i> 50	A		-	240		150	25,0	8.0			121	8,2			6.1	28/2	201							
<u> </u>	В			3 40		23	123,	0,0	NEW THOMAS	- /	101	0.0	CACCAMPINATE AND AND AND AND AND AND AND AND AND AND	-/	1 2,0	20U	(0)							
	C	-/		<u> </u>					1000	/	 					<u> </u>	 							
	D	/		N.	100000			9		/	<u> </u>			/	 	å	1							
500	A		ÿ	94.0		25.0	250	8,0	CHARLES A CARROLL	-	172	8.2		' 	21	280	2-54							
	В		4	57.0	BLANDS ON SELECT		1	UiO		/	17,0	B, a	AP A THE STATE OF	-/	20	400	1-0							
	c		4/		CHRISTON E				655050 E.J	- /-							 							
	D	/	7					i -	104 WESSE	/			AL CARREST	/			+1							
1000	A		Š	24.0	CALLEY SERVICE	2573	25/0	80	CALINDA MILL	/	72	8.1	DECEMBER 100 CHEST CONTROL OF THE SECOND CON	$\overline{}$	R2.	280	224							
1000	В		9	2 110		000			CERTAIN CONTROL OF CON	- /	17,0	0.,			1.70	400								
	c		Q								1			-										
	D		0											/										
Technician Initial	s		A-,	KUP		^	A-7	Ker			1-	rue			7	KUP	1.~							
)		lardness	Alkalinity]		٠				1		٠. ١									
Conc.	N	OF	(mg/L as 0	acos)			1			Sample D	escription:	Percer	soiked kuB water	<u>1740 (</u>	20 Mg/L	norane>>								
highest conc.	-		- 10	_			1			Analy	st Initials:	YLP.EM	M											
Comments:	Used	Stock so	lutions lo	00 mg/LP	o made	Jul 30	ing (made f	ron Po	(²)														
Reviewed by:		1.6	T.		_						Date	e reviewed:	_	Sej	Hem	bel 1	9,2014							

Version 1.0: Issued November 1, 2007

Nautilus Environmental

Client:	AZin	nuth					Start Date & Time: Tuly 10 1400h End Date & Time: Tuly 20 1400h Test Organisms: Cadubia 144										
Sample ID: Work Order No.:	Lea	uol me h	L (site wa	Hec.)			-			Test C	rganisms:	Cadub	10	1 Juli	30 1400)Y)	
		401 gre h										CILAR					
Conc.	Bon	Numb Live Org				erature C)			Dissolved (mg				, р	H			uctivity /cm)
ugil Pb	Rep	24	48	0	dalia	24	48	0		24	48	0		24	48	0	48
Control	Α		3	24.D		25,0	2570	8,0		7	73	8.4			かれ	278	281
	В								GERTEL CONT. GERTEL CORRES GERCEN I STATES GERCEN I STATES	7			SCHOOL STATE	/			
	С																
	D								190 mm. 190 mm. 190 mm.	/				/			
69.5	Α	/		24,0		25,0	200	8,0			7.3	8,3			82	278	281
	В																
	С			2 200					TRACE I DE CONTROL DE								
	D																
125	Α			24,0		250	2000	8.0			72	8,3			22	978	280
	В			20 Aug								100			٠		
	С			<u> </u>					TEACH TO								
	D				NAME OF THE PARTY OF			8	A STORY OF THE STO		7			/		Ž.	io
250	Α			ଅଧ୍ୟ ତ		200	200	8.0	175 (20) 11 (10)	/	22	6,3		/	テン	977	18/281
	В						<u> </u>		100 A		,						
	С		/						1000							156 87	
	D		1		1,000					/				/			
500	Α		7 3	94,0	CONTRACTOR CONTRACTOR	25,3	200	9.0	PERCENTAGE IN	/	13	8.3		/	アフ	278	280
	В		4					<u> </u>	2 12548 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			8	30 30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				ļ
	С		3							/_							
	D		4				<u> </u>		E PRESENT	_			PARTITION OF THE PARTIT				
1000	Α		۵	34.0		25.0	200	8'0	Bic Pak	/	7 73	8.3			らい	278	250
	В				N. SANTEN AND SANTEN				C SECOND OF				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				<u> </u>
	С												N. 146.25	/_			
	D	<u> </u>)					5.78					Parting in the same of the sam	/		10.77	ļ
Technician Initia	s		<u> </u>	Lu	L	<u> </u>	<u> ~ </u>	Cup	-		L_^_	Lup			<u> </u>	Kur	1 pus
_		Hardness	Alkalinity]			D1- D			***	A		٠١٠- ٠٨	u_014
Conc.	 	146	(mg/L as C	CaCO3)			1		;	Sample D	escription:	leaci	Spile	X INTO	she w	ARC NI	H-09
highest conc.	<u> </u>	140	11-1	-			<u> </u>			Analy	st Initials:	KUL 900	<u>)(^)</u>				
Comments:	Usea	d stars	colution 8	100 mg/	Chade	Ine 30	olin (adl from	· Pocla)								
																	= ->-/
Reviewed by:	A. 100g											e reviewed:	:	Sept	embe	all f	2014 ental
Version 1.0: leaver	Novemb	hor 1 2007	/\											-0	Nautili	ıs Environmı	ental

Report Date:

11 Sep-14 16:50 (p 1 of 2)

Test Code: 14401g | 01-0873-3092

							10.	it oode.		177019	101-0075-50.
Ceriodaphni	a 48-h Acute Surv	rival Test							Na	utilus E	nvironmenta
Analysis ID:	06-0765-8096	End	point:	48h Survival Ra				TIS Version:		.8.7	
Analyzed:	11 Sep-14 16:5	0 Ana	alysis:	Untrimmed Spe	earman-Kä	irber	Off	icial Results	: Yes		
Batch ID:	20-0367-8918	Tes	t Type:	Survival (48h)			An	alyst: Em	ma Marus		
Start Date:	01 Jul-14 14:00	Pro	tocol:	EPA/821/R-02-	012 (2002)	Đil	u ent: Lab	oratory Wat	er	
Ending Date	: 03 Jul-14 14:00	Spe	ecies:	Ceriodaphnia d	lubia		Bri	ne:			
Duration:	48h	Sou	ırce:	in-House Cultu	re		Ag	e: <24	lh		
Sample ID:	18-5358-1686	Co	de:	6E7B6976			Cli	ent: Aziı	muth		
Sample Date	: 30 Jun-14	Ma	terial:	lead			Pre	oject:			
Receive Date	e: 30 Jun-14	Soi	ırce:	Azimuth							
Sample Age	: 38h	Sta	tion:	Lead WER (lab	water)						
Spearman-K	ärber Estimates										
Threshold O	ption Th	reshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL		
Control Thres	shold 0		0.00%	6 2.468	0.0157		294	273.5	316.1		
Test Accepta	ability Criteria										
Attribute	Test Stat	TAC Lim	its	Overlap	Decisio	n					
Control Resp	1	0.9 - NL		Yes	Passes .	Acceptability	Criteria				
48h Survival	Rate Summary				Calc	culated Varia	ate(A/B)			_	
C-μg/L	Control Type	Count	Mean	,	Max	Std Err	Std Dev		%Effect	Α	В
	Negative Control	4	1	1	1	0	0	0.0%	0.0%	20	20
28.6	,	4	1	1	1	0	0	0.0%	0.0%	20	20
61.8		4	1	1	1	0	0	0.0%	0.0%	20	20
133		4	1	1	1	0	0	0.0%	0.0%	20	20
301		4	0.85	0.8	1 0	0.05	0.1	11.76%	15.0%	17	20
329	·	4	0	0	<u> </u>	0	0		100.0%	0	20
48h Survival		D 4	Don (Dam 2	Don 4						
	Control Type Negative Control	Rep 1	Rep 2	Rep 3	Rep 4						
28.6	110gative Control	1	1	1	1						
20.0 31.8		1	1	1	1						
133		1	1	1	1						
133 301		0.8	0.8	0.8	1						
329		0.8	0.8	0.8	0						
·		-		<u> </u>							
	Rate Binomials										
C-µg/L	Control Type	Rep 1	Rep 2		Rep 4						
0	Negative Control		5/5	5/5	5/5						
28.6		5/5	5/5	5/5	5/5						

Analyst:

61.8

133

301

329

5/5

5/5

4/5

0/5

5/5

5/5

4/5

0/5

5/5

5/5

4/5

0/5

5/5

5/5

5/5

0/5

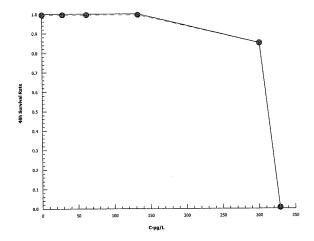
Report Date: Test Code:

11 Sep-14 16:50 (p 2 of 2) 14401g | 01-0873-3092

Nautilus Environmental

Ceriodaphnia 48-h Acute Survival Test

06-0765-8096 11 Sep-14 16:50 Endpoint: 48h Survival Rate Analysis:


Untrimmed Spearman-Kärber

CETIS Version: Official Results: Yes

CETISv1.8.7

Analyzed: Graphics

Analysis ID:

CETIS™ v1.8.7.16

Report Date: Test Code:

EC50

0

95% LCL 95% UCL

100.0%

0

20

11 Sep-14 16:51 (p 1 of 2)

14401h | 15-3953-0882

					•	
Ceriodaphnia	48-h Acute Surviva	l Test				Nautilus Environmental
Analysis ID:	14-4772-4974	Endpoint:		CETIS Ver		CETISv1.8.7
Analyzed:	11 Sep-14 16:51	Analysis:	Untrimmed Spearman-Kärber	Official Re	suits:	Yes
Batch ID:	16-0069-7706	Test Type:	Survival (48h)	Analyst:	Emm	a Marus
Start Date:	01 Jul-14 14:00	Protocol:	EPA/821/R-02-012 (2002)	Diluent:	Site V	Vater
Ending Date:	03 Jul-14 14:00	Species:	Ceriodaphnia dubia	Brine:		
Duration:	48h	Source:	In-House Culture	Age:	<24h	
Sample ID:	18-0801-3590	Code:	6BC41916	Client:	Azim	uth
Sample Date:	27 Jun-14 15:05	Material:	lead	Project:		
Receive Date:	28 Jun-14 10:00	Source:	Azimuth			
Sample Age:	95h	Station:	Lead WER (MH-04 site water)			

Spearman-Kärber E	stimates
-------------------	----------

Threshold

Trim

Mu

0

Threshold Option

Control Threshold 0			0.00%	2.512	0.02666		325.4	287.8	367.9				
48h Survi	ival Rate Summary			Calculated Variate(A/B)									
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В		
0.292	Negative Control	4	1	1	1	0	0	0.0%	0.0%	20	20		
40.5		4	1	1	1	0	0	0.0%	0.0%	20	20		
47.1		4	1	1	1	0	0	0.0%	0.0%	20	20		
188		4	1	1 .	1	0	0	0.0%	0.0%	20	20		
243.5		4	0.7	0.6	0.8	0.05774	0.1155	16.5%	30.0%	14	20		

0

Sigma

48h Survival Rate Detail

623

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0.292	Negative Control	1	1	1	1
40.5		1	1	1	1
47.1		1	1	<u>,</u> 1	1
188		1	1	1	1
243.5		0.6	8.0	0.6	8.0
623		0	0	0	0

48h Survival Rate Binomials

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0.292	Negative Control	5/5	5/5	5/5	5/5	
40.5		5/5	5/5	5/5	5/5	
47.1		5/5	5/5	5/5	5/5	
188		5/5	5/5	5/5	5/5	
243.5		3/5	4/5	3/5	4/5	
623		0/5	0/5	0/5	0/5	

Analyst:

Report Date:

11 Sep-14 16:51 (p 2 of 2)

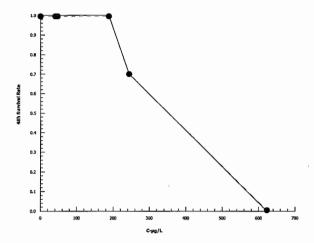
Test Code:

14401h | 15-3953-0882 **Nautilus Environmental**

Ceriodaphnia 48-h Acute Survival Test

14-4772-4974 11 Sep-14 16:51 Endpoint: Analysis:

48h Survival Rate Untrimmed Spearman-Kärber **CETIS Version:**


CETISv1.8.7

Official Results:

Yes

Analyzed: Graphics

Analysis ID:

						48 Ho	ur Toxici	ty Test D	ata Shee	t							
Client: Sample ID: Work Order No.:	_ Zin	nuth C WER	<u>lab water</u>	')			- -			Start Da End Da Test C	te & Time: te & Time: Organisms:	June 3 July Codul	0 114@ 2 114@ 01a	1400h 1400h			
Conc.	Т	Numl	per of		Temp	erature				d Oxygen				рН			luctivity
ugil Zn	Rep	Live Org 24		-	. (° Fasesassessons	C) 24	1 40	 	(m	g/L) 24	10	I	ELEKTREEKENSKES	0.4	1 40		S/cm)
Control	A	24	48	24,0	35:33230	24.5	24.5	7.7		24	7.9	8,2		24	82	307	307
Control	В		5	ayıu		W-JI2	2417	4.1		/	7.	610		 /	O.X	1~,	1001
	C		5						THE SECTION OF THE SE	/				1/			
	D		15						0.4885.000.000.000 0.4885.000.000.000.000 0.4885.000.000.000.000 0.4885.000.000.000.000	/	 		6008194P112111	1/	1		
50	Α		5	94.0		24,5	34,5	7.7		/	7.3	8.3			83	310	311
	В		5	S									PS SANAGE SANAGE SANAGE NEW SECOND SANAGE SANAGE PENDALAGO SANAGE				
	С		Ч														
	D		4		TICHTINESS												
100	Α		5	24.0		2415	24,5	7.7	10000000000000000000000000000000000000		7.3	8,3			8.3	307	310
	В		4														
	С		4											1/_			
	р.		3							1			CONTRACTOR	/			
<i>a</i> 00	Α		1	a4 ,0		24,5	24,5	7.7	ENGLISHMENT OF THE PROPERTY OF	/	7.2	8,3		/	8.3	304	311
,	В		3		GREAT A PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF THE PROTECT AND CONTROL OF T				CONTROL OF THE PROPERTY OF THE		<u> </u>		\$25000000000000000000000000000000000000			<u> </u>	
	С	/	1							/_	-	<u> </u>		+/-		1	
1100	D,		3	0				4		1	100			/			
400	Α		<u> </u>	a4,0		a4,5	24.5	7,7	100 100 100 100 100 100 100 100 100 100	/	7.3	8.a		 /	8.3	360	303
	В		1				ļ	!					67(E) 6-6653 6-48000000000	/-			
	C		2							//	-		3.728/6.1374.1314. 3.728/6.274.48	-/-			
800	D '	1	1	24.0		2015	3.5			/	772	A 2	THE TOTAL STATE OF THE STATE OF	 	0.0	200	202
1	A		0	34.0		34,5	24,5	7.7	SEEDER CONTROL OF THE PROPERTY	 	7.3	8.3	11 (21 (4 E) PER 15 E	/	82	ଅଟ୍ର	292
	В	/	0	1	CONTRACTOR OF THE						-		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-/-			
		/	ŏ				 				 			 / 			+
Technician Initia			rel	YUR	ED 01 4 6 0 H 0 Q Q D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J.P	re	Xue	HIII./21111.25011032-2341		thin	YW	Pillivanni-ill anslateth	<u></u>	Emm	cio	tinn
		lardness	Alkalinity				1								,		
Conc.			(mg/L as	CaCO3)			1		!	Sample D	escription:	Zinc	SOIXEC	l into 11	00 mall	hardness	
control	ì	OP	78									Perrier	laB wa	ler	00 mg/L		
highest conc.	_					7.0	J			Analy	st Initials:	KLP, En	<u> </u>				
Comments:	Used	Stock &	Rutions 1	10ns P	(9,78 m	اري).											
		,													,		, , ,
Reviewed by:		A. (org								Date	e reviewed	:	Sep	temb	er 19	, 201°

Nautilus Environmental

Version 1.0: Issued November 1, 2007

						48 Ho	ur Toxicii	ty Test D	ata Shee	t .							
Client:	Azin	nuth								Start Da	te & Time:	June 3	30114@	14004			
Sample ID:	- Zi	nc "WEP	k (site w	uter)			-			End Da	te & Time: te & Time: Organisms:	July ?	2/140	1400h			
Work Order No.:		401 b					-			rest C	organisms:	Codul	oia				
Conc.		Numb	per of		Temp	erature				d Oxygen				рΗ			uctivity
USIL ZN	Rep	Live Org			C SANAMATINA MARKATI	°C)	1 40		(m	g/L)	1 40		NA NATINA PARENCE II	1 04	40		S/cm)
	+ .	24	48 2 5	94'0		24 245	48 24,5	7.9	A STORY OF STREET	24	7.4	8,3	AND CONTROLS ***********************************	24	8.5	a73	2 7 8
Control	A B		5	94.0		9417	ami)	119	RESOURCE STREET	/	7.3	018	XXIII CARROLER REEC ARAMONAR	 	10.7	412	210
	C		5			12 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	 		CONTROL SERVICES	- /-		-	Ethodeek kandek sit XXXX daek kandek sit XXX daek kandek sit XXX daek sit daek sit daek	-/-			\vdash
	D		5							/		-		/			1
50	A		5	୭୳୵ଠ		34.5	ayıs	7.9		\	7.4	8,3	000000000000000000000000000000000000000	/	181	273	279
	В		Ś				1					0, ,					
	C		Ч						100000000000000000000000000000000000000				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
	D		4			N N											
100	Α		14	34.0		24.5	24,5	7.9	CANDODE NEW TO SERVICE	/	7.3	8,3	2513200030000 25181222214422 25141222214422		84	156	276
	В		à		PROPERTY OF STREET	X X X X			CENTRAL STREET								
	С		3			*											-
	D	/	, 4							/				/			
a00	A		1	94,D	69 (50 N 19 A 1 6 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.5	24,5	7.9			7.4	8.3			8.4	269	275
	В		1													1	
	C		Y						E - 122 E - 418	 / _			E 100 000 000 000 000 000 000 000 000 00	 			
1400	l D	/	1	24.5	EFRON XERNOS	2115	2016		MACHEN LANCON	/	(0.)	0.0	PORTUGE PARTIES	/	000	21.2	00.0
400	A		Ő	24,0		24,5	24,5	7.9	OSSOCIATION OF SENT	 /	17.4	8.3	SCHOOL STREET,	 	8.4	963	270
	В		Ò						DESCRIPTION OF THE PROPERTY OF	 /-	-			 	\vdash	1	_
	C		0							 /	1			 / 			1
900	A		0	9410		24.5	ayıs	7.9			74	رد و		/ /	8.3	259	261
100	T B		8	0 10	C308884 113+7640	44.7	W 10)			 	1.00	817	88888884 88888884	 	0.2	457	1
	c		0			*			024822 44488222 028822 128822 028822424 028822424				RESERVED TO SECURE	1/			
	T _D		Ø						- 21 × 22 × 23 × 23 × 23 × 24 × 24 × 24 × 24	/				/		*	
Technician Initia	ls		KLP	we	V	vl	KUP	YUR			FINM	YLP			EMM	w	tmm
		Hardness	Alkalinity									_		۸ .			
Conc.		ù 16		CaCO3)			_			Sample D	escription:	<u>Zinc</u>	<u> 50186</u>	<u>d into</u>	site w	wher M	#-04
control highest conc.		146	110	<u>7</u>			-			Analy	yst Initials:	XIP SM	200				
		٨	Λ.	. –	[a a=	30					,		13				
Comments:	Usea	l staces	colution s	MENOI	A 148 W	31C)			· · · ·								
																-	
		1-1	The								_			Seal	nul n	110	,2014
Reviewed by:		A. C									Date	e reviewed	:	XV.	ennoe	7 17	101

Version 1.0: Issued November 1, 2007

Nautilus Environmental

Report Date: Test Code:

11 Sep-14 16:26 (p 1 of 2)

14401 | 03-1843-3944

Ceriodaphnia	48-h Acute Surviva	Test			Nautilus Environmental
Analysis ID: Analyzed:	03-1179-2665 11 Sep-14 16:26	Endpoint: Analysis:	48h Survival Rate Trimmed Spearman-Kärber	CETIS Ver Official Re	rsion: CETISv1.8.7 results: Yes
Batch ID:	20-6968-9064	Test Type:	Survival (48h)	Analyst:	Emma Marus
Start Date:	30 Jun-14 14:00	Protocol:	EPA/821/R-02-012 (2002)	Diluent:	Laboratory Water
Ending Date:	02 Jul-14 14:00	Species:	Ceriodaphnia dubia	Brine:	
Duration:	48h	Source:	In-House Culture	Age:	<24
Sample ID:	08-4035-6405	Code:	3216D235	Client:	Azimuth
Sample Date:	30 Jun-14	Material:	Zinc	Project:	
Receive Date:	30 Jun-14	Source:	Azimuth		
Sample Age:	14h	Station:	Zinc WER (lab water)		

Trimmed	Snearman.	.Kärher	Estimates
1 CHINITEG	Optailiaii.	-rai Dei	Louinateo

Test Stat TAC Limits

Threshold Option	,	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold		0	10.00%	2.167	0.06572	146.7	108.4	198.6

Decision

Overlap

Test Acceptability Criteria

Attribute

Control Res	sp 1	0.9 - NL		Yes	Passes	Acceptability	Criteria				
48h Surviv	al Rate Summary				Cal	culated Varia	ite(A/B)				
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	Negative Control	4	1	1	1	0	0	0.0%	0.0%	20	20
1.45		4	0.9	8.0	1	0.05774	0.1155	12.83%	10.0%	18	20
′ 3.9		4	0.8	0.6	1	0.08165	0.1633	20.41%	20.0%	16	20
158.5		4	0.4	0.2	0.6	0.1155	0.2309	57.74%	60.0%	8	20
332.5		4	0.25	0.2	0.4	0.05	0.1	40.0%	75.0%	5	20
338.5		4	0	0	0	0	0		100.0%	0	20

48h Survival Rate Detail

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	1	1	1	1
41.45		1	1	8.0	0.8
73.9		1	8.0	8.0	0.6
158.5		0.2	0.6	0.2	0.6
332.5		0.2	0.2	0.4	0.2
638.5		0	0	0	0

48h Survival Rate Binomials

0 Negative Control 5/5 5/5 5/5 5/5 41.45 5/5 5/5 4/5 4/5 73.9 5/5 4/5 4/5 3/5 158.5 1/5 3/5 1/5 3/5 332.5 1/5 1/5 2/5 1/5 638.5 0/5 0/5 0/5 0/5	C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
73.9 5/5 4/5 3/5 158.5 1/5 3/5 1/5 3/5 332.5 1/5 1/5 2/5 1/5	0	Negative Control	5/5	5/5	5/5	5/5
158.5 1/5 3/5 1/5 3/5 332.5 1/5 1/5 2/5 1/5	41.45		5/5	5/5	4/5	4/5
332.5 1/5 1/5 2/5 1/5	73.9		5/5	4/5	4/5	3/5
	158.5		1/5	3/5	1/5	3/5
638.5 0/5 0/5 0/5	332.5		1/5	1/5	2/5	1/5
0.00	638.5		0/5	0/5	0/5	0/5

CETIS Analytical Report

Report Date: Test Code:

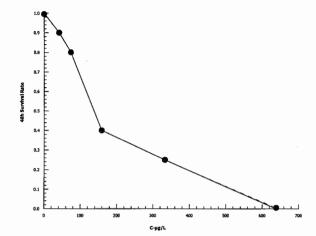
11 Sep-14 16:26 (p 2 of 2)

Ceriodaphnia 48-h Acute Survival Test

ode: 14401 | 03-1843-3944

Nautilus Environmental

Analysis ID: Analyzed: 03-1179-2665 11 Sep-14 16:26 Endpoint: 48h Survival Rate
Analysis: Trimmed Spearman-Kärber


CETIS Version:

CETISv1.8.7

Official Results: Yes

Yes

Graphics

___ 0A 30+19/4

Analyst:

CETIS™ v1.8.7.16

CETIS Analytical Report

Report Date: Test Code: 11 Sep-14 16:32 (p 1 of 2) 14401b | 11-2356-9853

								lest	Code:		144010	11-2300-900
Ceriodaphr	nia 48-h Acute Surv	ival Test								Na	utilus En	vironmenta
Analysis ID	: 02-1951-6979	End	point:	48h Sui	rvival Ra	ate		CETI	S Version:	CETISv1	.8.7	
Analyzed:	11 Sep-14 16:33		lysis:	Trimme	d Spea	rman-Kärbe	er .	Offic	ial Results:	Yes		
Batch ID:	02-8549-0219	Tes	t Type:	Surviva	l (48h)	-		Anal	yst: Emn	na Marus		
Start Date:	30 Jun-14 14:00		tocol:			012 (2002)		Dilue	ent: Site	Water		
Ending Dat	te: 02 Jul-14 14:00	Spe	cies:	Cerioda	phnia d	lubi a		Brine	e:			
Duration:	48h		ırce:	In-Hous				Age:	<24			
Sample ID:	01-1974-3213	Cod	le:	72322E	D			Clier	nt: Azim	nuth		
•	te: 27 Jun-14 15:05	_	erial:	Zinc				Proje	ect:			
•	ite: 28 Jun-14 10:00		rce:	Azimutl	n			•				
Sample Ag			tion:	Zinc W	ER (MH	l-04 site wa	ter)					
Trimmed S	pearman-Kärber Es	stimates										
Threshold	Option Th	reshold	Trim	M	u	Sigma	-	EC50	95% LCL			
Control Thre	eshold 0		10.00	1.9	99	0.04741		97.71	78.54	121.5		
48h Surviva	al Rate Summary					Calc	ulated Varia	te(A/B)				
C-μg/L	Control Type	Count	Mean	Mi	in	Max	Std Err	Std Dev	CV%	%Effect	Α	В
7	Negative Control	4	1	1		1	0	0	0.0%	0.0%	20	20
44.45		4	0.9	0.8	3	1	0.05774	0.1155	12.83%	10.0%	18	20
81.25		4	0.65	0.4	4	0.8	0.09574	0.1915	29.46%	35.0%	13	20
152		4	0.2	0.2	2	0.2	0	0	0.0%	80.0%	4	20
330		4	0	0		0	0	0		100.0%	0	20
671.5		4	0	0		0	0	0		100.0%	0	20
48h Surviva	al Rate Detail											
C-µg/L	Control Type	Rep 1	Rep 2	2 Re	ep 3	Rep 4						
7	Negative Control	1	1	1		1				-		
44.45		1	1	0.8	3	0.8						
81.25		0.8	0.4	0.6	3	0.8						
152		0.2	0.2	0.2	2	0.2						
330		0	0	0		0						
671.5		0	0	. 0		0						
48h Surviva	al Rate Binomials											
C-µg/L	Control Type	Rep 1	Rep 2	2 Re	p 3	Rep 4						
7	Negative Control	5/5	5/5	5/	5	5/5						
44.45		5/5	5/5	4/	5	4/5						
81.25		4/5	2/5	3/	5	4/5						
152		1/5	1/5	1/9	5	1/5						
-					_							

Analyst: QASOTIGITY

0/5

0/5

0/5

0/5

330

671.5

0/5

0/5

0/5

0/5

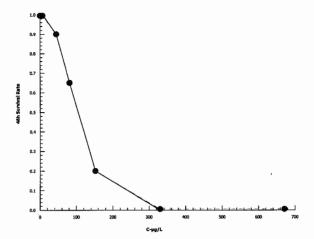
CETIS Analytical Report

Report Date: Test Code: 11 Sep-14 16:32 (p 2 of 2)

14401b | 11-2356-9853

Ceriodaphnia 48-h Acute Survival Test

Nautilus Environmental


Analysis ID: Analyzed: 02-1951-6979 11 Sep-14 16:32 **Endpoint:** 48h Survival Rate **Analysis:** Trimmed Spearman-Kärber

CETIS Version:

: CETISv1.8.7

Official Results: Yes

Graphics

BRITISH COLUMBIA

Fax 604.357.1361

8664 Commerce Court Burnaby British Columbia Canada V5A 4N7 Phone 604,420.8773

Chain of Custody

Page

or 8 Spate

0952

								- 6	<u>그</u>								Calingments
Sample Collection by:								五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五	#	ナエ	ANAL	YSIS RE	EQUIRI	ED			
Report to: Company Address City Contact Phone No.	Prov			C	Contact		Azimuth ProvPC	Caubia w	P. Subcopitata W					1			PT TEMPERATURE (*G)
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NUMBER OF CONTAINERS		COMMENTS	 		487							BECEIP
MH-04 MH-05	Jug27 114 Jug27 114	1505 1545		1L X 1L X 20L	X I		For mixture Test	X						-			95
Water Effects Ratio						N.	sing mill-ou as six water			X							
							\mathbb{Q}_{0}										
						- AND GARAGE										ļ	
PROJECT INFORMATI	ION	TOTAL	SAMI LNO OF CO	IPLE RECE ONTAINER			RELINQUISHED BY (CLIENT)					BY (COL	JRIER)				
P.O. NO.	,	RECIC	GOOD CO	NOTION			(Signature) (Printed Name)			(Signatu (Printed							(Time) (Date)
SHIPPED VIA:							(Company)			(Compa	ny)						
SPECIAL INSTRUCTIONS/COM	uments:						RECEIVED BY (COURIER)				1 13	LABORA 2/2				ł	(e 0)
							(Signature) (Printed Name)		(Time) (Date)	(Signatu	10 Kg		ers,				4281H
		E					(Company)		(Date)	(Printed	Name)						(Date)

APPENDIX B - Chemistry Data

NAUTILUS ENVIRONMENTAL

ATTN: Krysta Pearcy 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 30-JUN-14

Report Date: 09-JUL-14 10:09 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1479858

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 2, OL-1357

Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1479858-1	L1479858-2	L1479858-3	L1479858-4	L1479858-5
	Description Sampled Date Sampled Time Client ID	Water 30-JUN-14 13:00 10% MH-04 (LAB WATER DILUTION)	Water 30-JUN-14 13:00 50% MH-04 (LAB WATER DILUTION)	Water 30-JUN-14 13:00 100% MH-04 (LAB WATER DILUTION)	Water 30-JUN-14 13:00 0.1% MIXTURE (MH-04 DILUTION)	Water 30-JUN-14 13:00 0.3% MIXTURE (MH-04 DILUTION)
Grouping	Analyte	BIEGITON)	DILOTION)	DIEG HON)		
WATER	•					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Antimony (Sb)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Total (mg/L)	0.018	0.017	0.019	0.019	0.019
	Beryllium (Be)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.20
	Cadmium (Cd)-Total (mg/L)	<0.10	<0.010	<0.010	<0.010	<0.010
	Calcium (Ca)-Total (mg/L)	54.7	58.7	56.6	55.8	56.8
	Chromium (Cr)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cobalt (Co)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Iron (Fe)-Total (mg/L)	0.060	<0.030	<0.030	<0.030	<0.010
	Lead (Pb)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Lithium (Li)-Total (mg/L)	<0.030	<0.010	<0.030	<0.030	<0.030
	Magnesium (Mg)-Total (mg/L)	2.45	2.37	2.62	2.57	2.63
	Manganese (Mn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Nickel (Ni)-Total (mg/L)		<0.050			
	Phosphorus (P)-Total (mg/L)	<0.050		<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Selenium (Se)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Silicon (Si)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag)-Total (mg/L)	2.66	2.52	2.84	2.80	2.86
	Sodium (Na)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Strontium (Sr)-Total (mg/L)	<2.0	2.8	<2.0	<2.0	<2.0
	Thallium (TI)-Total (mg/L)	0.190	0.246	0.188	0.185	0.188
	Tin (Sn)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Titanium (Ti)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Vanadium (V)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Zinc (Zn)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
Dissolved Metals	Dissolved Metals Filtration Location	0.0053	<0.0050	0.0073	0.0170	0.0268
Hetais	Aluminum (Al)-Dissolved (mg/L)	LAB	LAB	LAB	LAB	LAB
	Antimony (Sb)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Beryllium (Be)-Dissolved (mg/L)	0.018	0.016	0.019	0.019	0.019
	20., main (20, 213301404 (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479858-6 Water 30-JUN-14 13:00 1% MIXTURE (MH- 04 DILUTION)	L1479858-7 Water 30-JUN-14 13:00 3% MIXTURE (MH- 04 DILUTION)	L1479858-8 Water 30-JUN-14 13:00 10% MIXTURE (MH-04 DILUTION)	L1479858-9 Water 30-JUN-14 13:00 30% MIXTURE (MH-04 DILUTION)	L1479858-10 Water 30-JUN-14 13:00 100% MIXTURE (85% MH-04, 15% MH-25)
Grouping	Analyte					WIH-23)
WATER	,					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Antimony (Sb)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Total (mg/L)	0.019	0.018	0.020	0.019	0.018
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Boron (B)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Cadmium (Cd)-Total (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Calcium (Ca)-Total (mg/L)	<0.010	<0.010	<0.010	0.017	0.055
	Chromium (Cr)-Total (mg/L)	57.2	55.5	58.0	57.6	59.8
	Cobalt (Co)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	() ()	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Lithium (Li)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Total (mg/L)	2.61	2.52	2.67	2.60	2.59
	Manganese (Mn)-Total (mg/L)	<0.0050	<0.0050	<0.0050	0.0050	0.0157
	Molybdenum (Mo)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silicon (Si)-Total (mg/L)	2.85	2.74	2.90	2.87	2.96
	Silver (Ag)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Total (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Strontium (Sr)-Total (mg/L)	0.186	0.180	0.191	0.183	0.174
	Thallium (TI)-Total (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Vanadium (V)-Total (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Total (mg/L)	0.0602	0.170	0.533	1.62	5.27
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Antimony (Sb)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Arsenic (As)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Barium (Ba)-Dissolved (mg/L)	0.018	0.019	0.019	0.019	0.017
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 4 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479858-11 Water 30-JUN-14 13:00 160MG/L HARDNESS PERRIER WATER		
Grouping	Analyte	(LAB WATER)		
WATER				
Total Metals	Aluminum (Al)-Total (mg/L)	<0.20		
	Antimony (Sb)-Total (mg/L)	<0.20		
	Arsenic (As)-Total (mg/L)	<0.20		
	Barium (Ba)-Total (mg/L)	0.014		
	Beryllium (Be)-Total (mg/L)	<0.0050		
	Bismuth (Bi)-Total (mg/L)	<0.20		
	Boron (B)-Total (mg/L)	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.010		
	Calcium (Ca)-Total (mg/L)	59.7		
	Chromium (Cr)-Total (mg/L)	<0.010		
	Cobalt (Co)-Total (mg/L)	<0.010		
	Copper (Cu)-Total (mg/L)	<0.010		
	Iron (Fe)-Total (mg/L)	<0.030		
	Lead (Pb)-Total (mg/L)	<0.050		
	Lithium (Li)-Total (mg/L)	<0.010		
	Magnesium (Mg)-Total (mg/L)	2.10		
	Manganese (Mn)-Total (mg/L)	<0.0050		
	Molybdenum (Mo)-Total (mg/L)	<0.030		
	Nickel (Ni)-Total (mg/L)	<0.050		
	Phosphorus (P)-Total (mg/L)	<0.30		
	Potassium (K)-Total (mg/L)	<2.0		
	Selenium (Se)-Total (mg/L)	<0.20		
	Silicon (Si)-Total (mg/L)	2.12		
	Silver (Ag)-Total (mg/L)	<0.010		
	Sodium (Na)-Total (mg/L)	4.9		
	Strontium (Sr)-Total (mg/L)	0.298		
	Thallium (TI)-Total (mg/L)	<0.20		
	Tin (Sn)-Total (mg/L)	<0.030		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Vanadium (V)-Total (mg/L)	<0.030		
	Zinc (Zn)-Total (mg/L)	<0.0050		
Dissolved Metals	Dissolved Metals Filtration Location	LAB		
	Aluminum (AI)-Dissolved (mg/L)	<0.20		
	Antimony (Sb)-Dissolved (mg/L)	<0.20		
	Arsenic (As)-Dissolved (mg/L)	<0.20		
	Barium (Ba)-Dissolved (mg/L)	0.013		
	Beryllium (Be)-Dissolved (mg/L)	<0.0050		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 5 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

ersion:	FINAI
CI SIUII.	1 111

	Sample ID Description Sampled Date Sampled Time Client ID	L1479858-1 Water 30-JUN-14 13:00 10% MH-04 (LAB WATER DILUTION)	L1479858-2 Water 30-JUN-14 13:00 50% MH-04 (LAB WATER DILUTION)	L1479858-3 Water 30-JUN-14 13:00 100% MH-04 (LAB WATER DILUTION)	L1479858-4 Water 30-JUN-14 13:00 0.1% MIXTURE (MH-04 DILUTION)	L1479858-5 Water 30-JUN-14 13:00 0.3% MIXTURE (MH-04 DILUTION
Grouping	Analyte					
WATER						
Dissolved Metals	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Calcium (Ca)-Dissolved (mg/L)	56.2	56.4	56.2	55.4	55.4
	Chromium (Cr)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	2.51	2.26	2.58	2.57	2.54
	Manganese (Mn)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Selenium (Se)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silicon (Si)-Dissolved (mg/L)	2.72	2.42	2.81	2.80	2.76
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	<2.0	2.7	<2.0	<2.0	<2.0
	Strontium (Sr)-Dissolved (mg/L)	0.195	0.231	0.184	0.184	0.181
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0050	0.0056	0.0130	0.0234

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 6 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

<0.20 <0.10
0.052
56.7
<0.010
<0.010
<0.010
<0.030
<0.050
<0.010
2.46
0.0149
<0.030
<0.050
<0.30
<2.0
<0.20
2.82
<0.010
<2.0
0.164
<0.20
<0.030
<0.010
<0.030
5.01

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 7 of 8 09-JUL-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Client ID Dascription Sample ID Dascription Sample I Time Client ID Samp	
## WATER Dissolved Metals Bismuth (Bi)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Calcium (Ca)-Dissolved (mg/L) Cobatt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Molybdenum (Mg)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved	
Dissolved Metals Bismuth (Bi)-Dissolved (mg/L)	
Boron (B)-Dissolved (mg/L)	
Cadmium (Cd)-Dissolved (mg/L)	
Calcium (Ca)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) A.8 Strontium (Sr)-Dissolved (mg/L) Sodium (Na)-Dissolved	
Chromium (Cr)-Dissolved (mg/L)	
Cobalt (Co)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) A.8 Strontium (Sr)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (Ti)	
Copper (Cu)-Dissolved (mg/L)	
Iron (Fe)-Dissolved (mg/L)	
Lead (Pb)-Dissolved (mg/L) Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sotrontium (Sr)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Lithium (Li)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Analysium (Se)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Thallium (Ti)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Magnesium (Mg)-Dissolved (mg/L) Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Siliver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Manganese (Mn)-Dissolved (mg/L) Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Molybdenum (Mo)-Dissolved (mg/L) Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Titallium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Nickel (Ni)-Dissolved (mg/L) Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vo.030	
Phosphorus (P)-Dissolved (mg/L) Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (TI)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Potassium (K)-Dissolved (mg/L) Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Volume (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Selenium (Se)-Dissolved (mg/L) Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Silicon (Si)-Dissolved (mg/L) Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Strontium (Sr)-Dissolved (mg/L) Thallium (Tl)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Thallium (TI)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	
Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) <0.030 <0.030	
Titanium (Ti)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L) <0.030	
Vanadium (V)-Dissolved (mg/L) <0.030	
7: (7.) 5: 1.1 (1.)	
Zinc (Zn)-Dissolved (mg/L) <0.0050	
	l l

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479858 CONTD.... PAGE 8 of 8 09-JUL-14 10:09 (MT)

FINΔI

Version:

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1479858-1, -10, -11, -2, -3, -4, -5, -6, -7, -8, -9

Qualifiers for Individual Parameters Listed:

Qualifier Description

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

2 OL-1357

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Page 2 of 2

(ALS)	Environmental				W	ww.alsglobal.co	om																	- 5 -	
, , , , , , , , , , , , , , , , , , ,	L1479858				·					,		,			naly	sis Re	ques	ts							
Sample	Sample Identification	Coord	Inates	Date	Time	Sample Type			etals		etals														
	(This will appear on the report)	Longitude	Latitude			' ''	Number of Containers	Total metals	Dissolved metals	Total Metals	Dissolved Metals	Plea	re ind	icate b	2011	Cillora	d Bro			ho!h/		(5)			
190 h							a S	_	F		F	1 100	se iiiu	icate u	EIDW	rillerei	u, Fle	18617	ea or) INDU	, ,,	7,	Т	\neg	-
	30% Mixture (MH-04 dilution)			Jun-30-2014	01:00 PM	Water	2	R	R	 				_	\top		_	寸	\dashv		\dashv	1		十	
	100% Mixture (85% MH-04, 15% MH-25)			Jun-30-2014	01:00 PM	Water	2			R	R														
/%// · · · ·	160 mg/L Hardness Perrier Water (lab water)			Jun-30-2014	01:00 PM	Water	2	R	R																
geros -															\Box		\Box		\Box					\Box	
, massiphilipi			_					_	ļ	 					_	-	_	_]			_	_	\dashv	
West cis								ļ	<u> </u>	 	-	<u> </u>		\dashv	-	-	\dashv	\dashv		-	\dashv	\rightarrow	\dashv	\dashv	-
							11	11 111				Milli		en e	# 1 1 1	 	1		\dashv	- 1			+	\dashv	-
- A ()							1																1		
ist and and							Ι"	• • • • •		■	■	858	-CO		N I II) [ı		\Box				_	\prod	
Michiga.							<u> </u>			L., 1 -	710	000	-00	-0					\dashv				_		
, a M		 		<u> </u>				\vdash		1	1				ı	1	ı	1	\dashv			-	\dashv	\dashv	+
500055 (Million)		-								╁╾		-		-	\dashv	╅	\dashv	\dashv	_	T	\dashv	-	\dashv	\dashv	-
and the party of								_					П					1		1	_	7	1		
ž.Al																								\Box	
1										ļ		_			_	_		_	_			_		\dashv	_
								ļ.—	_	ļ	ļ			_		_	4	4					}	\dashv	
16880/7				,	· · · · · · · · · · · · · · · · · · ·					├	├	<u> </u>	\longrightarrow	_	\dashv		-	4					-+	-	
Millionitis ***		<u> </u> -	-				-		 	+			\vdash		-+	_	-+		-	\dashv	\dashv			\dashv	
**28.54 **		 	 			<u> </u>	 -	 		+	-		\vdash		\dashv	-+	+	\dashv	-	\dashv	\dashv		\dashv	\dashv	+
		1	 -				-			† *	-				_	- -	\top	\dashv	-		\dashv	_	\dashv	\dashv	\top
ancacidi (Alli																								丁	
Manthalia																	\Box	\Box						\Box	
24 KS C-5""																		_ :							

_Chain of Custody / Analytical Request Form ___ Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 1 of 2

(ALS) Environmental

Report To				Reporting				Service Requested													
Company:	Nautilus Environmental			Distribution:	□Fax	⊡Mail	☑ Email	⊚Reț	gular ((Stand	ard T	urnard	und T	imes -	Busi	ness Day	ys) - F	₹			
Contact:	Krysta Pearcy			□ Ciriteria on	Report (select from	Guidelines below)		OPrid	ority (3	3 Day	s) - su	rcharg	je will .	apply -	- P						
Address:	8664 Commerce Court	•		Report Type:	⊠ Excel	⊡ Digita	al .	O Prio	ority (2	2 Day	s) - su	rcharg	e will .	apply -	- P2						
	Imperial Square Lake Cit Burnaby, BC	ту		Report Forma	at:			OEm	ergen	ю (1	-2 day	/) — su	rcharg	e will	apply	- E					
	Canada, V5A 4N7			Report Email	Report Email(s): krysta@nautilusenvironmental.com			O Sar	ne Da	ay or l	Vecke	nd En	nergen	icy - si	urcha	rge will a	эрріу	- E2			
								OSpe	ecify d	late re	quire	1 - X									
Phone;	604-420-8773	Fax: 604-357-1361											Αп	alysis	s Req	uests					
Invoice To	⊠ Émail	□Mail		EDD Format:				Γ.	11 11 11		1 6 1 6	II 8 16		1881	01 0 1/			11			
Company:	Nautllus Environmental			EDD Email(s) :	_	-				Ш	Ш					Ш				
Contact:	Krysta Pearcy																Ш				
Address:	8664 Commerce Court Imperial Square Lake Cit	<u>—</u> .						L1479858-COFC													
	Burnaby, BC	ıy		Project Info																	
	Canada, V5A 4N7			Job #:]	1					- 1	- 1		1				
				PO/AFE:]		۰		ا ی									
Email:	krysta@nautilusenvironn	nental.com		LSD:				يوا	یا	leta	, n	Aetal									
Phone:	604-420-8773			Quote #:				aine	ieta	led n	fetal	led l									
Le	b Work Order # **** (leb use only)	L1479858	MAN SACTION (ALS Contact:	Janie Lo	Sampler: Krysta F	earcy	Number of Containers	Total metals	Dissolved metals	Total Metals	Dissolved Metals									
Sample	Sam	ple Identification	Coord	finates	D-4-	*:	Cample Time	1 Pe		F	lease	indica	te bel	ow Fill	tered,	Preserv	red or	both(F	, P, F	/P)	
#	(This will	appear on the report)	Longitude	Latitude	Date	Time	Sample Type	Ž		Æ		丰	•		П				T		
	10 % MH-04 (lab water d	dilution)			Jun-30-2014	01:00 PM	Water	2	R	R		•							Т		
tin. 36 1	50% MH-04 (lab water di	flution)			Jun-30-2014	01:00 PM	Water	2_			R	R							T		
	100% MH-04 (lab water	dilution)			Jun-30-2014	01:00 PM	Water	2			R	R									
1 15.00	0.1% Mixture (MH-04 dila	ution)			Jun-30-2014	01:00 PM	Water	2	R	R											ĺ
	0.3% Mixture (MH-04 dili	ution)			Jun-30-2014	01:00 PM	Water	2	R	R											
25550 >	1% Mixture (MH-04 dituti	ion)			Jun-30-2014	01:00 PM	Water	2	R	R											
	3% Mixture (MH-04 diluti	ion)	<u> </u>		Jun-30-2014	01:00 PM	Water	2	R	R											
	10% Mixture (MH-04 dilu	rtion)			Jun-30-2014	01:00 PM	Water	2	R	R											
	<u></u>				(See page	2 for further samples	5)														
_	Special Instruct	tions/Comments	The ques	tions below n	ust be answered for	or water samples (c	heck Yes or No)	Guide	lines												
	46	NO Dece	Are any samp	ole taken from	a regulated DW syst	tem? □Yes	Σiνο]													
	or dissolved metals	oben likeres tinough orto um.	lf yes, ploase	use an author	ized drinking water (coc	·	<u> </u>										_			
Samples N	OT preserved.	ne ben filterel.			ed to be potable for	human DYes	ra/No					SAM	PLE C	ONDI	TION	(lab use	only)			
			consumption ^e	?	·	o be potable for numeri ☐Yes PNo ☐Frozen ☐Cold ☐Ambient ☐Cooling Initia			ng Initia	ted_											
	SHIPMENT RELI	EASE (client use)	• 4, 1, 4	SHI	PMENT RECEPTIO	N (lab use only)					SI	KIPME	NT V	RIFIC	CÁTIC	ON (lab (186 O	nly)			
Released b	y:	Date: Time:	Received by:	. .	Date:	Time:	Temperature:	Verifie	d by:	_		Date:			ľ	Time:			Obs	ervation	ns:
\mathbb{N}_{+}	Dance	T 2211 1700	[``	YL .	25 my 20	177161	120,60								-				□Y ₁	es	
とうし	a reamy	Jue 30/14 / 4000	\perp		<u> </u>	, 1	0.0	<u> </u>											lf Ye	es add 9	SIF

NAUTILUS ENVIRONMENTAL

ATTN: Krysta Pearcy 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 30-JUN-14

Report Date: 14-JUL-14 16:31 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1479859

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 2, 3, 4, 5, 6, 7, 8, OL-1355

Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1479859 CONTD.... PAGE 2 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Companies Comp	er Water I-14 30-JUN-14 0 12:00 U (LAB 200 UG/L CU (LAI WATER)
WATER Total Metals Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) 0.0135 Chromium (Cr)-Total (mg/L) 0.0247 Lead (Pb)-Total (mg/L) 0.0491 Lead (Pb)-Total (mg/L) Lab Lab	
Total Metals	
Cadmium (Cd)-Total (mg/L) Chromium (Cr)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Cadmium (Cd)-Total (mg/L) Chromium (Cr)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	s LAB
Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	3 LAB
Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	B LAB
Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Copper (Cu)-Dissolved (mg/L) 0.0114 0.0182 0.0512 0.09 Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	
Lead (Pb)-Dissolved (mg/L)	21 0.181
Zinc (Zn)-Dissolved (mg/L)	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 3 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-6 Water 30-JUN-14 12:00 25 UG/L CU (MH- 04)	L1479859-7 Water 30-JUN-14 12:00 50 UG/L CU (MH- 04)	L1479859-8 Water 30-JUN-14 12:00 100 UG/L CU (MH- 04)	L1479859-9 Water 30-JUN-14 12:00 200 UG/L CU (MH- 04)	L1479859-10 Water 30-JUN-14 12:00 400 UG/L CU (MH- 04)
Grouping	Analyte					
WATER						
Total Metals	Aluminum (Al)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)	0.0244	0.0477	0.0962	0.188	0.365
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (Al)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)	0.0211	0.0421	0.0853	0.169	0.335
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 4 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-11 Water 30-JUN-14 12:00 50 UG/L ZN (LAB WATER)	L1479859-12 Water 30-JUN-14 12:00 100 UG/L ZN (LAB WATER)	L1479859-13 Water 30-JUN-14 12:00 200 UG/L ZN (LAB WATER)	L1479859-14 Water 30-JUN-14 12:00 400 UG/L ZN (LAB WATER)	L1479859-15 Water 30-JUN-14 12:00 800 UG/L ZN (LAB WATER)
Grouping	Analyte					
WATER						
Total Metals	Aluminum (Al)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)	0.0445	0.0817	0.171	0.356	0.677
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)	0.0418	0.0780	0.164	0.338	0.656

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 5 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-16 Water 30-JUN-14 12:00 50 UG/L ZN (MH- 04)	L1479859-17 Water 30-JUN-14 12:00 100 UG/L ZN (MH- 04)	L1479859-18 Water 30-JUN-14 12:00 200 UG/L ZN (MH- 04)	L1479859-19 Water 30-JUN-14 12:00 400 UG/L ZN (MH- 04)	L1479859-20 Water 30-JUN-14 12:00 800 UG/L ZN (MH- 04)
Grouping	Analyte					
WATER						
Total Metals	Aluminum (Al)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)	0.0473	0.0880	0.163	0.349	0.708
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (Al)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)	0.0449	0.0843	0.157	0.325	0.681

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 6 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-21 Water 30-JUN-14 12:00 25 UG/L CD (LAB WATER)	L1479859-22 Water 30-JUN-14 12:00 50 UG/L CD (LAB WATER)	L1479859-23 Water 30-JUN-14 12:00 100 UG/L CD (LAB WATER)	L1479859-24 Water 30-JUN-14 12:00 200 UG/L CD (LAB WATER)	L1479859-25 Water 30-JUN-14 12:00 400 UG/L CD (LAB WATER)
Grouping	Analyte					
WATER						
Total Metals	Aluminum (Al)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)	0.0212	0.0429	0.0870	0.175	0.347
	Chromium (Cr)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)	0.0117	0.0217	0.0337	0.0801	0.137
	Chromium (Cr)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 7 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-26 Water 30-JUN-14 12:00 25 UG/L CD (MH- 04)	L1479859-27 Water 30-JUN-14 12:00 50 UG/L CD (MH- 04)	L1479859-28 Water 30-JUN-14 12:00 100 UG/L CD (MH- 04)	L1479859-29 Water 30-JUN-14 12:00 200 UG/L CD (MH- 04)	L1479859-30 Water 30-JUN-14 12:00 400 UG/L CD (MH- 04)
Grouping	Analyte					
WATER						
Total Metals	Aluminum (Al)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)	0.0229	0.0471	0.0955	0.192	0.387
	Chromium (Cr)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)	0.0223	0.0460	0.0940	0.187	0.378
	Chromium (Cr)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 8 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Cadmium (Cd)-Total (mg/L) Chromium (Cr)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location LAB LAB LAB LAB LAB LAB LAB LAB LAB LA		Sample ID Description Sampled Date Sampled Time Client ID	L1479859-31 Water 30-JUN-14 12:00 250 UG/L AL (LAB WATER)	L1479859-32 Water 30-JUN-14 12:00 500 UG/L AL (LAB WATER)	L1479859-33 Water 30-JUN-14 12:00 1000 UG/L AL (LAB WATER)	L1479859-34 Water 30-JUN-14 12:00 2000 UG/L AL (LAB WATER)	L1479859-35 Water 30-JUN-14 12:00 4000 UG/L AL (LAB WATER)
Total Metals	Grouping	Analyte					
Cadmium (Cd)-Total (mg/L) Chromium (Cr)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	WATER						
Chromium (Cr)-Total (mg/L) Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	Total Metals	Aluminum (Al)-Total (mg/L)	0.213	0.606	1.05	1.07	6.62
Copper (Cu)-Total (mg/L) Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)		Cadmium (Cd)-Total (mg/L)					
Iron (Fe)-Total (mg/L) Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved (mg/L) Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)		Chromium (Cr)-Total (mg/L)					
Lead (Pb)-Total (mg/L) Zinc (Zn)-Total (mg/L) Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)		Copper (Cu)-Total (mg/L)					
Zinc (Zn)-Total (mg/L) Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)		Iron (Fe)-Total (mg/L)					
Dissolved Metals Dissolved Metals Filtration Location Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) LAB LAB 0.312 0.344 0.320 0. Cadmium (Cr)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)		Lead (Pb)-Total (mg/L)					
Aluminum (Al)-Dissolved (mg/L) Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)		Zinc (Zn)-Total (mg/L)					
Cadmium (Cd)-Dissolved (mg/L) Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)	Dissolved Metals		LAB	LAB	LAB	LAB	LAB
Chromium (Cr)-Dissolved (mg/L) Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)			0.172	0.312	0.344	0.320	0.301
Copper (Cu)-Dissolved (mg/L) Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)							
Iron (Fe)-Dissolved (mg/L) Lead (Pb)-Dissolved (mg/L)							
Lead (Pb)-Dissolved (mg/L)							
Zinc (Zn)-Dissolved (mg/L)							
		Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 9 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-36 Water 30-JUN-14 12:00 250 UG/L AL (MH- 04)	L1479859-37 Water 30-JUN-14 12:00 500 UG/L AL (MH- 04)	L1479859-38 Water 30-JUN-14 12:00 1000 UG/L AL (MH- 04)	L1479859-39 Water 30-JUN-14 12:00 2000 UG/L AL (MH- 04)	L1479859-40 Water 30-JUN-14 12:00 4000 UG/L AL (MH- 04)
Grouping	Analyte					
WATER						
Total Metals	Aluminum (Al)-Total (mg/L)	0.231	0.456	1.12	2.46	8.37
	Cadmium (Cd)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (Al)-Dissolved (mg/L)	0.171	0.329	0.399	0.344	0.282
	Cadmium (Cd)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 10 of 11 14-JUL-14 16:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1479859-41 Water 30-JUN-14 12:00 160 MG/L HARDNESS PERRIER WATER	L1479859-42 Water 30-JUN-14 12:00 MH-04		
Grouping	Analyte				
WATER					
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0030	0.0041		
	Cadmium (Cd)-Total (mg/L)	<0.000010	0.000227		
	Chromium (Cr)-Total (mg/L)	0.00011	0.00022		
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050		
	Iron (Fe)-Total (mg/L)	<0.030	<0.030		
	Lead (Pb)-Total (mg/L)	<0.000050	0.000278		
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0064		
Dissolved Metals	Dissolved Metals Filtration Location				
	Aluminum (AI)-Dissolved (mg/L)		0.0016		
	Cadmium (Cd)-Dissolved (mg/L)		0.000204		
	Chromium (Cr)-Dissolved (mg/L)		0.00015		
	Copper (Cu)-Dissolved (mg/L)		0.00023		
	Iron (Fe)-Dissolved (mg/L)		<0.030		
	Lead (Pb)-Dissolved (mg/L)		0.000185		
	Zinc (Zn)-Dissolved (mg/L)		0.0045		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1479859 CONTD.... PAGE 11 of 11 14-JUL-14 16:31 (MT)

FINΔI

Version:

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)					
Matrix Spike		Aluminum (AI)-Total	MS-B	L1479859-31, -32, -33, -34, -35, -36, -37, -38, -39, -40					
Qualifiers for Individual Parameters Listed:									
Qualifier Description									
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.								

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-DIS-ICP-VA Water Dissolved Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-T-CCMS-VA Water Total Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory L	-ocation			
VA	ALS ENVIRO	NMENTAL - VANCOUVER, BRIT	ISH COLUMBIA, CANAD	A	
Chain of Custody Numbers:					
2	3	4	5	6	
7	8	OL-1355			

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 1 of 8

Report To		_			Reporting				Servic	e Re	quest	ed									
Company:	Nautilus Environmental				Distribution:	□Fax	⊟Mail	⊠ Email	⊕Reg	jular (Stand	ard Tu	naround	l Time	s - Bus	iness	Days)	- R			
Contact:	Krysta Pearcy		,		□ Ciriteria on	Report (select from	Guidelines below)		OPrio	ority (3	Days) - surc	harge w	ill app	ly - P						
Address:	8664 Commerce Court				Report Type:	⊠Excel	☑ Digita	al	O Prio	ority (2	2 Days	s) - surc	harge w	ill app	ly - P2						
	Imperial Square Lake Cit Burnaby, BC	у			Report Forma	ot:	·		ΦEm	ergen	cy (1-	2 day)	- surch:	irge w	ill appl	y-E					
	Canada, V5A 4N7				Report Email(s): krysta@nautilu	senvironmental.com	T	O San	ne Da	y or V	Veeken	d Emerg	епсу-	- surch	arge v	vill app	yy - E	2		
									OSpe	cify d	ate re	quired	Х								
Phone:	604-420-8773	Fax:	604-357-1361]									Analy	sis Re	quest	8				
Involce To	ØEmail	□Mail			EDD Format:]												
Company:	Nautilus Environmental				EDD Email(s)	:															
Contact:	Krysta Pearcy									İ										ľ	
Address:	8664 Commerce Court]												
i	Imperial Square Lake Cit Burnaby, BC	у			Project info]				Ì								
	Canada, V5A 4N7				Job #;]					Ì		1					
					PO/AFE:													i			
Email:	krysta@nautilusenvironm	nental,com			LSD:				ا ۾ ا		ű		ے ا		R		_		ء		a sts
Phone:	604-420-8773				Quote #:				aji e	,,		ਹ	- P	,	l B	_	ed A	۾	Ped F		dine gra
	b Work Order # (lab use only)	TLIY	179859		ALS Contact:	Janie Lo	Sampler: Krysta	Pearcy	Number of Containers	Total Cu	Dissolved	Total (Total Zn Dissolved Zn	Total Cd	Dissolved Cd	Total Al	Dissolved Al	Total Pb	Dissolved Pb	Total Fe	urther requests)
Sample	Sam	ple Identificatio	on .	Coord	dinates	Date	Time	Sample Type	훁		P	lease i	ndicate l	elow	Filtere	d, Pres	served	or bo	th(F, §	, F/P)	for
# 1990	(This will	appear on the r	report)	Longitude	Latitude	Date	ime	Sample Type	Ž		Į.		F	+		_	ļ.	-	-	- $+$	- Jag
200536500	12.5 ug/L Cu (lab water)			*		Jun-30-2014	12:00 PM	Water	2	R	R										See page
186.金明時	25 ug/L Cu (lab water)					Jun-30-2014	12:00 PM	Water	2	R	R										ું હ
16.15 TO 1	50 ug/L Cu (lab water)					Jun-30-2014	12:00 PM	Water	2	R	R										
and C	100 ug/L Cu (lab water)					Jun-30-2014	12:00 PM	Water	2	R	R										
15.22 MF	200 ug/L Cu (lab water)					Jun-30-2014	12:00 PM	Water	2	R	R		ı	'		1					4 40 816
in the state of	25 ug/L Cu (MH-04)	-				Jun-30-2014	12:00 PM	Water	2	R	R		1111	111	Ш				III	1014	
الشائدة	50 ug/L Cu (MH-04)					Jun-30-2014	12:00 PM	Water	2	R	R		_ 		(U) 1		Ш			4018	
<i>0.</i> '	100 ug/L Cu (MH-04)	· · · · · · · · · · · · · · · · · · ·				Jun-30-2014	12:00 PM	Water	2	R	R				1	1479	9859	9-C	OFC	;	
2963, 510°						(See page	3 for further sample	es)							_						
	Special Instruc	tions/Comments	9	The ques	tions below m	ust be answered fo	or water samples (check Yes or No)	Guide	lines											1
	- 10	TOWard		Are any same	ole taken from	a regulated DW sys	tem? □Yes	Χίνο	Į.												- 1
Samples fo	へいい ar dissoived metals b	TFIHECO	A STATE OF THE STA	If yes, please	use an author	ized drinking water	coc		L												
Samples N	OT preserved.			is the water s	sampled intend	ed to be potable for	human ∐Yes	Nun					AMPLE	CON	DITIO	N (lab	113e O	nly)			
				consumption	?		□ res	3460	□£ro	zen		Cole	1		mbien	ıt	□Co	oling	Initiate	,d	
Hillmon:	SHIPMENT REL	EASE (client use	e) 🚎 🏥 🖺		SHI	PMENT RECEPTIO	N (lab use only) 🖹			103	95 07	i i SH	PMENT	VERI	FICAT	ION (I	ab us	e only	<i>(</i>)	(III)(III)	
Released b	y:	Date:	Time:	Received by:		Date:	Time:	Temperature;	Verifie	ed by:		7	ale:			Time	:			Observa	itions:
\lambda	G ,		J,-, ,	1 - 1	1	Tre 30	17:19	77)												□Yes	
Krus	sta Yearcy	Ine39M	{ 1001/1	ر ا	_		11.11	LL. °C	[If Yes a	dd SIF

ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 2 of 8

and Citions		1										Ar	alysi	s Req	uests					
		Coord	linates								່ວ									
Sample:	Sample Identification (This will appear on the report)			Date	Time	Sample Type				Al, Pb, Fe, Cr	Cd, Al, Pb, Fe,									
		Longitude	Latitude				of Containers	Total Cr	Dissolved Cr	Total Cu, Zn, Cd,	Dissolved Cu, Zn,									
							Number		F	ease	indica	te bel	low Fil	Itered	Presi	erved	or both	ı(F, P,	F/P)	
							ž		Æ			 ,	70h	fil	u					
(Carteria: 3, 3, 45)	12.5 ug/L Cu (lab water)			Jun-30-2014	12:00 PM	Water	2													
midultudli)	25 ug/l., Cu (lab water)			Jun-30-2014	12:00 PM	Water	2													
	50 ug/L Cu (lab water)			Jun-30-2014	12:00 PM	Water	2													
	100 ug/L Cu (lab water)			Jun-30-2014	12:00 PM	Water	2													
	200 ug/L, Cu (lab water)			Jun-30-2014	12:00 PM	Water	2													
	25 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2													
likelijis, iii	50 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2													
	100 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2													
				(See page	3 for further samples															

L1479859-COFC

ALS) Environmenta

Chain of Custody / Analytical Canada Toll Free: 1 800 www.alsglobal.cc

L1479859-COFC

Page 3 of 8

(ALS)	<u>Environmental</u>				W	ww.aisgiobai.co				_ , ¬	*1 30	JJ3-													_
Sample	Sample Identification	Coord	Inates		_				-												-		Cd, Al		
	(This will appear on the report)	Longitude	Latitude	Date	Time	Sample Type	Number of Containers	Total Cu	Dissolved Cu	Total Cu	Total Zn	Dissolved Zn	Total Cd	Dissolved Cd	Total Al	Dissolved Al	Total Pb	Dissolved Pb	Total Fe	Dissolved Fe	Total Cr	Dissolved Cr	Total Cu, Zn, (, Pb. Fe, Cr	:	
		•					Jper					Plea	se inc	licate I	elov	Filter	ed, P	reser	ved o	bath	(F, P,	F/P)			
i Sans I							Z		E_			- F-		-E.		_F_		F		-F	<u> </u>	_F-		200	(1)
	200 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2	<u> </u>	R	R														1	
lining year	400 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2	R	R]	
Linksin	50 ug/L Zл (lab water)	1		Jun-30-2014	12:00 PM	Water	2				R	R]	
(SINCE AND	100 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2				R	R								_					
***************************************	200 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2				R	R]	
3 *	400 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2				R	R												<u>چ</u> [
	800 ug/L Zn (lab water)		-	Jun-30-2014	12:00 PM	Water	2				R	Ŕ													
-48 X	50 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				R	R] Ber /	1
A.	100 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				R	R											L		-]
is Mad	200 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				R	R												forfa	
WEST TO SEE	400 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				R	R												- 8 4	
of the state of th	800 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				R	R											<u> </u>) řed a	
Air ilikoim	25 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2						R	R										Se	
in de lengt til stade	50 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2						R	R											
*****	100 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2						R	R				L_					i		
	200 ug/t. Cd (lab water)		l	Jun-30-2014	12:00 PM	Water	2						R	R					<u> </u>						
* (*)	400 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2						R	R											- 1
St. Sitter 32	25 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2						R	R											
1,301,625,886	50 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2						R	R				Ľ.			L.				
ili ima sinc	100 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2						R	R										_	
ETALORIUM	200 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2	\mathbb{L}_{-}	L				R	R										_	
150/300/340	400 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2						R	R											
	250 ug/l. Al (lab water)			Jun-30-2014	12:00 PM	Water	2								R	R			L					_	
A.	500 ug/L Al (lab water)			Jun-30-2014	12:00 PM	Water	2			L^{T}					R	R								╛	
	1000 ug/L Al (lab water)			Jun-30-2014	12:00 PM	Water	2								R	R									ı
¥	2000 ug/L Al (lab water)			Jun-30-2014	12:00 PM	Water	2							igsqcut	R	R									1
	4000 ug/L Al (lab water)			Jun-30-2014	12:00 PM	Water	2								R	R									1
(6001400					(S	ee page 5 for further sa	mples,					_													

ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 4 of 8

	cionuimentai	T				WW.alsglobal.c	1				_				into E				_		_			
W. 75 (1)							<u></u>	r—		T	Г	1	ı	Analy	/sis R	eques	S (S		- r		Т	_		
Sample	Sample Identification	Coord	Inates	Date	Time	Sample Type		ı, Zn, Cd Cr																
	(This will appear on the report)	Longitude	Latitude	Date	iiiie	aampie type	Number of Containers	Dissolved Cu, Zn, Cd , Al, Pb, Fe, Cr																
							Hippe		т,	<u> </u>		ase in	dicate T	below	Filtere	ed, Pre	eserve	ed or l	both(f	, P, F	/P)			
							+	C_F	(co)	f, i	Hee	<u> </u>	.	L			4	4	_	-+	-	- -		—
W	200 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2	ļ	+-	ļ	╄			├	\rightarrow	\dashv		-	_	-+		_	+	
	400 ug/L Cu (MH-04)			Jun-30-2014	12:00 PM	Water	2		-			1				_	\dashv					+	+	$+\!\!-$
***************************************	50 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2		_	 	-	\perp	<u> </u>			\dashv	\dashv	_	_		_	_	4	
6	100 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2		_		<u> </u>			\sqcup					_	_	_	_	\bot	\bot
	200 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2		 	<u> </u>	 			\sqcup		,				_	_	_	\bot	—
	400 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2	ļ			<u> </u>				_	_		_	\dashv			_	<u> </u>	
- 4500 J	800 ug/L Zn (lab water)			Jun-30-2014	12:00 PM	Water	2			$oldsymbol{\perp}$	'	•	ļ		•	•	'		•		•	L		
	50 ug/L Zn (МН-04)			Jun-30-2014	12:00 PM	Water	2			\perp	-141								{ 				\perp	
	100 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				Ш								Ш	Ш		L		
43.00	200 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2							147								L		
- Alle	400 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2			L			L	_ 1 7 /	300	3-0	O 1 (,						
\$1\$0.7°	800 ug/L Zn (MH-04)			Jun-30-2014	12:00 PM	Water	2				ι	.1	1			_ 1	ı	1	1.					
	25 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Waler	2																	
and Section 1	50 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2																	
. Beine	100 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2																	
	200 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2												Ī					
8.500 A	400 ug/L Cd (lab water)			Jun-30-2014	12:00 PM	Water	2									\neg		\neg		\neg		\neg	\top	
****	25 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2		\top	\top	1	T			_	1	\dashv			\neg	\dashv	\top	\top	
(See	50 ug/L Cd (MH-04)	<u> </u>		Jun-30-2014	12:00 PM	Water	2			\top	1	 		П		\neg	\dashv	一		寸	寸	\top	\neg	
1666,7838	100 ug/L Cd (MH-04)	1		Jun-30-2014	12:00 PM	Water	2			<u> </u>	1	†		П		\dashv	\dashv	\dashv		$\neg \dagger$	_		\top	\top
20000	200 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2	1	1	 	†-	\top			7	_				\dashv		\top	\top	+
***************************************	400 ug/L Cd (MH-04)			Jun-30-2014	12:00 PM	Water	2		1	_	1	†				\dashv	\neg	\dashv		\dashv	\top	-	\top	+
	250 ug/L Al (lab water)			Jun-30-2014	12:00 PM	Water	2		\top	†	+	†	1	\Box	\dashv	\dashv	_	\dashv		\dashv	_	\top	+	
3 56%, 4	500 ug/L Al (lab water)		 	Jun-30-2014	12:00 PM	Water	2		Ť	†-	T	+			_	- †	\dashv	\dashv	- †	\dashv	\dashv	\dashv	+	+
** > \%	1000 ug/l, Al (lab water)		 	Jun-30-2014	12:00 PM	Water	2		†	+-	+	+			_	\dashv	\neg	\dashv		\dashv	\dashv	\dashv	\dashv	_
	2000 ug/L Al (lab water)		1	Jun-30-2014	12:00 PM	Water	2	 	+	+-	+	+	-	\vdash	_	+	\dashv	\dashv	\dashv	\dashv	_	+	+-	+
*0.58e-0-0.04	4000 ug/L Al (lab water)			Jun-30-2014	12:00 PM	Water	2		+-	+-	+	+-			\dashv	_	-+	\dashv	\dashv	\dashv	\dashv	-	+	_
180,100	, , , , , , , , , , , , , , , , , , , ,	l				(See page 5 for further		L es)		Ц	Щ.	⊥	Ь—						L					+
								-,							_									

L1479859-COFC

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 5 of 8

· /	Er					ww.aisgiobai.co																		
															Anal	ysis Re	que	ts						
Sample	Sample Identification	Coord	nates	Date	Time	Sample Type			n			,		p				а		a			, ca, A	
	(This will appear on the report)	Longitude	Latitude	244	····-		Number of Containers	Total Cu	Dissolved Cu	Total Cu	Total Zn	Dissolved Zn	Total Cd	Dissalved Cd	Total Al	Dissolved Al	Total Pb	Dissolved Pb	Total Fe	Dissolved Fe	Total Cr	Dissolved Cr	Total Cu, Zn, , Pb, Fe, Cr	
***							iagE					Plea	se inc	dicate	below	Filtere	d, Pri	eserv	ed or	both(F, P, I	F/P)		
ë .							'n	•	ᄹ			F		3=F==		-6		 -	~-	-F-	—	- F-	—v′౿	filtea
AMBA45 11118an	250 ug/L AI (MH-04)			Jun-30-2014	12:00 PM	Water	2								R	R								
	500 ug/L AI (MH-04)			Jun-30-2014	12:00 PM	Water	2		l						R	R								
A Property of the Party of the	1000 ug/L Al (MH-04)			Jun-30-2014	12:00 PM	Water	2								R	R								
Same.	2000 ug/L Al (MH-04)			Jun-30-2014	12:00 PM	Water	2								R	R] .
i i i i i i i i i i i i i i i i i i i	4000 ug/L Al (MH-04)			Jun-30-2014	12:00 PM	Water	2								R	R								
2 9 W. W.	62.5-ug/L Ph (lah water)			Jun-30-2014	12 <u>:00 PM</u>	Water	2	_				13 ·					<u>R</u>	.R						
4	125 ug/L 8b-(lab water)			dun-30-2014	12:00.PM		٩										R	R	1	-				nest
	250-ug/L Pb (lab water)			Jun-30-2014	12:00 PM	Water	2										R	R				,		<u> </u>
20. JUN	500 ug/L Pb (lab water)			Jun-30-2014	12:00 PM	Water	2										R _	_R						ithe.
0-35383	1000 ug/L Pb (lab water)			Jun-30-2014	12:00 PM	Waler	2										Ŕ	R						1 to 1
il militar	62.5 ug/l. Pb (MH-04)		-	Jun-30-2014	12:00 PM	Water	2										R	R						
	125 ug/L Pb (MH-04)			Jun-39-2014	12:00 PM	Water	2										R	R] Ba
	250 ug/L Pb (MH-04)			Jun-30-2014	12:00 PM	Water	2				_						R	R						ું
	500 ug/L Pb (MH-04)			Jun-30-2014	12:00 PM	Water	2		-								R	R]
Pr. 1	1000 ug/L Pb (MH-04)			Jun-30-2014	12:00 PM	Water	2										R	R]
	6.25 mg/L Fe (lab water)			Jun-30-2014	12:00 PM	Water	2			1									R	R]
S	2.5 mg/L Fe (lab water)			Jun-30-2014	12:00 PM	Water	2												R	R]
. 30	25 mg/L Fe (lab water)			Jun-30-2014	12:00 PM	Water	2							_					R	R]
360,633	50 mg/L Fe (lab water)	<u> </u>		Jun-30-2014	12:00 PM	Water	2								$\overline{\ }$				R	Ŕ				1
Spinist seu	100 mg/L Fe (lab water)			Jun-30-2014	12:00 PM	Water	2			l						\			R	R]
	6 25 mg/L Fe (MH-04)			Jun-30-2014	12:00 PM	Water	2			T							7	$\overline{\ }$	R	R]
Militaine);	12.5 mg/L Fe (MH-04)			Jun-30-2014	12;00 PM	Water	2												P.R.	R]
- i-d - adgr-	25 mg/L Fe (MH-04)			Jun-30-2014	12:00 PM	Water	2										\Box	\neg	R	R				1
~ 88 ¥7 €	50 mg/L Fe (MH-04)		1	Jun-30-2014	12:00 PM	Water	2										_	\dashv	-R_	_R_				<u>ا</u> ـــ
	100 mg/L Fe (MH-94)			Jun-30-2014	12:00 PM	Water	2			⇇	-								R	R				1
ij	43.75 ug/L ef (lab water)			Jun-30-2014	12:00 PM	Water	2		Ī	1	T						T	\neg			R	R		1
in di	87.5 ug/L Cr (lab water)			Jun-30-2014	12:00 PM	Water	2		1	<u> </u>	<u> </u>						\dashv	\neg			R	R	-	1
distinguishing and			<u> </u>		(Se	ee page 7 for further sar	nples)	-	-															1

(ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Page 6 of 8

Analysis Requests Coordinates 8 Ζ, Sample Sample Identification Dissolved Cu, Z , Al, Pb, Fe, Cr Date Time Sample Type (This will appear on the report) Number of Containers Longitude Latitude Please indicate below Filtered, Preserved or both(F, P, F/P) ndfileed 250 ug/L Al (MH-04) Jun-30-2014 12:00 PM Water 2 500 ug/L Al (MH-04) Jun-30-2014 12:00 PM Water 2 12:00 PM 2 Missign 1000 ug/L Al (MH-04) Jun-30-2014 Water 2000 ug/L AI (MH-04) Jun-30-2014 12:00 PM Water 2 mussigg 4000 ug/L Al (MH-04) Jun-30-2014 12:00 PM Water 2 12:00 PM 2 62.5 up/L Pb (lab water) Jun-30-2014-Water 120-ug/L-Pb (lab water) Jun-30-2014 12:00 PM Water 2 250 ug/l. Pb (lab water) Jun-30-2014 12:00 PM Water 2 2 500 ug/L Pb (lab water) Jun-30-2014 12:00 PM Water 1000 ug/L Pb (lab water) Jun-30-2014 12:00 PM Water 2 2 12:00 PM Water 62.5 ug/L Pb (MH-04) Jun-30-2014 Waite: 125 ug/L Pb (MH-04) Jun-30-2014 12:00 PM Water 2 250 ug/L Pb (MH-04) Jun-80-2014 12:00 PM Water 2 Water 500 ug/L Pb (MH-04) Jun-30-2014 12:90.PM 1000 ug/L Pb (MH-04) 12:00 PM Water 2 Jun-30-2014 6.25 mg/l, Fe (lab water) Jun-30-2014 12:00 PM Water 12:00 PM 2 12.5 mg/L Fe (lab water) Jun-30-2014 Water na Viiins Jun-30-2014 2 25 mg/L Fe (lab water) 12:00 PM Water Kara i 2 50 mg/L Fe (lab water) Jun-30-2014 12:00 PM Water 2 100 mg/L Fc (lab water) Jun-30-2014 12:00 PM Water 12:00 PM 2 6.25 mg/L Fe (MH-04) Jun-30-2014 Water 12.5 mg/L Fe (MH-04) Jun-30-2014 12:00 PM 2 Water 2 25 mg/L Fe (MH-04) Jun-30-2014 12:00 PM Water 50 mg/L Fe (MH-04) Jun-30-2014 12:00 PM Water 2

2

2

Water

Water-

(See page 7 for further samples)

Jun-30-2014

Jun-30-2014

Jun-30-2014

12:00 PM

12:00 PM

12:00 PM

1265 concessed has

100 mg/L, Fe (MH-04)

43.75 ug/L Cr (lab water)

7,5aig/L Cr-(leb water)

Chain of Custody / Analytical Request Form_ Canada Toll Free: 1 800 668 9878

Page 7 of 8

(ALS)	Environmental				w	ww.alsglobal.co	om				_												·ag	e / or 8
- 100kg		1													Anaf	ysis R	geque	sts						
		Coord	inates				_																f, A:	
Sample ⊯ #	Sample Identification (This will appear on the report)			Date	Time	Sample Type	Number of Containers	Total Cu	Dissolved Cu	Total Cu	Total Zn	Dissolved Zn	Total Cd	Dissolved Cd	Total Al	Dissolved Al	Total Pb	Dissolved Pb	Total Fe	Dissolved Fe	Total Cr	Dissolved Cr	Total Cu, Zn, Cd, Pb, Fe, Cr	
: 5 26s s		Longitude	Latitude				er of	<u> </u>	ŏ	ř	Ĕ			dicate I									————	-
							Numi	<u> </u>				-F	30, 1110	-13-		F		··F-		-F-			tod fill	red
A CO TO SERVER	175 up/l Cr.(leb water)			-Jun-30-2014	12:00.PM	Water	_2_									=					-R	R		, , I
71.2 9.00	350 ug/L Cr (leb water)			Jun-30-2014	12:00 PM	Water	2													\dashv	R	R	1	
	700 ug/L Cr (lab water)			Jun-30-2014	12:00 PM	Water	2_						_=							- -f	R	R		
	43.75 ug/L Cr (MH-04)	<u> </u>		Jun-30-2014	1 <u>2;00 PM</u>	Water	2	<u> </u>					-								R	R		
	87.5 ug/L Cr (MH-04)			Jun-30-2014	12:00 PM	Water	2	_			_				-		_				R	R		
	175 ug/L Cr (MH-04)			Jun-30-2014	12:00 PM	Water	_2_								\neg	\dashv					R	R		हु
	350 ug/L Cr (MH-04)		·	Jun-30-2014	12:00 PM	Water	2			-	-										R	R		dnes
y at analysis	700 qg/L-Cr (MH-04)			- Jun=30-2014	12:00 PM	Water	-2-	=	=												_R	-R-	_	, e
	160 mg/L Hardness Perrier Water			Jun-30-2014	12:00 PM	Water	2																R	(See page 8 for further requests)
MINNE CALL	MH-04			Jun-30-2014	12:00 PM	Water	2													T			R	9 ₀
omittilite illi																								, g
MACION CONTRACTOR																								હુ
Pagina.																								
** **********************************																			_		_			1 1
								<u> </u>																
	······································	ļ	ļ. <u>-</u>					_	ļ	-							_			_				
35a/486a-2											<u> </u>				\dashv	\vdash	-							
ONEXTROPHSC						<u> </u>	i	I			! 	· ·		_				-						
rantinini.		<u> </u>				H H H 1449 B (141 B (151					11 11	!		+	\dashv		-	\dashv	\dashv	\dashv				
								11		HHI		\\		\dashv	_					- 		-		1
and the state of t						L1479	3850	1-CC	DFC		-						Ì							1
	· · · · · · · · · · · · · · · · · · ·	<u> </u>				L1473	,,,,,,,	, , ,	Ĭ					\dashv		\dashv		\dashv						1 I
100 W. W.			-			, I		ı	1	1		i	1	\dashv		\neg	1	\neg	\neg		一			
] i
																								1 I

(ALS) Environmental

Chain of Custody / Analytical Request Form.
Canada Toll Free : 1 800 668 9878
www.alsglobal.com

Page 8 of 8

	Environmental					ww.aisglobal.co				_													
Širas.													Ana	llysis F	?eque	sts							
lis. Sample	Sample Identification	Coord	inates	<u>.</u> .		Overell Tox		Zr, Cd															
	(This will appear on the report)	Longitude	Latitude	Date	Time	Sample Type	Number of Containers	Dissolved Cu, Zn, Cd , Al, Pb, Fe, Cr															
							aqur	<u> </u>	T. 1	النجال		se indic	ate belo	w Filter	red, Pi	reserv	ed or l	both(F	, P, F/	(P)			
							_		hou	£ilf	00			igspace				_	_	_		4	
	176-ug/L-Cr (lab water)			Jun-30-2014	—12:00·PM—	Water	_2																
	350 ug/l, Cr (lab water)			Jun-30-2014	12:00 PM	Water	2	ļ	<u> </u>		\Box		_ _	$\downarrow \downarrow \downarrow$				\perp	_	\perp		\perp	\perp
7011000	790 ug/L Cr (lab water)			Jun-30-2014	12:00 PM	Water	2	<u></u>						igsquare					L			\perp	
	43.75 ug/L Cr (MH-04)			Jun-30-2014	12:00 PM	Water	2							<u> </u>									
Mariatoria	87.5 ug/L Cr (MH-04)			Jun-30-2014	12:00 PM	Water	2																
upsiin.	175 up/L Cr (MH-04)			Jun-30-2014	12:00 PM	Water	2											ł					
	380 ug/L Cr (MH-04)			Jun-30-2014	12:00 PM	Water	2																
	780 ug/L Cf (MH=04)			—Jun=30=2014	—12:00 -Р М—	Water	-2-		-	1					_								
■ 観劇技術があるから	160 mg/L Hardness Perrier Water			Jun-30-2014	12:00 PM	Water	2	R															
	MH-04			Jun-30-2014	12:00 PM	Water	2	R															
life na liliga.																					T		
						<u></u>																	
22.47.58°																							
Stere				i i i ilianiam i en mi	 																		
) B) BB) B () () () () () () () () () () () () ()											l						
MARK SE				ir sv enimmi kali mi																			
				L1	479859-C	OFC															ļ		
Mine.						_																	
							<u></u> _															$oxed{oxed}$	
\$4\$4K																					\perp		
			l																			$oxed{L}$	
Min. House																							
inoshe, w		l																					
41																							
										Ĺ													

NAUTILUS ENVIRONMENTAL

ATTN: Krysta Pearcy 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 02-JUL-14

Report Date: 10-JUL-14 15:09 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1480149

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Comments:

Please note ALS identified samples L1480149-10,13 and 35 were spot on ICPOES because the samples were biased low compared to the concentration on sample id.

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1480149 CONTD.... PAGE 2 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-1 Water 02-JUL-14 12:00 12.5 UG/L CU (LAB WATER)	L1480149-2 Water 02-JUL-14 12:00 25 UG/L CU (LAB WATER)	L1480149-3 Water 02-JUL-14 12:00 50 UG/L CU (LAB WATER)	L1480149-4 Water 02-JUL-14 12:00 100 UG/L CU (LAB WATER)	L1480149-5 Water 02-JUL-14 12:00 200 UG/L CU (LAB WATER)
Grouping	Analyte						
WATER							
Total Metals	Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Copper (Cu)-Total (mg/L) Zinc (Zn)-Total (mg/L)		0.0179	0.0224	0.0393	0.0898	0.174

L1480149 CONTD.... PAGE 3 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-6 Water 02-JUL-14 12:00 25 UG/L CU (MH- 04)	L1480149-7 Water 02-JUL-14 12:00 50 UG/L CU (MH- 04)	L1480149-8 Water 02-JUL-14 12:00 100 UG/L CU (MH- 04)	L1480149-9 Water 02-JUL-14 12:00 200 UG/L CU (MH- 04)	L1480149-10 Water 02-JUL-14 12:00 400 UG/L CU (MH- 04)
Grouping	Analyte						
WATER							
Total Metals	Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Copper (Cu)-Total (mg/L)		0.0235	0.0460	0.0863	0.169	0.318
	Zinc (Zn)-Total (mg/L)						

L1480149 CONTD.... PAGE 4 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-11 Water 02-JUL-14 12:00 50 UG/L ZN (LAB WATER)	L1480149-12 Water 02-JUL-14 12:00 100 UG/L ZN (LAB WATER)	L1480149-13 Water 02-JUL-14 12:00 200 UG/L ZN (LAB WATER)	L1480149-14 Water 02-JUL-14 12:00 400 UG/L ZN (LAB WATER)	L1480149-15 Water 02-JUL-14 12:00 800 UG/L ZN (LAB WATER)
Grouping	Analyte						
WATER							
Total Metals	Aluminum (AI)-Total (mg/L)						
	Cadmium (Cd)-Total (mg/L)						
	Copper (Cu)-Total (mg/L)						
	Zinc (Zn)-Total (mg/L)		0.0384	0.0661	0.146	0.309	0.600

L1480149 CONTD.... PAGE 5 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-16 Water 02-JUL-14 12:00 50 UG/L ZN (MH- 04)	L1480149-17 Water 02-JUL-14 12:00 100 UG/L ZN (MH- 04)	L1480149-18 Water 02-JUL-14 12:00 200 UG/L ZN (MH- 04)	L1480149-19 Water 02-JUL-14 12:00 400 UG/L ZN (MH- 04)	L1480149-20 Water 02-JUL-14 12:00 800 UG/L ZN (MH- 04)
Grouping	Analyte						
WATER							
Total Metals	Aluminum (AI)-Total (mg/L)						
	Cadmium (Cd)-Total (mg/L)						
	Copper (Cu)-Total (mg/L)						
	Zinc (Zn)-Total (mg/L)		0.0416	0.0745	0.141	0.311	0.635

L1480149 CONTD.... PAGE 6 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-21 Water 02-JUL-14 12:00 25 UG/L CD (LAB WATER)	L1480149-22 Water 02-JUL-14 12:00 50 UG/L CD (LAB WATER)	L1480149-23 Water 02-JUL-14 12:00 100 UG/L CD (LAB WATER)	L1480149-24 Water 02-JUL-14 12:00 200 UG/L CD (LAB WATER)	L1480149-25 Water 02-JUL-14 12:00 400 UG/L CD (LAB WATER)
Grouping	Analyte						
WATER							
Total Metals	Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Copper (Cu)-Total (mg/L) Zinc (Zn)-Total (mg/L)		0.00851	0.0101	0.0267	0.0430	0.107

L1480149 CONTD.... PAGE 7 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-26 Water 02-JUL-14 12:00 25 UG/L CD (MH- 04)	L1480149-27 Water 02-JUL-14 12:00 50 UG/L CD (MH- 04)	L1480149-28 Water 02-JUL-14 12:00 100 UG/L CD (MH- 04)	L1480149-29 Water 02-JUL-14 12:00 200 UG/L CD (MH- 04)	L1480149-30 Water 02-JUL-14 12:00 400 UG/L CD (MH- 04)
Grouping	Analyte						
WATER							
Total Metals	Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Copper (Cu)-Total (mg/L) Zinc (Zn)-Total (mg/L)		0.0208	0.0433	0.0899	0.211	0.357
ĺ							

L1480149 CONTD.... PAGE 8 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

			1				
		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-31 Water 02-JUL-14 12:00 250 UG/L AL(LAB WATER)	L1480149-32 Water 02-JUL-14 12:00 500 UG/L AL (LAB WATER)	L1480149-33 Water 02-JUL-14 12:00 1000 UG/L AL (LAB WATER)	L1480149-34 Water 02-JUL-14 12:00 2000 UG/L AL (LAB WATER)	L1480149-35 Water 02-JUL-14 12:00 4000 UG/L AL (LAB WATER)
Grouping	Analyte		,	,	,	,	,
WATER	Analyte						
Total Metals	Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Copper (Cu)-Total (mg/L) Zinc (Zn)-Total (mg/L)		0.169	0.353	0.724	1.16	1.72

L1480149 CONTD.... PAGE 9 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

			1			vers	ion: FINAL
		Sample ID Description Sampled Date Sampled Time Client ID	L1480149-36 Water 02-JUL-14 12:00 250 UG/L AL (MH- 04)	L1480149-37 Water 02-JUL-14 12:00 500 UG/L AL (MH- 04)	L1480149-38 Water 02-JUL-14 12:00 1000 UG/L AL (MH- 04)	L1480149-39 Water 02-JUL-14 12:00 2000 UG/L AL (MH- 04)	L1480149-40 Water 02-JUL-14 12:00 4000 UG/L AL (MH-
Grouping	Analyte		- ',				
WATER	.,						
Total Metals	Aluminum (Al)-Total (mg/L) Cadmium (Cd)-Total (mg/L) Copper (Cu)-Total (mg/L)		0.171	0.369	0.739	1.50	2.08
	Zinc (Zn)-Total (mg/L)						

L1480149 CONTD.... PAGE 10 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Craumina	Avalida	Sample ID Description Sampled Date Sampled Time Client ID	L1480149-41 Water 02-JUL-14 12:00 160 MG/L HARDNESS PERRIER WATER (CU TEST)	L1480149-42 Water 02-JUL-14 12:00 160 MG/L HARDNESS PERRIER WATER (ZN TEST)	L1480149-43 Water 02-JUL-14 12:00 160 MG/L HARDNESS PERRIER WATER (CD TEST)	L1480149-44 Water 02-JUL-14 12:00 160 MG/L HARDNESS PERRIER WATER (AL TEST)	L1480149-45 Water 02-JUL-14 12:00 MH-04 (CU TEST)
Grouping WATER	Analyte						
Total Metals	Aluminum (AI)-Total (mg/L)						
Total Metals	Cadmium (Cd)-Total (mg/L)				0.040	<0.20	
	Copper (Cu)-Total (mg/L)		<0.010		<0.010		<0.010
	Zinc (Zn)-Total (mg/L)		20.010	<0.0050			<0.010
				10.0000			

L1480149 CONTD.... PAGE 11 of 12 10-JUL-14 15:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

						vers	.0	FINAL
		Sample ID	L1480149-46	L1480149-47	L1480149-48			
		Description	Water	Water	Water			
		Sampled Date	02-JUL-14	02-JUL-14	02-JUL-14			
		Sampled Time	12:00	12:00	12:00			
		Client ID	MH-04 (ZN TEST)	MH-04 (CD TEST)	MH-04 (AL TEST)			
Grouping	Analyte							
WATER								
Total Metals	Aluminum (Al)-Total (mg/L)				0.00			
Total Metals	Cadmium (Cd)-Total (mg/L)				<0.20			
				<0.010				
	Copper (Cu)-Total (mg/L)							
	Zinc (Zn)-Total (mg/L)		0.0072					

Reference Information

L1480149 CONTD....

PAGE 12 of 12

10-JUL-14 15:09 (MT)

Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

MET-T-CCMS-VA Water Total Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 1 of 5

Report To					Reporting				Servi	e Re	queste	d									
Company:	Nautilus Environmental				Distribution:	□Fax	⊡Mall	ØEmalt	⊚ Re	gular (Standa	rd Tun	naroune	Time	s - Bus	iness	Days)	- R			
Contact:	Krysta Pearcy		_		□Ciriteria on	Report (select from	Guidelines below)		O Prio	ority (3	Days)	- surci	harge w	/ill app	ly - P						
Address:	8664 Commerce Court				Report Type:	☑ Excel	Ø Digita	al	O Pric	rity (2	Days)	- surci	harge w	ill app	ly - P2						
	Imperial Square Lake City Burnaby, BC	,			Report Forma	t:			ΦEm	ergen	cy (1-2	day) -	- surch:	arge w	ill appl	y - E					
	Canada, V5A 4N7				Report Email(s): krysta@nautilu	senvironmental.com	n	O Sai	ne Da	y or W	ekend	1 Emerg	ency -	surch	arge v	vill app	ly - E2	2		
									O Spe	cify d	ate req	uired -	Х		-						
Рһоле:	604-420-8773	Fax:	604-357-1361		Ì									Analy	sis Re	quest	8				
Invoice To	☑Email	□Mail			EDD Format:		·														
Company:	Nautilus Environmental				EDD Email(s)	:			1												
Contact:	Krysta Pearcy		<u></u>		l .			1 111 6 1 6 15	1												
Address:	8664 Commerce Court																				
	Imperial Square Lake City Burnaby, BC	f			Proj		<u> </u>						1								1 1
	Canada, V5A 4N7				Job i	L14801	149-COFC		1												
			··-		PO//				i		ı										
Email:	krysta@nautilusenvironm		LSD:				یا							İ							
Phone:	604-420-8773				Quote #:				ië.		3	5		_ <u>&</u>	.00	برا		- 1			
	Leb Work Order # (lab use only)			April 2000	ALS Contact:	Janie Lo	Sampler: Krysta f	Pearcy	of Containers	Total Cu	Total	Total Z	Total Cd Total Al	Total F	Fotal Fe	Total Cr					
Sample	Samı			Coord	linates	Date	Time	Comple Tops	Number		Pk	ase in	dicate t	pelow i	Filtere	d, Pres	served	or bat	th(F, P	, F/P)	
***************************************	(This will	appear on the re	eport)	Longitude	Latitude	Date	lime	Sample Type	Ž				Ţ								
Start .	12.5 ug/L Cu (lab water)					Jul-02-2014	12:00 PM	Water	1	R											
- 24	25 ug/L Cu (lab water)					Jul-02-2014	12:00 PM	Water	1	R											
84 18 Jak	50 ug/L Cu (lab water)					Jul-02-2014	12:00 PM	Water	1	R											
	100 ug/L Cu (lab water)					Jul-02-2014	12:00 PM	Water	1	R											
S	200 ug/L Cu (lab water)					Jul-02-2014	12:00 PM	Water	1	R											
C2007 C. D. C. C. C. C. C. C. C. C. C. C. C. C. C.	25 ug/l. Cu (MH-04)					Jul-02-2014	12:00 PM	Water	1	R										\perp	
18-18-96.	50 ug/L Cu (MH-04)					Jul-02-2014	12:00 PM	Water	1	R										\perp	
	100 ug/L, Cu (MH-04)			<u></u>		Jul-02-2014	12:00 PM	Water	1_	R											
1000						(See page	2 for further sample	s)													
	Special Instruct	ions/Comments	·	The quest	tions below m	ust be answered fo	or water samples (check Yes or No)	Gulde	lines				_							
				Are any samp	ole taken from a	a regulated DW sys	tem? 🗆 Yes	□No	ļ												ļ
Samples N	nples NOT preserved.			lf yes, please	use an authori	ized drinking water	cac														
ozpiza it	nes NOT proserveu.					ed to be potable for	human □Yes	⊓No				S	AMPLE	CON	IOITIG	dal) V	U20 0	nly)			
				consumption'	?				□Fro	zen	1	□Cold		ΠA	mbien	t	□ Co	aling l	nitiated	ł	
	SHIPMENT RELEASE (client use)				SHII	PMENT RECEPTIO	N (lab use only)		3545	1000	OR (A), a	SHII	PMENT	VERH	FICAT	ION (I	ab use	only) Resse	884 L.	
Released b	y: _	Date:	Time:	Received by:		Date:	Time:	Temperature:	Verific	ed by:	/	D	ate:	1.	\neg	Time	a.		[0	bsen	vations:
Ι Χ	, Q _a . I	7, 21.	170010					• • • • • • • • • • • • • • • • • • • •	/	1/2	Pu	,		II.,			70) (\		∃Yes	180
11/42	ta recover	MISPILL	MICON				<u> </u>			10		į (JU,	ľV		<u> </u>			ļi	Yes	add SIF
	<u> </u>													1							

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 2 of 5

															Anal	/sis R	eque	sts							
Sample		Coord	inates	Date	Time	Sample Type																			
1 3	(This will appear on the report)	Longitude	Latitude	Sate		Campia Type	Number of Containers	Total Cu	Total Cu	Total Zn	Total Cd		Total Pb	Total Fe	Total Cr			:							
9 BANG							Ę			1		Pleas	se ind	licate	below	Filter	ed, Pi	eserv	ed or	both(F,	P, F.	/ P)			
						-	ž						_			_	$ \bot $				_	_	\perp	_	
	200 ug/L Cu (MH-04)			Jul-02-2014	12:00 PM	Water	1		R					_				\rightarrow			4	_		_	_
111111111111111111111111111111111111111	400 ug/L Cu (MH-04)			Jul-02-2014	12:00 PM	Water	1	R									_					\dashv		_	_
	50 ug/L Zn (lab water)			Jul-02-2014	12:00 PM	Water	1			R						_	_		_					_	
	100 ug/L Zn (lab water)		ļ	Jul-02-2014	12:00 PM	Water	1			R					_		_		_	\perp	\perp				
	200 ug/L Zn (lab water)			Jul-02-2014	12:00 PM	Water	1	<u> </u>		R							_								
· · · · · · · · · · · · · · · · · · ·	400 ug/L Zn (lab water)			Jul-02-2014	12:00 PM	Waler	1	ļ <u>.</u>		R											\perp				
	800 ug/l, Zn (lab water)			Jul-02-2014	12:00 PM	Water	1_			R					_		I	ı	I	ļ	1				
	50 ug/L Zn (MH-04)			Jul-02-2014	12:00 PM	Water	1			R					h						111			Ш	ı
. 1981 (BB)	100 ug/L Zn (MH-04)			Jul-02-2014	12:00 PM	Water	1			R					. 1		Hili		Ш	Ш	N N				
	200 ug/L Zn (MH-04)	1		Jul-02-2014	12:00 PM	Water	1			R					, II		1			4 40 I	\sim	EC		_	
enament d	400 ug/L Zn (MH-04)			Jul-02-2014	12:00 PM	Water	1			R								L14	48U	149-	\sim	, 0			
SAMMIT E	800 ug/L Zn (MH-04)			Jul-02-2014	12:00 PM	Water	1			R												1	1	1	
Wing Massi	25 ug/L Cd (lab water)			Jul-02-2014	12:00 PM	Water	1				R				_ 										
1	50 ug/L Cd (lab water)			Jul-02-2014	12:00 PM	Water	1				R						T				T				
See an	100 ug/L Cd (lab water)			Jul-02-2014	12:00 PM	Water	1				R		$\neg \uparrow$			Ī	一				T				
:	200 ug/L, Cd (tab water)			Jul-02-2014	12:00 PM	Water	1				R				T		1					1			_
w w	400 ug/L Cd (lab water)			Jul-02-2014	12:00 PM	Water	1				R		_								1		\top		_
	25 ug/L Cd (MH-04)			Jul-02-2014	12:00 PM	Water	1			T	R		$\neg \uparrow$			1	\neg		\neg	\dashv	十				_
10 1 t	50 ug/L Cd (MH-04)	1		Jul-02-2014	12:00 PM	Water	1				R					_					1		+		
***************************************	100 ug/L Cd (MH-04)			Jul-02-2014	12:00 PM	Water	1				R					\dashv	\neg	\dashv	\dashv	\dashv	_	\dashv	\dashv	\top	_
1127 St. 1 W. 1	200 ug/L Cd (MH-04)			Jul-02-2014	12:00 PM	Water	1		-	†	R		$\neg \dashv$			_	\dashv	\dashv	\dashv	\dashv	\neg	\dashv	+	+	_
	400 ug/L Cd (MH-04)			Jul-02-2014	12:00 PM	Water	1			-	R	1				\dashv	_	+	+	\dashv	\dashv		+	+	_
	250 ug/L Al (lab water)			Jul-02-2014	12:00 PM	Water	1					R	_		1	\dashv	-	_		\dashv	\dashv	\dashv	\top		_
	500 ug/L Al (lab water)	1		Jul-02-2014	12:00 PM	Water	1			\vdash	_	R	\dashv	-+		+	-	\dashv	\dashv	-+	+	\dashv	+	+	
	1000 ug/L. Al (lab water)		· - · -	Jul-02-2014	12:00 PM	Water	1			-	-	R		_		+				\dashv	+	\dashv	+	+	_
	2000 ug/L Al (lab water)		 	Jul-02-2014	12:00 PM	Water	1	 	-			R	_	-	1	-	一	\dashv	\dashv	1	\dashv	\dashv	+	+	_
							1	1		1			- 1			- 1			1		- 1			- 1	

Somples concelled

(ALS) Environmental

COC #: OL-1355

Page 3 of 5

<u>(ALS)</u>	Environmental					ww.aisgiodai.c	UIFI																			
Mark Against															Analy	ysis H	eque	ests								7
7 8935																										1
Sample		Coord	inates												ĺ								-			
																										l
Sample #	Sample Identification (This will appear on the report)	<u> </u>	1	Date	Time	Sample Type	<u>,</u>																}			
	(tainer	ا ا	3	_ v2	8	-	ا ۾	ا بق	5								ļ			1
		Longitude	Latitudo				Number of Contained	Total Cu	Total	Total Zn	Total Cd	Total Al	Total Pb	Total Fe	Total Cr	ŀ										١
		CONSIDUE	Latitude			:	ner of	┝			<u></u>		se ind			Filler	ed P	reser	wed a	r bath	L_	E/P)			Ш.	┨
								_			, –	, les	Se iiiu	licate i	0000	, 1,16.7	EG, 1	10001	1600	l both	.,,,,,	, 		Т	_	\dashv
. April 100	250 ug/l, Al (MH-04)		_	Jul-02-2014	12:00 PM	Water	1	-		-	H	R		-	1	\dashv								-	+	┨
	500 ug/L Al (MH-04)			Jul-02-2014	12:00 PM	Water	1				\vdash	R		_										\dashv	+	1
i i i religios.	1000 ug/L Al (MH-04)			Jul-02-2014	12:00 PM	Water	1					R		一				_					_		+-	1
* A.	2000 ug/L Al (MH-04)			Jul-02-2014	12:00 PM	Water	1					R							1				T	十	\top	1
4.4 460 4771	4000 ug/L AI (MH-04)			Jul-02-2014	12:00 PM	Water	1					R														
arando Malajajaja	62.5 ug/L Pb (lab water)			 Jul-02-201 4	12:00-PM		1	_					-R	_											72	士
	125 ug/L Pb (lab water)			Jul-02-2014	12:00 PM	Water	1						R											_]
Alliani.	259-ug/L Pb (lab water)			Jul-02-2014	12:00 PM	Water	1						R							ہیں	erere.	سيسو				
INDEX SE	500 ug/L Pb (lab water)			Jul-02-2014	12:00 PM	Water	1						R						يعتسبهمن							
	1000 ug/L Pb (lab water)			Jul-02-2014	12:00 PM	Water	1						R			*****	*	<u> </u>							ᆚ	1
وأعلم المأكوة أستست	62.5 ug/L Pb (MH-04)			Jul-02-2014	12:00 PM	Water	1	<u> </u>					Re	-										_		_
833.2 4M E.	125 ug/L Pb (MH-04)	ļ		Jul-02-2014	12:00 PM	Water	1	Li		اسميي	CERTERIE	Mar.	Ř												Ц.,	
	250 ug/L Pb (MH-04)			Jul-02-2614	12:00 PM	Water	1		-				R													
	500 ug/i., Pb (MH-04)		<u> </u>	Jul-02-2014	12:00-P-M	Water	2007	Ĺ					R													_
11000	1000 ug/L Pb (MH-04)	ļ		Jul-02-2014	12:00 PM	Water	1						R	\rightarrow						L_			_			4
**************************************	6.25 mg/L Fe (lab water)			Jul-02-2014	12:00 PM	Water	7							R						ļ				_	_	4
75.63	12.5 mg/L Fe (lab water)	ļ		Jul-02-2014	12;00°PM	Water	1		/					R			_	L	<u> </u>					_		_
*	25 mg/L Fe (lab water)	<u> </u>		Jul-02-2014	12:00 PM	Water	1_	ļ						R					<u> </u>			\vdash		\perp	+	4
	50 mg/L Fe (lab water)	 	-	02-2014 ص	12:00 PM	Water	1				_		\rightarrow	R		_			<u> </u>				_	_	4	4
Alle Carlos	100 mg/L Fe (lab water)	 	- Annual Control	Jul-02-2014	12:00 PM	Water	1	 					-	R		\rightarrow	_								+	4
100 M	6.25 mg/L Fe (MH-04)		<u> </u>	Jul-02-2014	12:00 PM	Water	1						\dashv	R	\dashv		\dashv		L	<u> </u>	<u> </u>		_		+	4
	12.5 mg/L Fe (MH-04)			Jul-02-2014	12:00 PM	Water	1		_					R		\dashv		_	\vdash	_				-	+	4
	25 mg/L Fe (MH-04) 50 mg/L Fe (MH-04)			Jul-02-2014 Jul-02-2014	12:00 PM 12:00 PM	Water	1				-			R					<u> </u>	ļ	\rightarrow			_	+	-
110000000000000000000000000000000000000	100 mg/L Fg (MH-04)	_		Jul-02-2014 Jul-02-2014	12:00 PM	Water	1	\vdash		\vdash				R		-	-		-	<u> </u>			\rightarrow	+	+	-
	43.75 lig/L Cr (lab water)	 		Jul-02-2014	12:00 PM	Water	1			_	_			-+	R	\dashv			 	<u> </u>	-		\dashv	\rightarrow	+	\mathbf{I}
المسترد المالية المالية	87.5 ug/L Cr (lab water)			Jul-02-2014	1-2:00:PM	- Water	1	-						_	R	_	_	_=	_				_		+	Ŧ
100000	and the many			AGL-25-50 14 mg		(See page 4 for further	L	L		Ll	L1				·`				<u> </u>	l	L	L		L_	\mp	1
						Con bage the miner		٠,																		J

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 4 of 5

Analysis Requests Coordinates L1480149-COFC Sample Identification San., Sample Time Sample Type Date Number of Containers (This will appear on the report) Total Zn Total Cd ö Total Cu Total Al Total Pb Total Fe Total Longitude Latitude Please indicate below Filtered, Preserved or both(F, P, F/P) 12:00 PM Jul-02-2014 Water-475 vg/L-Cr (lab Water) R Jul-02-2014 12:00 PM Water 350 ug/L Cr (lab water) R Jul-02-2014 12:00 PM Water 700 ug/L Cr (lab water) 1 Jul-02-2014 12:00 PM Water 43.75 ug/L Cr (MH-04) 12:00 PM Water Jul-02-2014 T) 87.5 ug/L Cr (MH-04) Ŕ 1 Jul-02-2014 12:00 PM Water 175 ug/L Cr (MH-04) R Jul-02-2014 12:00 PM Water 1 350 ug/L Cr (MH-04) R 12:00 PM Weter Jai:02:20†4° 7.00-ug/L-Cr-(MH-04) 160 mg/L Hardness Perrier R 12:00 PM Water Jul-02-2014 Water (Cu test) 160 mg/L Hardness Perrier R Jul-02-2014 12:00 PM Water Water (Zn test) 160 mg/L Hardness Perrier R 12:00 PM Water Jul-02-2014 Water (Cd test) 160 mg/L Hardness Perrier R Jul-02-2014 12:00 PM Water Water (Al test) 160 mg/L Hardness Perrier Jul-02-2014 12:00-PM-Water Water (Pb test) 160 mg/L Hardness Perrier 12:00 PM Jure 2-2014 Water (Fe test) 160 mg/L Hardness Perrier 12:00 PM Jun-30-2014 vvater Water (Cr test) R 1 Jul-02-2014 12:00 PM Water MH-04 (Cultest) R 1 Jul-02-2014 12:00 PM Water MH-04 (Zn test) 1 R 12:00 PM Water MH-04 (Cd test) Jul-02-2014 12:00 PM Water † R MH-04 (Altest) Jul-02-2014 12:00 PM Water MH-04 (Pb test) Jul-02-2014 (See page 5 for further samples)

Samples canceiled

imple?

worker the

(ALS) Environmenta

Chain of Custo<u>dy /</u> Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Page 5 of 5

	Enulronmental www.aisgiobal.com Analysis Requests																									
			·							_	r		T		Analy	ysis R	eque	sts	 -	$\overline{}$				<u>-</u> -		ł
	•										!]				ŀ		- }				l
		Coordi	nates																							
	Sample Identification																1			1			1	1	j	ļ
Sample	(This will appear on the report)	-	,	Date	Time	Sample Type	iners		,	_	_															l
			:				Conta	Total Cu	Total Cu	Total Zn	Total Cd	Total Al	Total Pb	Total Fe	Total Cr			ĺ	1			1				l
		Longitude	Latitude				Number of Containers	<u> </u>	۲	۳	L <u>=</u>					v Filter	ed Dr	79797	ed or	hoth/f	<u>_</u>	/P)		Д.		ł
		}					Ę	-	I	Г	<u> </u>	Fica	ise iiic	ilcare	Delon			16367	Jeu di		Ť	<u> </u>	~ T		\top	1
\	MILD4 (Perest)		·	Jul-02-2014	12:00 PM	Water			ļ	-	_			-R	=											
	MH-04 (Cr.test)			Jul-02-2014	12:00 PM	Water	-1-	-		-					R										1	ı
	(VIII TO A COLUMNIA)							1		1														1		1
		_				_		╁			İ]
nche.]
À			_																				_			1
									ļ							\sqcup								4		1
Mar.									_	_	ļ		ļ	<u> </u>	-					\dashv	_	_	_	-	\dashv	4
in Albania							 	<u> </u>	_	_	_	_									_	_	_+	+	-	4
MPHAIL, coicit.							ļ		 	\vdash	├-	 				\vdash	\dashv	_		\dashv	-	-+		\dashv	+	┨
Nilline ,		<u> </u>					_	+	 —	\vdash	-	 	-					ļ		\dashv	-		-	+	+	ł
Man 28					<u> </u>			-	╁—	+		╁	<u> </u>	 	-	\vdash			-	\neg	+	\dashv	\dashv	_	+	1
CONTRACTOR OF THE STATE OF THE		 	 				├-	1	 	╁	+		\vdash	 		' ــــــــــــــــــــــــــــــــــــ			-		一		一	\dashv	\top	1
Walls as a		<u> </u>					 	+	+-	 	' .m.:41		111 11	11111	MIN	11 I M	$\mathbb{H} \mathbb{N}$		•						\top	1
Casa.							\vdash	11 1	III	N	W	$\parallel\parallel\parallel$	W	W	W		H	1]
	· · · · · · · · · · · · · · · · · · ·							-	Ш	IIII	11 11	33/6	HH		FC.						_					_
								. III.	 		L14	4801	149-		, 🗸				-					\dashv		4
No. 1969								_						.—	-	\vdash	Ш	<u> </u>						-		4
aralli					_	<u>_ </u>	↓	-	-	+	 	₩	-	_		-						\dashv	-			┨
itus. EsiX		<u> </u>	 				ļ—		 	+	┼-	-	┢		<u> </u>	-	-	_			_					┨
Habinging .			ļ	<u> </u>			├-	↓ _		+-	┼	 	-	╁		-		-	\vdash			\dashv		+	-	4
		 	-		 	 	╁—	+	+	+	+-	+	 	-	\vdash	-	 	├	├			-	\dashv	-		j
inciffibles				 	 -	<u> </u>	-	+-	+	+	+-	+-	1	\vdash	-	+-		1	 				\dashv	\dashv	+-	┨
w30 - 221	ļ	 -	 	 -		-	ļ	+	 	+	┼╌	 -	+	\vdash	╁	+-						1	_	-	-	1
30,5370 	ļ <u> </u>		1	 	 			+	┼─		+-	+	1-		_	\dagger		 						_†		1
100		 	+	<u> </u>	-	-	 	+	+	+-	+-	\top	+	 										+	_	1
	.l										_						_	_		•		_	_	_		۰

NAUTILUS ENVIRONMENTAL

ATTN: Krysta Pearcy 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 02-JUL-14

Report Date: 15-JUL-14 17:18 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1480117

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1480117 CONTD.... PAGE 2 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-1 Water 01-JUL-14 160MG/L HARDNESS CTRL	L1480117-2 Water 01-JUL-14 MH-04 SITE CTRL	L1480117-3 Water 01-JUL-14 6.25 MG/L FE (LAB)	L1480117-4 Water 01-JUL-14 12.5 MG/L FE (LAB)	L1480117-5 Water 01-JUL-14 25 MG/L FE (LAB)
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	129	153			
Total Metals	Aluminum (Al)-Total (mg/L)	<0.0030	0.0049			
	Antimony (Sb)-Total (mg/L)	0.00030	0.00013			
	Arsenic (As)-Total (mg/L)	<0.00010	0.00036			
	Barium (Ba)-Total (mg/L)	0.0149	0.0208			
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050			
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050			
	Boron (B)-Total (mg/L)	0.017	<0.010			
	Cadmium (Cd)-Total (mg/L)	<0.000050	0.000214			
	Calcium (Ca)-Total (mg/L)	51.8	57.7			
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.00050			
	Cobalt (Co)-Total (mg/L)	<0.00010	0.00011			
	Copper (Cu)-Total (mg/L)	<0.00050	0.00113			
	Iron (Fe)-Total (mg/L)	<0.030	<0.030	5.94	12.2	25.6
	Lead (Pb)-Total (mg/L)	<0.000050	0.000292			
	Lithium (Li)-Total (mg/L)	<0.0050	<0.0050			
	Magnesium (Mg)-Total (mg/L)	2.21	2.68			
	Manganese (Mn)-Total (mg/L)	<0.000050	0.000334			
	Molybdenum (Mo)-Total (mg/L)	0.000588	0.000626			
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050			
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30			
	Potassium (K)-Total (mg/L)	<2.0	<2.0			
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010			
	Silicon (Si)-Total (mg/L)	2.16	2.76			
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010			
	Sodium (Na)-Total (mg/L)	5.0	<2.0			
	Strontium (Sr)-Total (mg/L)	0.283	0.179			
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010			
	Tin (Sn)-Total (mg/L)	0.00054	0.00058			
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010			
	Uranium (U)-Total (mg/L)	0.00151	0.000676			
	Vanadium (V)-Total (mg/L)	<0.0010	<0.0010			
	Zinc (Zn)-Total (mg/L)	<0.0030	0.0070			
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)	<0.0030	<0.0030			
	Antimony (Sb)-Dissolved (mg/L)	0.00027	0.00012			
	Arsenic (As)-Dissolved (mg/L)	0.00010	0.00032			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 3 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-6 Water 01-JUL-14 50 MG/L FE (LAB)	L1480117-7 Water 01-JUL-14 100 MG/L FE (LAB)	L1480117-8 Water 01-JUL-14 6.25 MG/L FE (MH- 04)	L1480117-9 Water 01-JUL-14 12.5 MG/L FE (MH- 04)	L1480117-10 Water 01-JUL-14 25 MG/L FE (MH- 04)
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)	49.9	97.7	5.91	12.1	24.9
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (Al)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 4 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L1480117-11 Water 01-JUL-14	L1480117-12 Water 01-JUL-14	L1480117-13 Water 01-JUL-14	L1480117-14 Water 01-JUL-14	L1480117-15 Water 01-JUL-14
	Client ID	50 MG/L FE (MH- 04)	100 MG/L FE (MH- 04)	43.75 UG/L CR (LAB)	87.5 UG/L CR (LAB)	175 UG/L CR (LAB)
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)			0.0434	0.0904	0.175
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)	47.8	98.0			
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 5 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID	L1480117-16	L1480117-17	L1480117-18	L1480117-19	L1480117-20
	Description	Water	Water	Water	Water	Water
	Sampled Date	01-JUL-14	01-JUL-14	01-JUL-14	01-JUL-14	01-JUL-14
	Sampled Time Client ID	350 UG/L CR (LAB)	700 UG/L CR (LAB)	43.75 UG/L CR(MH04)	87.5 UG/L CR (MH04)	175 UG/L CR (MH04)
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)	0.353	0.728	0.0418	0.0907	0.179
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)					
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 6 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

			1			
	Sample ID Description	L1480117-21 Water	L1480117-22 Water	L1480117-23 Water	L1480117-24 Water	L1480117-25 Water
	Sampled Date	01-JUL-14	01-JUL-14	01-JUL-14	01-JUL-14	01-JUL-14
	Sampled Time Client ID	350 UG/L CR	700 UG/L CR	62.5 UG/L PB	125 UG/L PB (LAB)	250 UG/L PB (LAB)
		(MH04)	(MH04)	(LAB)		
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)	0.367	0.717			
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)			0.0409	0.0772	0.156
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (Al)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 7 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-26 Water 01-JUL-14 500 UG/L PB (LAB)	L1480117-27 Water 01-JUL-14 1000 UG/L PB (LAB)	L1480117-28 Water 01-JUL-14 62.5 UG/L PB (MH04)	L1480117-29 Water 01-JUL-14 125 UG/L PB (MH04)	L1480117-30 Water 01-JUL-14 250 UG/L PB (MH04)
Grouping	Analyte			,	,	
WATER	, and yes					
Physical Tests	Hardness (as CaCO3) (mg/L)					
Total Metals	Aluminum (Al)-Total (mg/L)					
	Antimony (Sb)-Total (mg/L)					
	Arsenic (As)-Total (mg/L)					
	Barium (Ba)-Total (mg/L)					
	Beryllium (Be)-Total (mg/L)					
	Bismuth (Bi)-Total (mg/L)					
	Boron (B)-Total (mg/L)					
	Cadmium (Cd)-Total (mg/L)					
	Calcium (Ca)-Total (mg/L)					
	Chromium (Cr)-Total (mg/L)					
	Cobalt (Co)-Total (mg/L)					
	Copper (Cu)-Total (mg/L)					
	Iron (Fe)-Total (mg/L)					
	Lead (Pb)-Total (mg/L)	0.343	0.417	0.0446	0.0822	0.164
	Lithium (Li)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Manganese (Mn)-Total (mg/L)					
	Molybdenum (Mo)-Total (mg/L)					
	Nickel (Ni)-Total (mg/L)					
	Phosphorus (P)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Selenium (Se)-Total (mg/L)					
	Silicon (Si)-Total (mg/L)					
	Silver (Ag)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					
	Strontium (Sr)-Total (mg/L)					
	Thallium (TI)-Total (mg/L)					
	Tin (Sn)-Total (mg/L)					
	Titanium (Ti)-Total (mg/L)					
	Uranium (U)-Total (mg/L)					
	Vanadium (V)-Total (mg/L)					
	Zinc (Zn)-Total (mg/L)					
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Aluminum (AI)-Dissolved (mg/L)					
	Antimony (Sb)-Dissolved (mg/L)					
	Arsenic (As)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 8 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-31 Water 01-JUL-14 500 UG/L PB (MH04)	L1480117-32 Water 01-JUL-14 1000 UG/L PB (MH04)		
Grouping	Analyte				
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)				
Total Metals	Aluminum (Al)-Total (mg/L)				
	Antimony (Sb)-Total (mg/L)				
	Arsenic (As)-Total (mg/L)				
	Barium (Ba)-Total (mg/L)				
	Beryllium (Be)-Total (mg/L)				
	Bismuth (Bi)-Total (mg/L)				
	Boron (B)-Total (mg/L)				
	Cadmium (Cd)-Total (mg/L)				
	Calcium (Ca)-Total (mg/L)				
	Chromium (Cr)-Total (mg/L)				
	Cobalt (Co)-Total (mg/L)				
	Copper (Cu)-Total (mg/L)				
	Iron (Fe)-Total (mg/L)				
	Lead (Pb)-Total (mg/L)	0.303	0.693		
	Lithium (Li)-Total (mg/L)				
	Magnesium (Mg)-Total (mg/L)				
	Manganese (Mn)-Total (mg/L)				
	Molybdenum (Mo)-Total (mg/L)				
	Nickel (Ni)-Total (mg/L)				
	Phosphorus (P)-Total (mg/L)				
	Potassium (K)-Total (mg/L)				
	Selenium (Se)-Total (mg/L)				
	Silicon (Si)-Total (mg/L)				
	Silver (Ag)-Total (mg/L)				
	Sodium (Na)-Total (mg/L)				
	Strontium (Sr)-Total (mg/L)				
	Thallium (TI)-Total (mg/L)				
	Tin (Sn)-Total (mg/L)				
	Titanium (Ti)-Total (mg/L)				
	Uranium (U)-Total (mg/L)				
	Vanadium (V)-Total (mg/L)				
	Zinc (Zn)-Total (mg/L)				
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB		
	Aluminum (Al)-Dissolved (mg/L)				
	Antimony (Sb)-Dissolved (mg/L)				
	Arsenic (As)-Dissolved (mg/L)				

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 9 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-1 Water 01-JUL-14 160MG/L HARDNESS CTRL	L1480117-2 Water 01-JUL-14 MH-04 SITE CTRL	L1480117-3 Water 01-JUL-14 6.25 MG/L FE (LAB)	L1480117-4 Water 01-JUL-14 12.5 MG/L FE (LAB)	L1480117-5 Water 01-JUL-14 25 MG/L FE (LAB)
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)	0.0144	0.0204			
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050			
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050			
	Boron (B)-Dissolved (mg/L)	0.025	<0.010			
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	0.000228			
	Calcium (Ca)-Dissolved (mg/L)	48.3	56.9			
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050			
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	<0.00010			
	Copper (Cu)-Dissolved (mg/L)	<0.00050	<0.00050			
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	0.000212			
	Lithium (Li)-Dissolved (mg/L)	<0.0050	<0.0050			
	Magnesium (Mg)-Dissolved (mg/L)	2.11	2.65			
	Manganese (Mn)-Dissolved (mg/L)	0.000055	0.000384			
	Molybdenum (Mo)-Dissolved (mg/L)	0.000534	0.000625			
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050			
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30			
	Potassium (K)-Dissolved (mg/L)	<2.0	<2.0			
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010			
	Silicon (Si)-Dissolved (mg/L)	2.07	2.72			
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010			
	Sodium (Na)-Dissolved (mg/L)	4.8	<2.0			
	Strontium (Sr)-Dissolved (mg/L)	0.273	0.175			
	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010			
	Tin (Sn)-Dissolved (mg/L)	0.00049	0.00057			
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010			
	Uranium (U)-Dissolved (mg/L)	0.00124	0.000645			
	Vanadium (V)-Dissolved (mg/L)	<0.0010	<0.0010			
	Zinc (Zn)-Dissolved (mg/L)	<0.0030	0.0057			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 10 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-6 Water 01-JUL-14 50 MG/L FE (LAB)	L1480117-7 Water 01-JUL-14 100 MG/L FE (LAB)	L1480117-8 Water 01-JUL-14 6.25 MG/L FE (MH- 04)	L1480117-9 Water 01-JUL-14 12.5 MG/L FE (MH- 04)	L1480117-10 Water 01-JUL-14 25 MG/L FE (MH- 04)
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Bismuth (Bi)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)	<0.030	37.8	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Phosphorus (P)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silicon (Si)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Strontium (Sr)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 11 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L1480117-11 Water 01-JUL-14	L1480117-12 Water 01-JUL-14	L1480117-13 Water 01-JUL-14	L1480117-14 Water 01-JUL-14	L1480117-15 Water 01-JUL-14
	Client ID	50 MG/L FE (MH- 04)	100 MG/L FE (MH- 04)	43.75 UG/L CR (LAB)	87.5 UG/L CR (LAB)	175 UG/L CR (LAB)
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Bismuth (Bi)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)			0.0424	0.0877	0.172
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)	<0.030	23.6			
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Phosphorus (P)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silicon (Si)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Strontium (Sr)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 12 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1480117-16 Water 01-JUL-14 350 UG/L CR (LAB)	L1480117-17 Water 01-JUL-14 700 UG/L CR (LAB)	L1480117-18 Water 01-JUL-14 43.75 UG/L CR(MH04)	L1480117-19 Water 01-JUL-14 87.5 UG/L CR (MH04)	L1480117-20 Water 01-JUL-14 175 UG/L CR (MH04)
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Bismuth (Bi)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)	0.0420	0.692	0.0409	0.0883	0.174
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)					
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Phosphorus (P)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silicon (Si)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Strontium (Sr)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 13 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L1480117-21 Water 01-JUL-14	L1480117-22 Water 01-JUL-14	L1480117-23 Water 01-JUL-14	L1480117-24 Water 01-JUL-14	L1480117-25 Water 01-JUL-14
	Client ID	350 UG/L CR (MH04)	700 UG/L CR (MH04)	62.5 UG/L PB (LAB)	125 UG/L PB (LAB)	250 UG/L PB (LAB)
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Bismuth (Bi)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)	0.355	0.728			
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)			0.0301	0.0758	0.148
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Phosphorus (P)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silicon (Si)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Strontium (Sr)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 14 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L1480117-26 Water 01-JUL-14 500 UG/L PB (LAB)	L1480117-27 Water 01-JUL-14	L1480117-28 Water 01-JUL-14 62.5 UG/L PB	L1480117-29 Water 01-JUL-14 125 UG/L PB	L1480117-30 Water 01-JUL-14 250 UG/L PB
	Client ID	300 09/L FB (LAB)	(LAB)	(MH04)	(MH04)	(MH04)
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Bismuth (Bi)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)	0.246	0.279	0.0423	0.0795	0.156
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Phosphorus (P)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silicon (Si)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Strontium (Sr)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1480117 CONTD.... PAGE 15 of 17 15-JUL-14 17:18 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		1				
	Sample ID Description	L1480117-31 Water	L1480117-32 Water			
	Sampled Date	01-JUL-14	01-JUL-14			
	Sampled Time Client ID	500 UG/L PB (MH04)	1000 UG/L PB (MH04)			
Grouping	Analyte					
WATER						
Dissolved Metals	Barium (Ba)-Dissolved (mg/L)					
	Beryllium (Be)-Dissolved (mg/L)					
	Bismuth (Bi)-Dissolved (mg/L)					
	Boron (B)-Dissolved (mg/L)					
	Cadmium (Cd)-Dissolved (mg/L)					
	Calcium (Ca)-Dissolved (mg/L)					
	Chromium (Cr)-Dissolved (mg/L)					
	Cobalt (Co)-Dissolved (mg/L)					
	Copper (Cu)-Dissolved (mg/L)					
	Iron (Fe)-Dissolved (mg/L)					
	Lead (Pb)-Dissolved (mg/L)	0.285	0.663			
	Lithium (Li)-Dissolved (mg/L)					
	Magnesium (Mg)-Dissolved (mg/L)					
	Manganese (Mn)-Dissolved (mg/L)					
	Molybdenum (Mo)-Dissolved (mg/L)					
	Nickel (Ni)-Dissolved (mg/L)					
	Phosphorus (P)-Dissolved (mg/L)					
	Potassium (K)-Dissolved (mg/L)					
	Selenium (Se)-Dissolved (mg/L)					
	Silicon (Si)-Dissolved (mg/L)					
	Silver (Ag)-Dissolved (mg/L)					
	Sodium (Na)-Dissolved (mg/L)					
	Strontium (Sr)-Dissolved (mg/L)					
	Thallium (TI)-Dissolved (mg/L)					
	Tin (Sn)-Dissolved (mg/L)					
	Titanium (Ti)-Dissolved (mg/L)					
	Uranium (U)-Dissolved (mg/L)					
	Vanadium (V)-Dissolved (mg/L)					
	Zinc (Zn)-Dissolved (mg/L)					
		1	1	1	1	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L1480117 CONTD....

PAGE 16 of 17

15-JUL-14 17:18 (MT)

Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1480117-1, -2
Qualifiers fo	or Individual Parameters Li	sted:		
Qualifier	Description			
MS-B	Spike Calcium (Ca)-Dissolved MS-B L1480117-1, -2 ers for Individual Parameters Listed:		background in sample.	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-DIS-ICP-VA Water Dissolved Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-T-CCMS-VA Water Total Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B)

MET-TOT-LOW-MS-VA Water Total Metals in Water by ICPMS(Low) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

Reference Information

L1480117 CONTD....
PAGE 17 of 17
15-JUL-14 17:18 (MT)
Version: FINAL

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

X Brillsh Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Chain of Custody (electronic)

L1480117-COFC

Sample Collection By:							ı		-	ANA	LYSES	REC	UIREI)	ili Militi
	Report to	-			Invoice to:										ြ ့
Company	Nautilus E	nvironmenta	al		Nautilus Envi	ronmental									Receipt Temperature
Address	8664 Com	merce Cou	<u> </u>		8664 Comme	erce Court		€\$, l						a a
City/Prov/Postal Code	Burnaby, (3C, V5A, 4N	17		Burnaby, BC	, V5A, 4N7	_ ≼	Mater		ادها					a de
Contact	Krysta Pea	arcy			Krysta Pearc	у	Mal. 05	3 5		थ		•			<u> </u>
Phone	604-420-8	773			604-420-877	3	_ ≶		یں '	3			İ	1 1 1	莫
Email	krysta@na	utilusenviro	nmental.co	<u>m</u>	krysta@naut	lusenvironmental.com		Discolor		Dissolved					33
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS		5	Chal Fe	Ö					œ.
houngil Hardness Chal	Juhany			Jasml	a	Dissolved as sumple like co	∤ ×	X							
MH-04 Sile Cirl				(<u> </u>	Tx	. IX							:1986
6.25mg/LFe (lab)	 . _ _ _ 							1	X	X					
12.5 mg/L Fe (lab)			 	 				1	X	Ιχ					da
25 mg/L Fe (146)	 		 			 		\top	<u> </u>	Ŕ			\dashv	 	
	 	 	 		 	_	+	+	╁	╏	+		 	+ + - +	Shell
50 mg/L fe (146)	├	 	 	 	 		-		+0	╁╲┼		╁	-	 	
100 mg/L Fe (lab)	 						-		+3	 () 	_		\dashv	 	580 ₄ 1.
6.25 mg/L Fe (MH-O4)	 	 	 		 		+-	\dashv	<u>X</u>	131			- 	 	
12,5 mg/ Fe (mHOY)		 	 			 	- 	-	 증	13-1	_+_	 		 	10
as my LFE (mHO)		<u> </u>	$oxed{\Psi}$	<u> </u>	<u> </u>	<u> </u>			<u> X</u>	IXI		<u> </u>		<u> </u>	
PROJECT INFORM	ATION	` SA	MPLE REC	EIPT	RELIQUINS	HED BY (CLIENT)		RELIQUINSHED BY (COURIER)					RIER)		
Client:		Total # Co	ntainers:		Signature:				Sig	natu	re:				
P.O. No.:		Good Con	dition?		Print:				Pri	nt:					
01.1					Company:				Col	mpan	ıy:				
Shipped Via:		Matches S	schedule?		Time/Date:			·	Tim	ıe/Da	te:				
SPECIAL INSTRUCTION	NS/COMMI	ENTS:		<u> </u>					RE	CEIV	ED BY	(LAE	ORAT	ORY)	
Sounds not not	Some les not presentel.				Signature: Weavy					Signature: Dru					
Samples for d	Print: Knsty Pearcy.					nt:			1800						
					Company: Nactilys Environmental					Company: Nautilus Environmental					
					Time/Date: July a 140 (700)					Time/Date: July 2 1900					
Additional costs may b	e required	for sample	disposal	or storage.			<u> </u>					1			

autilus Enviro	nmen	tal		· _ _				lı d	٦ŀ	ain	of	Cus			tronic)
_														Pg 20	F34
- British Columbia: 8664 Gommei	ce Court, Buri	neby, BC,	V5A 4N7'			L1480117-COFC			- †				CoptAlin .		· · · · · · · · · · · · · · · · · · ·
Sample Collection By:		_	<u>. </u>				l		, <u>L</u>	ANAL	YSES	REQ	UIRED	· · · · · · · · · · · · · · · · · · ·	
•	Report to:				Invoice to:		<u> </u>								Receipt Temperature (°C)
Company	Nautilus Ei	nvironm	ental		Nautilus Envi	Nautilus Environmental									n.e
					8664 Comme	rce Court			. !						i at
	Burnaby, E	3C, V5A	, 4N7		Burnaby, BC,	Burnaby, BC, V5A, 4N7				\mathcal{L}					<u>E</u>
Contact			<u>.</u> .	·	Krysta Pearc	y]	ايق		7					<u> </u>
Phone	Report to: Ny Nautilus Environmental 8664 Commerce Court NyPostal Code Burnaby, BC, V5A, 4N7 Krysta Pearcy 604-420-8773 krysta@nautilusenvironmental.com AMPLE ID DATE TIME MATRIX CONTAIN TYPE LRE (mH-04) July IIM WATRIX LRE (mH-04) July IIM WATRIX LLC (lab) LLC (lab) LLC (lab) LLC (lab) LLC (lab) LLC (lab) LLC (lab) LLC (mH04) LLC (mH0					3	ىق [छ	7	3					ः <u>च</u> ्
Email	krysta@na	utilusen	vironmental.	com	krysta@nauti	lusenvironmental.com	$\exists \neg \exists$	Solv	73	SS					89
SAMPLE ID	DATE	TIME	MATRI	X CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total	Dissolud	70/2	p-1250/vac					
1 SD MILTE (MHOY)	JulyllM			125mL	a	Dissoluted subscomple	X	X							
2 100 mg/LFE (mH-01)	ĺ	1					X	又		_					
3 43,75mg/L(r (lab)						\			X	X					1 181,53
4 87.5 ugil (r (lab)		,							X	X					1 2
5 175 mg/L (r (ab)									又	Ϋ́					
									X	$\overline{\chi}$					<u> </u>
		1 1		1				1	X	X					
	 	1		 	+ + -		1		X	X					
		1	, 		+ + -			†	文	X					
9 01,5 MGIC CE (1104)	11/		/ 	- \ /	+		-	1	又	丈	_			1-1-1	
	ATION	<u> </u>	SAMPLE R	FCFIPT	RELIQUINS	HED BY (CLIENT)		<u> </u>	- -	iQUI	NSHE	D BY	(COUF	RIER)	
Client:		Total #		<u> </u>	Signature:			_	Sig	natur	e:				
P.O. No.:		Good	Condition?		Print:			_	Prin	nt:					
					Company:	<u></u>			Cor	npan	 /:				
Shipped Via:		Match	es Schedule	?	Time/Date:				Tim	e/Dat	e:				
SPECIAL INSTRUCTION					RE	CEIVE	D BY	(LAB	ORAT	ORY)					
					Signature:	Wear.			Sig	natur	e: <i>[</i>	pn	<u>~</u>		
Samples for dis	solved fi	Hered -	inrough (1.45mm	<u> </u>	Msta Recruy	_		Pri	nt:	1/4	200			
					Company:	Nayfilus Environm	ertal		Co	npan	y: Naı	ıtilus	Enviro	nmental	
					Time/Date:	July aliu @ 170	. My		Tin	e/Dat	:e: [<u>. 1</u>	12	<u>1900</u>	
Additional costs may b	e required	l for sai	nple dispos	al or storage.	Net 30 unles:	s otherwise contracted				-		7			

N	autilus	Enviro	nmental
---	---------	---------------	---------

Chain of Custody (electronic)

pg 30fy

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

L1480117-COFC

Report to: Invoice to: I	Sample Collection By:									1	ANALYSES REQUIRED							
Address 8564 Commerce Court 8664 Commerce Court 1 8664 Court 1 8664 Court 1 8664 Court 1 8664 Court 1 8664 Court 1 8664 Court 1 8664		Report	ort to:				Invoice to	•										<u>ှ</u>
Address 8684 Commerce Court 8684 Comme	Company	Nautilu	ilus Eı	nvironmer	ntal		Nautilus E	nvironmental						l			Receipt Temperature	
Contact Krysta Pearcy Krysta Pearcy Gol-420-8773 Gol-420-877		8664 C	Com	merce Co	urt		8664 Com	merce Court					erat					
Contact Krysta Pearcy Krysta Pearcy Finne 604-420-8773	City/Prov/Postal Code	Burnat	aby, E	3C, V5A, 4	1N7		Burnaby, E	3C, V5A, 4N7										Ě
SAMPLE ID DATE IMME MATRIX TYPE CONTAINERS COUNTAINERS Contact	Krysta	ta Pea	arcy			Krysta Pea	arcy										Ē	
SAMPLE ID DATE IMME MATRIX TYPE CONTAINERS COUNTAINERS Phone	604-42	420-8	773			604-420-8									ğ			
SAMPLE ID DATE IIME MATRIX TYPE CONTAINERS COMMINER IS CONTAINERS CONTAI	Email	krysta@nautilusenvironmental.com				krysta@na	utilusenvironment	al.com] 🛶	🔊	3 8						မြိ	
Special Instructions/comments: Special Instructions/comments: Special Instructions/comments: Special Instructions/comments: Special Instructions/comments: Special Instructions/comments: Special Instructions/comments: Special Instructions/comments: Received By/(Jaboratory)	SAMPLE ID	DAT	ATE	TIME	MATRIX	, i		RS COMME	NTS	1/2		<u> </u>		i				Œ
Company: Company:	350mall (C (MHDY)	Jula	Mid	7		Jasal	2	vissaed sample (Heed	X	Х							75.3
Description Description		1	i		1	((X	Х							<u>L</u>
AS MSIC PD (Idb) X X X X X X X X X X					-				 		7	(X						
SSD msil (Ps (lub) SSD msil (Ps		1 1	1		 						1 1-	- /						
SON MSIL PD (ND) SON MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSIL PD (ND) MSS MSS MSS MSS MSS MSS MSS MSS MSS MS			1		+ +	1 1					+	_				1 -		
DOD MS PS (MID) X X X X X X X X X X X X X X X X X		1	1		+ +	1						χĺγ		 				1996
Special Instructions/comments: Signature: Special Instructions/comments: Special Instructio	777		+	-	1	 	 			 	 	\sqrt{x}		1			† † ⁻	<u> </u>
ASD mg/L (PS (mHby) X X X X X X X X X X X X X X X X X		┼┈┤	╂	 	+		 				1 1	_		\dashv	H^-	 		- 6
PROJECT INFORMATION SAMPLE RECEIPT RELIQUINSHED BY (CLIENT) RELIQUINSHED BY (COURIER) Client: Total # Containers: Signature: Print: Print: Company: Time/Date: SPECIAL INSTRUCTIONS/COMMENTS: RECEIVED BY (LABORATORY)			1	 	++	-		- - - - - - 		_				- 		1		
PROJECT INFORMATION SAMPLE RECEIPT RELIQUINSHED BY (CLIENT) RELIQUINSHED BY (COURIER) Signature: P.O. No.: Good Condition? Print: Company: Time/Date: RECEIVED BY (ABORATORY)			1/	1	+	A 1/-	+ -	\ 	,	 	+ + +	· + -;-			 	 - -	 	;ĕ [‡]
Client: Total # Containers: Signature: Signature: P.O. No.: Good Condition? Print: Print: Shipped Via: Matches Schedule? Company: Company: Time/Date: Time/Date: SPECIAL INSTRUCTIONS/COMMENTS: RECEIVED BY (PABORATORY)			N .	W _s	AMPLE RE		BEI IOUIN	ISHED BY (CLIEN					INSH	ED BY	Y (COU	RIER)	<u>.lt</u> _	<u>نسيدا.</u>
P.O. No.: Good Condition? Print: Company: Company: Time/Date: RECEIVED BY (LABORATORY)	<u> </u>			 	· · · · · ·			<u> </u>	,		- 							
SPECIAL INSTRUCTIONS/COMMENTS: Company: Company: Time/Date: Time/Date: RECEIVED BY (LABORATORY)				 			 	· · · · · · · · · · · · · · · · · · ·				rint:						
SPECIAL INSTRUCTIONS/COMMENTS: Matches Schedule? Time/Date: Time/Date: RECEIVED BY (PABORATORY)				0000					<u> </u>									
SPECIAL INSTRUCTIONS/COMMENTS: RECEIVED BY (PABORATORY)	Shipped Via:			Matches	Schedule1	}												
	CDECIAL INCEDIACIO			L			I III I E I DAG											
Somples not preserved. Signature: Wears. Signature: Miren	Special instructions/comments:					Signature	Signature: Signature:											
Samples for dissolved fillered through ous man Signature: Wears Print: Musta leave Print: //oc	S Par Gran	- p	Ced.	E Heierl	thach	OYSMA	Print:	11 Prouts				Print: //OC						
Company: Nautilys Environmental Company: Nautilus Environmental	Jampies Tos O	(, v.L.	1111000	` '"5	to believe	Company		,	ertal	7	ompai	nÿ: Na	autilu	s Envir	onmenta	l	
Time/Date: July 2 17000 Time/Date: July 2 1900							Time/Date				1	ime/Da	ite: ,	141	72	190	0	

Nautilus Environmental

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Chain of Custody (electronic)

L1480117-COFC

ANALYSES REQUIRED Sample Collection By: ပ် Report to: Invoice to: Nautilus Environmental Company Nautilus Environmental 8664 Commerce Court 8664 Commerce Court Address City/Prov/Postal Code Burnaby, BC, V5A, 4N7 Burnaby, BC, V5A, 4N7 Krysta Pearcy Contact Krysta Pearcy 604-420-8773 604-420-8773 Phone krysta@nautilusenvironmental.com Email krysta@nautilusenvironmental.com CONTAINER #OF COMMENTS SAMPLE ID DATE TIME **MATRIX** TYPE CONTAINERS Dissound subsumple of 500 usic 12 (mHor) July 125 mL 1000) us/LB (mHor) 10 RELIQUINSHED BY (COURIER) RELIQUINSHED BY (CLIENT) SAMPLE RECEIPT PROJECT INFORMATION Total # Containers: Client: Signature: Signature: P.O. No.: Good Condition? Print: Print: Company: Company: Matches Schedule? Shipped Via: Time/Date: Time/Date: RECEIVED BY (LABORATORY) SPECIAL INSTRUCTIONS/COMMENTS: Samples not presented Samples for dissolved filtered through 0.45mm. Signature: Signature: PU Environmental F Print: Print: Company: Nautilus Environmental Company: 900 Time/Date: Time/Date: Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 19-AUG-14 13:21 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500859

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500859 CONTD.... PAGE 2 of 4

Version:

19-AUG-14 13:21 (MT)

FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1500859-1 L1500859-2 L1500859-3 L1500859-4 L1500859-5 Sample ID Water Water Water Water Water Description Sampled Date 11-JUL-14 11-JUL-14 11-JUL-14 11-JUL-14 11-JUL-14 Sampled Time LAB CONTROL 0 CD LAB 6.25 CD LAB 12.5 CD LAB 25 CD LAB 50 CD Client ID Grouping Analyte **WATER Total Metals** Cadmium (Cd)-Total (mg/L) < 0.000010 0.00604 0.0125 0.0231 0.0465 **Dissolved Metals** Dissolved Metals Filtration Location LAB LAB LAB LAB LAB Cadmium (Cd)-Dissolved (mg/L) < 0.000010 0.00346 0.00251 0.00411 0.0211

L1500859 CONTD.... PAGE 3 of 4 19-AUG-14 13:21 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample II Descriptio Sampled Da Sampled Tin Client I	Water 11-JUL-14		
rouping Analyte			
VATER			
Total Metals Cadmium (Cd)-Total (mg/L)	0.0873		
Dissolved Metals Dissolved Metals Filtration Location	 LAB		
Cadmium (Cd)-Dissolved (mg/L)	0.0875		
	1		

Reference Information

L1500859 CONTD....

PAGE 4 of 4

19-AUG-14 13:21 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A	

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-T-CCMS-VA

Water

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:								ANALIGE REGUITED										
·	Report to:				Invoice to:													့
Company	Nautilus Er	vironmenta	 3	 	Nautilus Envir	1											Receipt Temperature	
Address		nerce Cour			8664 Comme	ce Court	1	<u>_</u>								İ		a io
City/Prov/Postal Code	Burnaby, B	C, V5A, 4N	17		Burnaby, BC,	V5A, 4N7	e	<u>ĕ</u>			-	•	'		ŀ			Ě
Contact	Emma Mar			,	Emma Marus] 🥌	3							1	-		Į.
Phone	604-420-87	773		·····	604-420-8773		(low level)	\$	l	Ξ	≡							. E
E mail	emma@na	utilusenviro	nmental.co	m	emma@nautil	usenvironmental.com		ed						1	Ĺ			8
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total Co	Dissolved (Alow level)				Ω̈́						S.
Lab Control O Cd	July 11/1	ላ -	-	125mL	1	initation	х	х			≣	ပ္ပ						
Lab 6.75	13	-		125mL	- 1	initation	х	x				L1500859-COFC				\perp	\perp	d die
Lab 12.5		-	_	125mL	1	initation	х	х				200				_		建
Lab 15		-	-	125mL	1	initation	х	x	<u>'</u>		█		\perp				1_	建
Lab 50		_	-	125mL	1	initation	Х	x					1				ļ	能
Lab 100 y	7	-	-	125mL_	1	initation	x	x		Ξ			\perp			\perp	\bot	
		-						<u> </u>		<u> </u>	 					_	_	Par Trans
	,		_				ļ	<u> </u>	Ш		_ _	\bot				_	_	
		-						ļ				\perp	1			_	_	
		-	-					<u></u>							<u> </u>			T.C.
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			REL	IQUII	NSH	ED E	BY (C	<u>OUR</u>	IER)			
Client:		Total # Co	ntainers:		Signature:	//			Sigr	natur	8: -{		pr	<u> 915</u>	l'i	1.00	ے ک	<u>386</u>
P.O. No.:	- 1111111	Good Con	dition?		Emma Maruş				Prin	t:								
Shipped Via:		Matches S	chedule?			lautilus Environmental				npany							 :-	
					I Ime/Date: /	Aug 11, 2014 @ 1800h			<u> </u>	e/Dat EIVE		Y (L	ABOI	RATO	DRY)			
SPECIAL INSTRUCTIO	NO/CUMINE	IN I O.			Signature:				<u> </u>	natur		*			<u> </u>			
					Print:				Prin	ıt:	-	·					• • •	
For total, samples have			than n-aac-	und.	Company:	· · · · · · · · · · · · · · · · · · ·	<u>-</u> -		Con	npan	y: N	autile	us Er	viro	nmen	tal		
For dissolved, samples l	nave been f	iitered and 1	men presen	vea.	Time/Date:				+-	e/Dat								

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 21-AUG-14 12:29 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500846

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500846 CONTD.... PAGE 2 of 4

21-AUG-14 12:29 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500846-1 WATER 13-JUL-14 LAB CONTRL 0 CD	L1500846-2 WATER 13-JUL-14 LAB 6.25 CD	L1500846-3 WATER 13-JUL-14 LAB 12.5 CD	L1500846-4 WATER 13-JUL-14 LAB 25 CD	L1500846-5 WATER 13-JUL-14 LAB 50 CD
Grouping	Analyte						
WATER							
Total Metals	Cadmium (Cd)-Total (mg/L)		0.000029	0.00155	0.00304	0.00603	0.0102

L1500846 CONTD.... PAGE 3 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

21-AUG-14 12:29 (MT)
Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1500846-6 WATER 13-JUL-14 LAB 100 CD		
Grouping	Analyte				
WATER					
Total Metals	Cadmium (Cd)-Total (mg/L)		0.0223		

Reference Information

L1500846 CONTD....

PAGE 4 of 4

21-AUG-14 12:29 (MT)

Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

MET-T-CCMS-VA Water Total Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:										ANALY	SES	REG	WIR	ED			
<u> </u>	Report to:	<u></u>		<u></u>	Invoice to:												emperature (*C)
Company	Nautilus Er	nvironmenta	al	<u> </u>	Nautilus Environmental												em
Address	8664 Comi	merce Cour	t		8664 Commer	ce Court				ı	1 1		ı		1 1		(O)
City/Prov/Postal Code	Burnaby, B	C, V5A, 4N	17		Burnaby, BC,	V5A, 4N7	Ve.										12
Contact	Emma Mar	us			Emma Marus		\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	ı			=		ı				
Phone	604-420-8	773			604-420-8773] <u>@</u> [l		ļ) E
Email	emma@na	utilusenviro	onmental.co	m	emma@nautil	usenvironmental.com	(low level)		:			ļ					\$ 8
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total				500846-COFC						π
Lab Control () Cd	July 13/1	ч -	-	125mL	1	termination	х				ပုံ မြ	I					
Lab 6,75			-	125mL	1	termination	х				084	1					
Lab (),5			-	125mL	1	termination	x				150	1	<u> </u>		1_1		
Lab 25		_	-	125mL	1	termination	x					1			1-1		2.7
Lab 50		-	-	125mL	1	termination	X		<u> </u>			1	_	-	+	_	
Lab (00 J	4	-		125mL	1	termination	x			=	=	+			-	-	建
		-					ļ <u>.</u>				1-1		-		+		100
·			_				 			-	+	\dashv	\dashv		\bot	_	45
· · · · · · · · · · · · · · · · · · ·							-		_	<u> </u>	++		-		+		12.0
	<u> </u>	-	<u> </u>						251			DV	<u></u>	LUDIE			141
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINS	IED BY (CLIENT)			-	IQUIN		DI	(00				
Client:		Total # Co	ntainers:		Signature:				Sig	nature	<u>YL</u>	<u> [-</u>	wyl	11	9656	<u>ير رو</u>	2,&C
P.O. No.:	<u> </u>	Good Cor	ndition?		Emma Marus		,		Prir	nt:							
Shipped Via:	<u></u>	Matches 5	Schedule?			lautilus Environmental	1		-	npany:							
				<u> </u>	Time/Date: /	Aug 11, 2014 @ 1800h				e/Date		1 42	OB4	TOP	<u> </u>		
SPECIAL INSTRUCTIO	NS/COMMI	ENTS:													• /	.,	
					Signature:				Sig	nature							
For total, samples have	been prese	rved.			Print:			_	Prir	nt:							
	p				Company:				Cor	npany	Naut	ilus	Env	ironn	ental		
·					Time/Date:				Ti	e/Date							

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 19-AUG-14 10:09 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500813

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500813 CONTD.... PAGE 2 of 4

19-AUG-14 10:09 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500813-1 Water 03-JUL-14 160MG/L LAB CONTROL CR	L1500813-2 Water 03-JUL-14 43.75 LAB CR	L1500813-3 Water 03-JUL-14 87.5 LAB CR	L1500813-4 Water 03-JUL-14 175 LAB CR	L1500813-5 Water 03-JUL-14 350 LAB CR
Grouping	Analyte						
WATER							
Total Metals	Chromium (Cr)-Total (mg/L)		<0.00010	0.0427	0.0922	0.182	0.362

L1500813 CONTD.... PAGE 3 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

19-AUG-14 10:09 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1500813-6 Water 03-JUL-14 700 LAB CR		
Grouping	Analyte				
WATER					
Total Metals	Chromium (Cr)-Total (mg/L)		0.737		

L1500813 CONTD....
PAGE 4 of 4
19-AUG-14 10:09 (MT)

FINΔI

Version:

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

MET-T-CCMS-VA Water Total Metals in Water by CRC ICPMS APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:			<u> </u>	 _			ĺ		ANALY	SES F	REQUI	RED	-	na zak
	Report to:			<u></u>	Invoice to:			T						
Company	Nautilus Er	nvironmenta	ıl		Nautilus Envir	onmental								Temperature (*C)
Address	8664 Comr	nerce Cour	t		8664 Comme	ce Court]						1 1	i i
City/Prov/Postal Code	Burnaby, B	C, V5A, 4N	17		Burnaby, BC,	V5A, 4N7] <u>@</u>	ŀ						i laë
Contact	Emma Mar	นร			Emma Marus] <u>é</u>		, .	' '			1	je j
Phone	604-420-87	773			604-420-8773		(low level)							Ta
Email	emma@na	utilusenviro	nmental.co	<u>m</u>	emma@nautil	usenvironmental.com				•]			1 2
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total (, Y
Lab Control CY	July 314		•	125mL	1	termination	х			ည်				4 (4)
10043K Lab		-	-	125mL	1	termination	х			500813-COFC	$\perp \perp$			45.2
87.5 Lab		Ţ	-	125mL	1	termination	x			813				24 (2) 22 (2)
175 Lab		-	-	125mL	11	termination	x			500			\perp	754
350 Lab		-	-	125mL	1	termination	х			Ξ.			$\perp \downarrow$	
700 Lab	4	-	<u> </u>	125mL	1	termination	х				_		1 1	
			-							_			\bot	
B			-			·	ļ			1-1	\bot			
		-	-				ļ				-		1-1	i de la companya de l
)							<u> </u>		_					14-16
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINS	ED BY (CLIENT)		ĮR	ELIQUIN	SHED	BY (C	OURIE	R)	
Client:		Total # Co	ntainers:		Signature:			S	ignature:	٧L.	Aver	11 10):0°	78.8
P.O. No.:		Good Con	dition?		Emma Marus			P	rint:					
Shipped Via:		Matches S	chedule?			autilus Environmental			ompany:			· -		
					Time/Date: /	Aug 11, 2014 @ 1800h			ime/Date		AROB	ATOR	<u></u>	•
SPECIAL INSTRUCTION	NS/COMME	ENTS;			Signature:				ignature:				<u>· /</u>	
									rint:				•	
For total, samples have t	oeen presei	rved.			Print:					M451				
					Company:			 -	ompany:		ius En	AILOUIL	iental	<u> </u>
			المحمدة ا		Time/Date:	otherwise contracted			ime/Date	·				

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 19-AUG-14 10:51 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500896

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500896 CONTD.... PAGE 2 of 4

19-AUG-14 10:51 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1500896-1 Water 11-JUL-14 LAB CONTROL 0	L1500896-2 Water 11-JUL-14 LAB 1.56 CU	L1500896-3 Water 11-JUL-14 LAB 3.13 CU	L1500896-4 Water 11-JUL-14 LAB 6.25 CU	L1500896-5 Water 11-JUL-14 LAB 12.5 CU
Grouping	Analyte					
WATER	.,					
Total Metals	Copper (Cu)-Total (mg/L)	0.00079	0.00315	0.00331	0.00591	0.0108
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Copper (Cu)-Dissolved (mg/L)	0.00093	0.00133	0.00256	0.00562	0.00975
		0.0000	0.00100	0.00200	0.00002	0.00070

L1500896 CONTD.... PAGE 3 of 4 19-AUG-14 10:51 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	11-JUL-14		
Grouping	Analyte			
WATER				
Total Metals	Copper (Cu)-Total (mg/L)	0.0228		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD		
	Copper (Cu)-Dissolved (mg/L)	0.0211		
		0.0211		

Reference Information

L1500896 CONTD....

PAGE 4 of 4

19-AUG-14 10:51 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-T-CCMS-VA

Water

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

8664 Com Burnaby, E Emma Mai 604-420-8	nvironmenta merce Cour BC, V5A, 4N rus 773 autilusenviro	t 17		Nautilus Envir 8664 Commer Burnaby, BC, Emma Marus	rce Court	(low level)	/el)								
8664 Com Burnaby, E Emma Mai 604-420-8 emma@na	merce Cour BC, V5A, 4N rus 773 autilusenviro	t 17		8664 Commer Burnaby, BC, Emma Marus	rce Court	1 - - - - - -	/el)								
Burnaby, E Emma Mai 604-420-8 emma@na	BC, V5A, 4N rus 773 autilusenviro	17		Burnaby, BC, Emma Marus		<u></u>	<u>@</u>								
Emma Mai 604-420-8 emma@na	rus 773 autilusenviro			Emma Marus	V5A, 4N7	1 🕋	%							- 1	■ ■ ■ ● 製造業
Emma Mai 604-420-8 emma@na	rus 773 autilusenviro					ע ו	0							-	
emma@na	utilusenviro	onmental.com								l !	ı	1			
1		onmental.com		604-420-8773			<u>=</u>	ĺ						ĺ	
1		and the second of the second of the second	ma@nautilusenvironmental.com emma@nautilusenvironmental.com						=	===					
	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total (4	Dissolved $G_{oldsymbol{\mathcal{L}}}$ (low level)								\$0
July 11/1	۸	-	125mL	1	initation	х	х				ပ္				8
		-	125mL	1	initation	х	x		_ =		8				
	-	-	125mL	1	initation	x	x				96				推
	<u></u>	_		1	initation	х		1			800	سفنيي	\prod		*
1	_	_		1					┆┋		<u>, 1</u>				186
1 1	-	_		1 1		†			▏▐		_		\Box		
	_			<u> </u>		1			│			<u> </u>			Shire!
 		-							1 =			_			
1	-	-								-					
	_	-													Œ,
IATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			RELIQ	UINS	HED	BY (C	OUF	(IER)		
	Total # Co	ntainers:		Signature:	1	-		Signat	ure:						
	Good Con	dition?		Emma Marus				Print:							
			<u>-</u>	Company: N	lautilus Environmental			Compa	iny:						
	Matches S	ichedule?		Time/Date: A	Aug 11, 2014 @ 1800h	•		Time/E	ate:						
NS/COMME	ENTS:							RECE	VED	BY (L	ABO	RAT	ORY)		
				Signature:				Signat	ure: \	40	A	<u> 1</u>	1 1	1:50) <i>20</i> &
total, samples have been preserved.					Print:										
or dissolved, samples have been filtered and then preserved.					Company:				any: I	Nautil	us E	nviro	nme	ntai	
issolved, editiples there been interest and their preserves.					Time/Date:										
	MATION DNS/COMME been present have been fi	MATION SA Total # Co Good Con Matches S ONS/COMMENTS: been preserved. have been filtered and to	AATION SAMPLE REC Total # Containers: Good Condition? Matches Schedule? ONS/COMMENTS: been preserved. have been filtered and then preserved.	125mL 125mL 125mL 125mL 125mL 125mL 125mL 125mL 125mL 125mL		125mL 1 initation 125mL 1 initation 125mL 1 initation 125mL 1 initation 125mL 1 initation 125mL 1 initation 125mL 1 initation 125mL 1 initation 125mL 1 initation	125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x 125mL 1 initation x	125mL 1 initation x x x 12	125mL 1 initation x x	125mL 1 initation x x	125mL 1 initation x x x	125mL 1 initation x x 2 2 2 2 2 2 2	125mL 1 initation x x x	125mL 1 initation x x	125mL 1 initation x x x

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 29-AUG-14 11:07 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500939

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500939 CONTD.... PAGE 2 of 4

29-AUG-14 11:07 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500939-1 Water 13-JUL-14 LAB CONTROL 0 CU	L1500939-2 Water 13-JUL-14 LAB 1.56 CU	L1500939-3 Water 13-JUL-14 LAB 3.13 CU	L1500939-4 Water 13-JUL-14 LAB 6.25 CU	L1500939-5 Water 13-JUL-14 LAB 12.5 CU
			CU				
Grouping	Analyte						
WATER	On the section of (Only Tested (see sell.)						
Total Metals	Copper (Cu)-Total (mg/L)		<0.00050	0.00104	0.00188	0.00333	0.00587

L1500939 CONTD.... PAGE 3 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

29-AUG-14 11:07 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1500939-6 Water 13-JUL-14 LAB 25.0 CU		
Grouping	Analyte				
WATER					
Total Metals	Copper (Cu)-Total (mg/L)		0.0125		

L1500939 CONTD.... PAGE 4 of 4

29-AUG-14 11:07 (MT) Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&F / FPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:					· - · · ·				Α	NALY	SES F	REQU	IRED						
	Report to:				Invoice to:											Temperature (°C)			
Company	Nautilus Ei	nvironmenta	al		Nautilus Envir	onmental	<u> </u>								1	9			
Address	8664 Com	merce Cour	t		8664 Commer	ce Court		İ		ı						20			
City/Prov/Postal Code	Burnaby, E	IC, V5A, 4N	17		Burnaby, BC,	V5A, 4N7] <u>ē</u>	1						į		P			
Contact	Emma Mai	rus			Emma Marus			(low level)							1 1	10			
Phone	604-420-8	773	_		604-420-8773													1 1	Ξ
Email	emma@na	utilusenviro	nmental.co	<u>m</u>	emma@nautilusenvironmental.com									1		138			
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total				E CY					E			
Lab Control () (V	July 13/14	-		125mL	1	termination	x				L1500939-COFC					30.0			
Lab 1,561		-		125mL	1	termination	х				193 5				11	71.			
Lab 3,13		-	_	125mL	1	termination	х				200	_			 _ 	2/175 2/2/15			
Lab 6.25		_	-	125mL	1	termination	x				7				1-1-	14A			
Lab 12.5				125mL	1	termination	х						\sqcup		 	1118			
Lab 25.0 ¥	J	<u>-</u>	<u>-</u>	125mL	1	termination	х								11				
		-									 	\perp			1	3.00			
		-	-								 				$\bot \bot$				
			-	- n		<u>,</u>	<u> </u>				$\sqcup \bot$				$\perp \perp$	134			
		-	-							_1_	<u> </u>				<u> </u>				
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			RELIC	ZUINS	SHED	BY (C	OUR	IER)					
Client:		Total # Co	ntainers:		Signature:)		Signa	ture:									
P.O. No.:		Good Con	dition?		Emma Marus			1	Print:										
Shinned View		Matches S	chodulo?	-	Company: N	lautilus Environmenta	i	(Comp	any:									
Shipped Via:		Matches			Time/Date: A	Aug 11, 2014 @ 1800h				Date:					<u> </u>				
SPECIAL INSTRUCTION	NS/COMME	ENTS:							RECE	IVED	BY (L								
					Signature:				Signa	ture:	X	An	911	19:0	<u>< 0</u> 2	915			
For total, samples have been preserved.					Print:			Į.	Print:										
. or ready carriered have	F				Company:				Com	oany:	Nauti	lus E	nviro	nmenta	ıl				
					Time/Date: Time/Date				Date:) :									

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 21-AUG-14 14:00 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500948

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500948 CONTD.... PAGE 2 of 4

21-AUG-14 14:00 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1500948-1 WATER 16-JUL-14 LAB CONTROL 0 FE	L1500948-2 WATER 16-JUL-14 LAB 2.5 FE	L1500948-3 WATER 16-JUL-14 LAB 5.0 FE	L1500948-4 WATER 16-JUL-14 LAB 10.0 FE	L1500948-5 WATER 16-JUL-14 LAB 20.0 FE
Grouping	Analyte					
WATER	•					
Total Metals	Iron (Fe)-Total (mg/L)	<0.010	1.85	3.46	6.09	9.08
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030

L1500948 CONTD.... PAGE 3 of 4

21-AUG-14 14:00 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1500948-6 WATER 16-JUL-14 LAB 40.0 FE		
Grouping	Analyte			
WATER				
Total Metals	Iron (Fe)-Total (mg/L)	40.2		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD		
	Iron (Fe)-Dissolved (mg/L)	6.14		
	IIOII (I G)-DISSUIVEU (IIII)/L)	6.14		

Reference Information

L1500948 CONTD....

PAGE 4 of 4
21-AUG-14 14:00 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-T-CCMS-VA

Water

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

autilus Enviro	nmen	tal ⁽¹⁾						ر	Cł	nain	of (Cu	stc	ody	(ele	ctron	iic)
British Columbia: 8664 Comme	rce Court, Bui	maby, BC, V5A	4N7					d t percned									
Sample Collection By:					<u> </u>		T\$	<u> 58</u>		ANAL	YSES	REC	วบเห	ED.		T	
	Report to	:		<u> </u>	Invoice to:			1]	<u> </u>							(၁)
		.		 	I		prese	1				İ					<u>ي</u> ده ا
Company Address		nvironmenta			Nautilus Envir 8664 Comme		Դ_	Level									Ę
<u> </u>		BC, V5A, 4N		_	Burnaby, BC, V5A, 4N7			ا چّرا									Ser.
Contact	Emma Ma		N r	<u> </u>	Burnaby, BC, V5A, 4N7			늴			' '	'	•				E
Phone	604-420-8				1			璐									F.
Email	 	autilusenviro	onmental.co	m				eg 4									Receipt Temperature
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total 64	Dissolved								10 20 20 10	æ
Lab Control O Fe	1 1 1 0			125mL	I	initiation	TX	Ż		\dashv		اِ اِ	Ĭ	+	+		1000
1815 5	July 161	<u> </u>	<u> </u>	1	'	1 1001 1001	12	X		+		≣ጀ	3	+	+		
		-			-		忟	Ŷ		_			948	+	+	 	
1ab 13.5 Fe		-		 	1		TŶ	₩		+			Ö	+		 	95
lab 15fe	 	-	<u>-</u>		1			1-3					Ë	+	\dashv		
Lab 50 Fe20.0	1	-	-		,		+\$-	H						+	+		Selection in
Lab too Fe 40.0		-	<u> </u>	<u> </u>	\		 	×		-				+	+	 	
		-	-				 X		.,,	_	. =	=		+	\dashv	 	in Kay
		<u>-</u>	•	<u> </u>		·	 			-	+-1	\dashv	+	+	+	\vdash	- 17
 -		-	-											\dashv	+		والمناس والما
			<u>-</u>	<u> </u>							$\perp \perp$						
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)	_		REL	IQUIN	SHEC	BY	(CO	URIE	ER)		
Client:		Total # Co	ntainers:		Signature:				Sigr	ature	:						
P.O. No.:		Good Con	dition?	ļ	Print: Eh	nma marius	_	٠	Prin	t:							
Shipped Via:		Matches S	chedule?		Company:	<u>()</u>			Con	pany	:						
Silipped via.		Matches 5	icriedule :	<u> </u>	Time/Date:	Aug 11/14 a	1800	\	Tim	e/Date	<u>:</u> :						
SPECIAL INSTRUCTIONS/COMMENTS:								REC	EIVE	DBY (LAB	ORA	ATOF	₹ Y)			
For total edf. sample perend. for dissolved EdT, sample filtered + personal				٨ـ .	Signature:				Sigr	ature	: ۲۷	/	- 21~9	11	19:0	se z	9:8
for dissolved got, sample filtered treiseved				Print:				Prin	t:			- J					
					Company:				Company: Nautilus Environmental								
					Time/Date:				Tim	e/Date): 						
Additional costs may b	e required	for sample	disposal d	or storage. I	Net 30 unless	otherwise contracted.											

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 21-AUG-14 12:55 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500888

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500888 CONTD.... PAGE 2 of 4

21-AUG-14 12:55 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500888-1 Water 18-JUL-14 LAB CONTROL 0 FE	L1500888-2 Water 18-JUL-14 LAB 2.5 FE	L1500888-3 Water 18-JUL-14 LAB 5.0 FE	L1500888-4 Water 18-JUL-14 LAB 10.0 FE	L1500888-5 Water 18-JUL-14 LAB 20.0 FE
Grouping	Analyte						
WATER							
	Iron (Fe)-Total (mg/L)		0.049	0.929	3.84	9.08	18.1

L1500888 CONTD.... PAGE 3 of 4

21-AUG-14 12:55 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500888-6 Water 18-JUL-14 LAB 40.0 FE		
Grouping	Analyte				
WATER					
Total Metals	Iron (Fe)-Total (mg/L)		37.0		

PAGE 21-AUG-14 12

21-AUG-14 12:55 (MT)

Version:

L1500888 CONTD....

4 of 4

FINAI

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**						
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A						

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:							ANALYSES REQUIRED								
•	Report to:			Invoice to:											 [0]
Company	Nautilus Environmental			Nautilus Environmental			ļ ļ							Temperature (*C);	
			8664 Commerce Court]]]			Ì			200		
City/Prov/Postal Code				Burnaby, BC, V5A, 4N7										Ė	
Contact Emma Marus			Emma Marus 604-420-8773				'	ı	'				Į į		
						1			l		1		, p.		
			emma@nautilusenvironmental.com		F. (low level)			€					1.8		
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total (, CL
Lab Control O Fe	July 18/1	ч -	-	125mL	1	termination	х	<u> </u>		Ω̈́				11	**
Lab 25 fe				125mL	1	termination	x			Ş			$\downarrow \downarrow$	_ _	168
Lab 5.0Fe		-	_	125mL	1	termination	х			388.					
Lab (U. OFe		-	_	125mL	1	termination	х			Š					13.12
Lab 20.0 Fe		_	-	125mL	1	termination	х			L15					E.
Lab 40,0f2	1	_		125mL	1	termination	x				I				
Tab -(01012		-	_							•					
	 		_						-	-					14 E 11 A
	ļ	_	_												42 (F)
		_	_												
PROJECT INFORMATION SAMPLE RECEIPT			RELIQUINSH	ED BY (CLIENT)		•	RELIQUI	RELIQUINSHED BY (COURIER)							
Client: Total # Containers:			Signature:	<u> </u>	Signature:										
P.O. No.: Good Condition?				Emma Marus				Print:							
		***			Company: Nautilus Environmental			Company:							
Shipped Via: Matches Schedule?				Time/Date: Aug 11, 2014 @ 1800h				Time/Date:							
SPECIAL INSTRUCTIO	NS/COMM!	ENTS:	· · · · · ·						RECEIVE	D BY	(LAB	ORAT	ORY)		
					Signature:				Signatur	e: V/	_/	ang l	1 19	SC	286
For total, samples have been preserved.				Print: Company:				Print: Company: Nautilus Environmental							
l or total, samples have been preserved.															
					Time/Date:				Time/Date:						

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 21-AUG-14 13:45 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500827

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500827 CONTD.... PAGE 2 of 4

21-AUG-14 13:45 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500827-1 Water 03-JUL-14 LAB CONTROL 0 PB	L1500827-2 Water 03-JUL-14 LAB 62.5 PB	L1500827-3 Water 03-JUL-14 LAB 125 PB	L1500827-4 Water 03-JUL-14 LAB 250 PB	L1500827-5 Water 03-JUL-14 LAB 500 PB
Grouping	Analyte						
WATER	•						
Total Metals	Lead (Pb)-Total (mg/L)		0.00479	0.0163	0.0464	0.110	0.259

L1500827 CONTD.... PAGE 3 of 4

21-AUG-14 13:45 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500827-6 Water 03-JUL-14 LAB 1000 PB		
Grouping	Analyte				
WATER	•				
Total Metals	Lead (Pb)-Total (mg/L)		0.241		

L1500827 CONTD....
PAGE 4 of 4
21-AUG-14 13:45 (MT)

21-AUG-14 13:45 (MT) Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

Chain of Custody

Nautilus Environmental

10

British Columbia

8664 Commerce Court

Burnaby, British Columbia, Canada VSA 4N3

Phone 604.420.8773

_Page___of_ Date **ANALYSES REQUIRED** Sample Collection By: Receipt Temperature (°C) Invoice To: Report to: Company Company Nautilus Environmental Nautilus Environmental Address Address 8664 Commerce Court 8664 Commerce Court City/State/Zip Burnaby, BC, V5A 4N3 15 12 1 City/State/Zip Burnaby, BC, V5A 4N3 Contact Contact Emma Marus Emma Marus Phone Phone 604-420-8773 604-420-8773 Fotal Metals Email Email emma@nautilusenvironmental.com emma@nautilusenvironmental.com NO. OF CONTAINER COMMENTS **MATRIX SAMPLE ID** DATE TIME TYPE CONTAINERS 125mL 1 Termination Lab Control 0 Pb July 3/14 Termination Lab 62.5 Pb 125mL 1 July 3/14 1, Termination Lab 125 Pb July 3/14 125mL Termination Lab 250 Pb July 3/14 125mL 1 Termination Lab 500 Pb July 3/14 125mL 1 Lab 1000 Pb 125mL Termination July 3/14 **RELINQUISHED BY (COURIER)** RELINQUISHED BY (CLIENT) PROJECT INFORMATION SAMPLE RECEIPT (Time) (Signature) (Time) (Signature) Total No. of Containers Client: والشروان الإناف Printed Name) Emma Marus (Printed Name) (Date) **Received Good Condition?** PO No.: (Company) (Company) Nautilus Environmental Shipped Matches Test Schedule? SPECIAL INSTRUCTIONS/COMMENTS: Samples ARE preserved. RECEIVED BY (COURIER) RECEIVED BY (LABORATORY) (Time) (Signature) (Signature) (Printed Name) (Date) Company) (Сотралу)

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 19-AUG-14 15:37 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500798

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500798 CONTD.... PAGE 2 of 4

19-AUG-14 15:37 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500798-1 Water 03-JUL-14 SITE CR CONTROL	L1500798-2 Water 03-JUL-14 SITE CR 43.75	L1500798-3 Water 03-JUL-14 SITE CR 87.5	L1500798-4 Water 03-JUL-14 SITE CR 175	L1500798-5 Water 03-JUL-14 SITE CR 350
Grouping	Analyte						
WATER							
Total Metals	Chromium (Cr)-Total (mg/L)		0.00026	0.0420	0.0918	0.183	0.339

L1500798 CONTD.... PAGE 3 of 4 19-AUG-14 15:37 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500798-6 Water 03-JUL-14 SITE CR 700		
Grouping	Analyte				
WATER					
Total Metals	Chromium (Cr)-Total (mg/L)		0.751		

L1500798 CONTD....
PAGE 4 of 4
19-AUG-14 15:37 (MT)

FINAL

Version:

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

X British Columbia: 8864 Commerce Court, Burnaby, BC, V5A 4N7

	ample Collection By:										EQUIF				
Report to:				Invoice to:											(Q)
Nautilus Er	nvironmenta	3		Nautilus Enviro	nmental			1							Temperature (°C)
8664 Comr	nerce Cour	t		8664 Commerc	ce Court	↓ _ !	l						1		6 10
Burnaby, B	C, V5A, 4N	17		Burnaby, BC, V5A, 4N7 Emma Marus 604-420-8773		_ []		j		1 1	1 1		ı		
Emma Mar	ันร					_ <u>₹</u>						1	l	l (100
604-420-87	773					_ <u> </u>						- 1			tdias:
emma@na	utilusenviro	onmental.co	<u>m</u>	emma@nautilu	usenvironmental.com	ا کے ا					1 1	-	- 1		3 8
DATE	TIME	MATRIX	CONTAINER	#OF	COMMENTS	Total (:		A.
Janu 3/11	4 -	_	125mL	1	termination	х				OFC.					100
124,44	\		125mL	1	termination	х				<u>0</u>		\perp			
	_	_	125mL	1	termination	х				079	$\perp \perp$				i de de Vigil
		-	125mL	1	termination	х				150					
	-		125mL	1	termination	х						\bot			***
<u> </u>	_	-	125mL	1	termination	х								1_	
	-	-												\sqcup	(1) (1) (2) (2)
	_	-								1				$\perp \perp$	A Sh
	_									1-1-				1	
	-			<u> </u>										<u> </u>	
IATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			REL	IQUIN:	SHED E	BY (CO	OURI			
	Total # Co	ontainers:		Signature:	1			Sign	ature:	<u> 4C</u>	- Ah	211	19:	<u>S</u>	2018
	Good Cor	ndition?		Emma Marus	Emma Marus Print:				,	-3-1					
				Company: N	autilus Environmenta			Com	pany:						
	Matches \$	Schedule?		Time/Date: A	lug 11, 2014 @ 1800h		Time/Date:								
NS/COMMI	ENTS:							REC	EIVE	BY (L	ABOR	ATO	RY)		
				Signature:				Sign	ature:						
For total, samples have been preserved.			Print:				Prin	t:	<u></u>	·					
			Company:	······································			Con	pany:	Nautil	us En	viror	ment	al		
	Nautilus Er 8664 Com Burnaby, B Emma Mar 604-420-83 emma@na DATE July 3/11	Nautilus Environmenta 8664 Commerce Cour Burnaby, BC, V5A, 4N Emma Marus 604-420-8773 emma@nautilusenviro DATE TIME JULY JULY	Nautilus Environmental 8664 Commerce Court Burnaby, BC, V5A, 4N7 Emma Marus 604-420-8773 emma@nautilusenvironmental.co DATE TIME MATRIX JULY	Nautilus Environmental 8664 Commerce Court Burnaby, BC, V5A, 4N7 Emma Marus 604-420-8773 emma@nautilusenvironmental.com DATE TIME MATRIX CONTAINER TYPE JULU 3/1 125mL 125mL 125mL 125mL 125mL 125mL 125mL 125mL 125mL 100mL Total # Containers: Good Condition? Matches Schedule?	Nautilus Environmental 8664 Commerce Court 8664 Commerce Burnaby, BC, V5A, 4N7 Emma Marus 604-420-8773 emma@nautilusenvironmental.com Emma@nautilusenvironmental.com Emma@nautilusenvironmental.com DATE TIME MATRIX CONTAINER TYPE CONTAINERS JULU 3/11 - 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 STEEL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1 125mL 1	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Comme	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 867	Nautilus Environmental 8664 Commerce Court Burnaby, BC, V5A, 4N7 Burnaby, BC, V5A, 4N7 Emma Marus 604-420-8773 emma@nautilusenvironmental.com DATE TIME MATRIX CONTAINER TYPE JULY 3/14 - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 125mL 1 termination x - 12	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8604 420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-420-8773 604-4	Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautilus Environmental Nautil	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8604 20-873 8604 20-873 8604 20-873 8706 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 8707 870	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 C	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 866	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 9664 Comfaction 966	Nautilus Environmental 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Court 8664 Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerce Commerc

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 19-AUG-14 14:38 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500908

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500908 CONTD.... PAGE 2 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT 19-AUG-14 14:38 (MT)

						IOII. IIIIAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1500908-1 Water 11-JUL-14 SITE CONTROL 0	L1500908-2 Water 11-JUL-14 SITE 1.56 CU	L1500908-3 Water 11-JUL-14 SITE 3.13 CU	L1500908-4 Water 11-JUL-14 SITE 6.25 CU	L1500908-5 Water 11-JUL-14 SITE 12.5 CU
Oi						
Grouping WATER	Analyte					
	O (O -) T (//)					
Total Metals	Copper (Cu)-Total (mg/L)	0.00100	0.00297	0.00470	0.00889	0.0158
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Copper (Cu)-Dissolved (mg/L)	0.00043	0.00180	0.00297	0.00588	0.0112

L1500908 CONTD.... PAGE 3 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

19-AUG-14 14:38 (MT) Version: FINAL

			 	vers	 FINAL
	Sample ID Description Sampled Date Sampled Time	L1500908-6 Water 11-JUL-14			
	Client ID	SITE 25 CU			
Grouping	Analyte				
WATER	Allalyte				
Total Metals	Copper (Cu)-Total (mg/L)				
Dissolved Metals	Dissolved Metals Filtration Location	0.0288			
Dissolved inclais	Copper (Cu)-Dissolved (mg/L)	FIELD			
	(Ca) 2.000110a (mg/2)	0.0239			

Reference Information

L1500908 CONTD....

PAGE 4 of 4

19-AUG-14 14:38 (MT)

Version: FINAL

Test Method References:

Tool Medical Release										
ALS Test Code	Matrix	Test Description	Method Reference**							
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A							

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-T-CCMS-VA

W/ata

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:		· ·								ANALY	(SES	REC	QUIR	ED			
	Report to:				Invoice to:	· · · · · · · · · · · · · · · · · · ·											(3)
Company	Nautilus Er	nvironmenta	al		Nautilus Envir	onmental]			ĺ							of Temperature
	8664 Com	merce Cour	t		8664 Commer	ce Court]	eve		ı	1 1						Į Į
City/Prov/Postal Code	Burnaby, B	BC, V5A, 4N	17		Burnaby, BC,	V5A, 4N7) je	(low level)	ŀ								\ <u>\E</u>
Contact	Emma Mar	rus			Emma Marus] 🐔		ŀ								12.0
Phone	604-420-87	773			604-420-8773		(low level)	ತ	ļ	•	•	•				İ) b
Email	emma@na	utilusenviro	nmental.co	m	emma@nautil	usenvironmental.com	3	l de				1				-	8
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total (Dissolved									N. P.
Site Control 0 (u	July WI	-	-	125mL	1	initation	х	х			= ,		\Box				
Site (156		-	-	125mL	1	initation	х	х		. .		5	\perp			\bot	N A
Site 3, 13		-	_	125mL	1	initation	х	х		_		500908-COFC			_ _		
Site 6.15		_	-	125mL	1	initation	х	х				060					
Site 12,5		_	_	125mL	1	initation	х	х				150(排
Site 25	4			125mL	1	initation	х	x				<u>ب</u>	\downarrow				7497
		-	-							}			1				
		-	-				<u> </u>						L				
		-												_			(6.2)
		-	-					<u> </u>									
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			REL	IQUIN	SHE	D BY	(CC	URI	ER)		
Client:		Total # Co	ntainers:		Signature:				Sigr	nature	:						
P.O. No.:	<u> </u>	Good Cor	ndition?		Emma Marus	100			Prin	t:							
Shipped Via:		Matches S	Schedule?			lautilus Environmental				pany:							
				<u> </u>	Time/Date: /	Aug 11, 2014 @ 1800h	-			e/Date EIVEI		/I A 5	30P	ATO	DV\		····
SPECIAL INSTRUCTION	NS/COMME	ENTS:			Olara-t							<u></u>					
					Signature:			··			. y	<u> </u>	17/10	<u>''(</u>	17	.S.C	- 29.8
For total, samples have	been prese	rved.			Print:				Prin								
For dissolved, samples I	•		then preser	ved.	Company:				Con	npany	: Nau	ntitus	Env	/iror	men	tal	
	•				Time/Date:				Tim	e/Date	:						

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 18-AUG-14 15:36 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500954

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500954 CONTD.... PAGE 2 of 4

18-AUG-14 15:36 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500954-1 WATER 13-JUL-14 SITE CONTROL 0 CU	L1500954-2 WATER 13-JUL-14 SITE 1.56 CU	L1500954-3 WATER 13-JUL-14 SITE 3.13 CU	L1500954-4 WATER 13-JUL-14 SITE 6.25 CU	L1500954-5 WATER 13-JUL-14 SITE 12.5 CU
Grouping	Analyte						
WATER	•						
Total Metals	Copper (Cu)-Total (mg/L)		0.00109	0.00188	0.00314	0.00600	0.0104

L1500954 CONTD.... PAGE 3 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

18-AUG-14 15:36 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1500954-6 WATER 13-JUL-14 SITE 25 CU		
Grouping	Analyte				
WATER					
Total Metals	Copper (Cu)-Total (mg/L)		0.0213		

L1500954 CONTD....
PAGE 4 of 4
18-AUG-14 15:36 (MT)

FINAI

Version:

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A	

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 21-AUG-14 13:01 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500879

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500879 CONTD.... PAGE 2 of 4

21-AUG-14 13:01 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1500879-1 Water 16-JUL-14 SITE CONTROL 0 FE	L1500879-2 Water 16-JUL-14 SITE 2.5 FE	L1500879-3 Water 16-JUL-14 SITE 5 FE	L1500879-4 Water 16-JUL-14 SITE 10 FE	L1500879-5 Water 16-JUL-14 SITE 20 FE
Grouping	Analyte					
WATER						
Total Metals	Iron (Fe)-Total (mg/L)	<0.010	2.00	3.28	5.08	6.11
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	0.033

L1500879 CONTD.... PAGE 3 of 4

Version:

21-AUG-14 13:01 (MT)

FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1500879-6 Sample ID Description Water Sampled Date 16-JUL-14 Sampled Time SITE 40 FE Client ID Grouping Analyte **WATER Total Metals** Iron (Fe)-Total (mg/L) 9.39 Dissolved Metals Filtration Location **Dissolved Metals FIELD** Iron (Fe)-Dissolved (mg/L) 0.033

Reference Information

L1500879 CONTD....

PAGE 4 of 4
21-AUG-14 13:01 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A	

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

MET-T-CCMS-VA

Water

Total Metals in Water by CRC ICPMS

APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Sample Collection By:					"				Al	MALYS	SES F	REQU	IRED							
	Report to:				Invoice to:											perature (°C)				
Company	Nautilus Er	nvironmenta	 il		Nautilus Envir	onmental		_								e e				
Address	8664 Com	merce Cour	t		8664 Comme	rce Court		eve								व्यक्ष				
City/Prov/Postal Code	Burnaby, E	BC, V5A, 4N	7		Burnaby, BC,	V5A, 4N7	ૄ	(low level)						İ		ΙÆ				
Contact	Emma Mar	rus			Emma Marus] <u>ē</u>	1		'	•	•	۱	İ		Leg.				
Phone	604-420-87	773			604-420-8773		604-420-8773		(low level)	4					ŀ			45		
Email	emma@na	utilusenviro	nmental.co	<u>m</u>	emma@nautilusenvironmental.com		emma@nautilusenvironmental.com		emma@nautilusenvironmental.com		4	ved								8
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total	Dissolved		\						ď				
Site Control Ofe	Julyible	-	_	125mL	1	initation	х	х				ပ်								
Site 2,5			-	125mL	1	initation	x	х		_ =		2008/8-COFC		_						
Site 5			-	125mL	1	initation	x	х		. =		6/8 8		\perp		F-552				
Site (U		-	-	125mL	1	initation	х	х		. =		2		_		46				
Site 20		-	-	125mL	1	initation	х	х		ੋਂ										
Site 40 J	J	-	-	125mL	1	initation	х	x								žiet:				
		-	-												_	4				
			_				<u> </u>			 	 -					100				
		•	-					<u> </u>								177				
		-	·																	
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			RELIC	SNINS	HED	BY (C	OUR	ER)						
Client:		Total # Co	ntainers:		Signature:				Signa	ture:										
P.O. No.:		Good Con	dition?		Emma Marus				Print:											
Shipped Via:		Matches S	ichedule?			lautilus Environmental			Comp	<u>_</u>										
			-	<u> </u>	Time/Date: /	Aug 11, 2014 @ 1800h			Time/		BV /!	ARO	PAT ∩	DV)						
SPECIAL INSTRUCTION	NS/COMME	ENTS:			Signature:				┿							a, 20 A				
			٠						I		YL_	_ /	100) t	1	1,2,	७ ७५				
For total, samples have	been prese	rved.	4		Print:				Print:	-,										
For dissolved, samples l	have been f	iltered and t	hen presen	ved.	Company:	·			Comp	any:	Nauti	us E	nviror	nment	al					
					Time/Date:				Time/Date:											

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 18-AUG-14 15:49 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500869

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500869 CONTD.... PAGE 2 of 4

18-AUG-14 15:49 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: **FINAL** L1500869-1 L1500869-2 L1500869-3 L1500869-4 Sample ID L1500869-5

		Description Sampled Date Sampled Time Client ID	WATER 18-JUL-14 SITE CONTROL 0 FE	WATER 18-JUL-14 SITE 2.5 FE	WATER 18-JUL-14 SITE 5.0 FE	WATER 18-JUL-14 SITE 10 FE	WATER 18-JUL-14 SITE 20 FE
Grouping	Analyte						
WATER							
Total Metals	Iron (Fe)-Total (mg/L)		0.019	2.13	4.89	9.23	19.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1500869 CONTD.... PAGE 3 of 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

18-AUG-14 15:49 (MT) Version: FINAL

	D San	Sample ID Description mpled Date npled Time Client ID	L1500869-6 WATER 18-JUL-14 SITE 40 FE		
Grouping	Analyte				
WATER					
Total Metals	Iron (Fe)-Total (mg/L)		37.3		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1500869 CONTD....

PAGE 4 of 4

18-AUG-14 15:49 (MT)

Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Iron (Fe)-Total	MS-B	L1500869-1, -2, -3, -4, -5, -6	

Qualifiers for Individual Parameters Listed:

Qualifier Description

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

Sample Collection By:						ANALYSES REQUIRED						SHIP		
	Report to	:			Invoice to:									ୀ ହ
Company	Nautilus E	nvironmenta	 al		Nautilus Environmental									Temperature (
Address	8664 Com	merce Coul	rt		8664 Commerce Court Burnaby, BC, V5A, 4N7									<u></u>
City/Prov/Postal Code	Burnaby, B	3C, V5A, 4N	17] 🙃		1 1	l J				j e
Contact	Emma Ma	rus			Emma Marus		level)					1 1		le Le
Phone	604-420-8	773			604-420-8773		(low			±				ă
Email	emma@na	autilusenviro	onmental.co	<u>m</u>	emma@nautil	usenvironmental.com	4v8							Receipt
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Total			U .				2
Site Control 0 Fe	July 18/14	-	-	125mL	1	Termination	x			500869-COFC				instant instant
Site 2.5 Fe	July 18/14	-		125mL	11	Termination	х)-6g -				
Site 5.0 Fe	July 18/14	-	-	125mL	1	Termination	x			908				26214803 21 - 12
Site 10 Fe	July 18/14		-	125mL	1	Termination	х			.15(
Site 20 Fe	July 18/14	-	-	125mL	1	Termination	х		\equiv					
Site 40 Fe	July 18/14	-	_	125mL	1	Termination	х			_				Spire Spire
		-	-											
		-	-											
		-	-											
		-	-											
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)		R	ELIQUII	ISHED I	BY (COL	JRIER)		
Client:		Total # Co	ntainers:		Signature:			s	ignature	:				
P.O. No.:		Good Con	dition?		Emma Marus Company: Nautilus Environmental			Р	Print: Company:					
01: 110								d						
Shipped Via: Matches Schedule? SPECIAL INSTRUCTIONS/COMMENTS:			Time/Date: A	ug 11, 2014 @ 1800h		Т	ime/Dat	ə:	•					
			Signature: Print:			R	RECEIVED BY (LABORATORY)							
Samples ARE preserved.						Signature: Y Aug 11 1950 29.88				1.68				
						Р	rint:		,	1				
		P. 1000			Company:			c	ompany	: Nautil	us Envi	onment	al	
					Time/Date:			Т	Time/Date:					

NAUTILUS ENVIRONMENTAL

ATTN: Emma Marcus 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 11-AUG-14

Report Date: 21-AUG-14 13:41 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1500834

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1500834 CONTD.... PAGE 2 of 4

21-AUG-14 13:41 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500834-1 Water 03-JUL-14 SITE CONTROL 0 PB	L1500834-2 Water 03-JUL-14 SITE 62.5 PB	L1500834-3 Water 03-JUL-14 SITE 125 PB	L1500834-4 Water 03-JUL-14 SITE 250 PB	L1500834-5 Water 03-JUL-14 SITE 500 PB
Grouping	Analyte						
WATER							
Total Metals	Lead (Pb)-Total (mg/L)		0.00030	0.0364	0.0121	0.212	0.184

L1500834 CONTD.... PAGE 3 of 4 21-AUG-14 13:41 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1500834-6 Water 03-JUL-14 SITE 1000 PB		
Grouping	Analyte				
WATER					
Total Metals	Lead (Pb)-Total (mg/L)		0.553		

L1500834 CONTD.... PAGE 4 of 4

21-AUG-14 13:41 (MT) Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix		Test Description	Method Reference**		
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	APHA 3030 B&E / EPA SW-846 6020A		

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using hotblock, or filtration (APHA 3030B&E). Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody

Nautilus Environmental

British Columbia 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N3 Phone 604.420.8773

									Date	rageor_
Sample Collection By:		· ·					_	ANALYSES R	EQUIRED	
Report to:				Invoice	To:		[달			
Company	Nautilus Environmental		Comp	Company Nautilus Environmental		loud				
Address	8664 Commerce Court		Addre		664 Commerce Court	3			ا ا	
City/State/Zip			City/	_	urnaby, BC, V5A 4N3	Clow			*	
Contact			Conta	· <u>-</u> -	mma Marus	<u>-</u> a	' '			
Phone	604-420-8773	. — — — — —		Phone		04-420-8773				
Email		lusenvironmen	tal.com	Email	. –	mma@nautilusenvironmental.com	Metals			
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NO. OF	COMMENTS	Total r			
Site Control 0 Pb	July3/14			125mL	1	Termination	X			
Site 62.5 Pb		_	_	125mL	1	Termination	X	1		
Site 125 Pb		_		125mL	1	Termination	$\exists X $	34.0		
Site 250 Pb		_	_	125mL	1	Termination	X			8
Site 500 Pb			_	125mL	1	Termination	X	- 13		
Site 1000 Pb	<u> </u>			125mL	1	Termination	17			
								- 		
			<u></u>				_			
PROJECT INFOR	MATION	S	AMPLE RECEI	(PT	-	RELINQUISHED BY (CLIENT)		RELINQUISHE	D BY (COURIE	
Client:		Total No.	of Containers	.	(Signature)	(Time)	(Signature)			(Time)
PO No.:		Received G	ood Conditio	n?	(Printed Name)	Emma Marus (Date)	(Printed Nar	nė)		(Date)
Shipped Via:		Matches 7	est Schedule	?	(Company) Nauti	lus Environmental	(Company)			
PECIAL INSTRUCTIONS	/COMMENTS: S	amples ARE pr	eserved.	<u></u>		RECEIVED BY (COURIER)		RECEIVED BY	(LABORATOR)	0
				-	(Signature)	(Time)	(Signature)	IC Augus	19150	20 (S C
					(Printed Name)	(Date)	(Printed Nai	ne)		(Date)
					(5,000)					
					(Company)	•	(Сопрапу)	•		-

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

Fe in lab water

Sp	ecies
С.	dubia

	Total Fe	Dissolved Fe	
Treatment	(mg/L)	(mg/L)	Survival (%)
Control	0.049	< 0.03	100
2.5 mg/L Fe	0.929	< 0.03	90
5.0 mg/L Fe	3.84	< 0.03	65
10.0 mg/L Fe	9.08	< 0.03	20
20.0 mg/L Fe	18.1	< 0.03	10
40.0 mg/L Fe	37	6.14	0

used termination values

Cu in lab water

	[Dissolved Cu	
Treatment	Total Cu (μg/L)	(μg/L)	Survival (%)
Control	<0.50	<0.50	100
_ 1.56 μg/L Cu	3.15	1.33	100
3.13 μg/L Cu	3.31	2.56	100
6.25 μg/L Cu	5.91	5.62	95
12.5 μg/L Cu	10.8	9.75	0
25.0 μg/L Cu	22.8	21.1	0

P. subcapitata

used initial values

Cr in lab water

	Dissolved Cr		
Treatment	Total Cr (μg/L)	(μg/L)	Survival (%)
Control	<0.50	<0.50	100
43.75 μg/L Cr	43.05	42.4	100
87.5 μg/L Cr	91.3	87.7	100
175 μg/L Cr	178.5	172	95
350 μg/L Cr	357.5	420	0
700 μg/L Cr	732.5	692	0

used average between initiation and termination values

Pb in lab water

	Dissolved Pb		
Treatment	Total Pb (μg/L)	(μg/L)	Survival (%)
Control	<0.050	<0.050	100
62.5 μg/L Pb	28.6	30.1	100
125 μg/L Pb	61.8	75.8	100

250 μg/L Pb	133	148	100
500 μg/L Pb	301	246	85
1000 μg/L Pb	329	279	0

used average between initiation and termination values

Zn in lab water

		Dissolved Zn		
Treatment	Total Zn (μg/L)	(μg/L)	Survival (%)	
Control	<3.0	<3.0	100	
50 μg/L Zn	41.45	41.8	90	
100 μg/L Zn	73.9	78	80	
200 μg/L Zn	158.5	164	40	
400 μg/L Zn	332.5	338	25	
800 μg/L Zn	638.5	656	0	

used average between initiation and termination values

Cd in lab water

	Dissolved Cd		
Treatment	Total Cd (μg/L)	(μg/L)	Survival (%)
Control	< 0.01	<0.050	100
6.25 μg/L Cd	6.04	3.46	100
12.5 μg/L Cd	12.5	2.51	100
25.0 μg/L Cd	23.1	21.1	20
50.0 μg/L Cd	46.5	41.1	0
100 μg/L Cd	87.3	87.5	0

used initiation values

Al in lab water

		Dissolved Al		
Treatment	Total Al (μg/L)	(μg/L)	Survival (%)	
Control	<3.0	<200	100	
250 μg/L Al	213	172	45	
500 μg/L Al	606	312	0	
1000 μg/L Al	1050	344	0	
2000 μg/L Al	1070	320	0	
4000 μg/L Al	6620	301	0	

used dissolved values

Fe in site water

	Total Fe	Dissolved Fe	Survival
Treatment	(mg/L)	(mg/L)	(%)
Control	0.019	<0.03	90
2.5 mg/L Fe	2.13	<0.03	100
5.0 mg/L Fe	4.89	< 0.03	65
10.0 mg/L Fe	9.23	< 0.03	5
20.0 mg/L Fe	19.5	0.033	5
40.0 mg/L Fe	37.3	0.033	0

used termination values

Cu in site water

	Total Cu	Dissolved Cu	Survival
Treatment	(μg/L)	(μg/L)	(%)
Control	<0.50	<0.50	100
1.56 μg/L Cu	2.97	1.8	100
3.13 μg/L Cu	4.7	2.97	100
6.25 μg/L Cu	8.89	5.88	100
12.5 μg/L Cu	15.8	11.2	55
25.0 μg/L Cu	28.8	23.9	10

used initial values

Cr in site water

	Total Cr	Dissolved Cr	Survival
Treatment	(μg/L)	(μg/L)	(%)
Control	<0.50	<0.50	100
43.75 μg/L Cr	41.9	40.9	95
87.5 μg/L Cr	91.25	88.3	5
175 μg/L Cr	181	174	0
350 μg/L Cr	353	355	0
700 μg/L Cr	734	728	0

used average between initiation and termination values

Pb in site water

	Total Pb	Dissolved Pb	Survival
Treatment	(μg/L)	(μg/L)	(%)
Control	0.292	0.212	100
62.5 μg/L Pb	40.5	42.3	100
125 μg/L Pb	47.1	79.5	100

250 μg/L Pb	188	156	100
500 μg/L Pb	243.5	285	70
1000 μg/L Pb	623	663	0

used average between initiation and termination values

Zn in site water

	Total Zn	Dissolved Zn	Survival
Treatment	(μg/L)	(μg/L)	(%)
Control	7	5.7	100
50 μg/L Zn	44.45	44.9	90
100 μg/L Zn	81.25	84.3	65
200 μg/L Zn	152	157	20
400 μg/L Zn	330	325	0
800 μg/L Zn	671.5	681	0

used average between initiation and termination values

Cd in site water

	Total Cd	Survival		
Treatment	(μg/L)	(μg/L)	(%)	
Control	0.214	0.228	90	
25 μg/L Cd	22.9	22.3	100	
50.0 μg/L Cd	47.1	46	45	
100 μg/L Cd	95.5	94	0	
200 μg/L Cd	192	187	0	
400 μg/L Cd	387	378	0	

used initiation values

Al in site water

	Total Al	Dissolved Al	Survival
Treatment	(μg/L)	(μg/L)	(%)
Control	4.9	1.6	100
250 μg/L Al	231	171	55
500 μg/L Al	456	329	0
1000 μg/L Al	1120	399	0
2000 μg/L Al	2460	344	0
4000 μg/L Al	8370	282	0

used dissolved values

APPENDIX C -Chain of Custody

BRITISH COLUMBIA

8664 Commerce Court Burnaby British Columbia Canada V5A 4N7 Phone 604.420.8773 Fax 604.357.1361

Chain	of	Custody	7
-------	----	---------	---

0952 Page <u>1</u> of <u>1</u>

					hone 604.420.83 ux 604.357.1361		949	3	₩	ate		P	age _	1	of 1
Sample Collection by:			-				开开	#H	₹	ANALY		QUIRED			44
Report to: Company A 2 Mu- Address City Contact Phone No.	Prov.	· · · · · · · · · · · · · · · · · · ·		C	City Contact	Azimuth Prov. PC	C.dubia w	h P.subcapitala wo	48th Causia wolf 144						RECEIPT TEMPERATURE (°C)
SAMPLE ID	DATE	TIME	MATRIX		NUMBER OF CONTAINERS	COMMENTS	7-8	42	<u>\$</u>						BEC
MH-04 MH-25	Jug27 Jug27 Jug27			1L > 20L > 20L	< 7 < 1 < 7	For mixture Test	X								8.5 8.5
Water Effects Ratio						Using millour as six water			X						11
									-						
															71. 2
PROJECT INFORMAT	ION	Shill Sales	SAN	IPLE RECE	EIPT	RELINQUISHED BY (CLIENT)			RELIN	QUISHED	BY (CO	JRIER)			
CLIENT		TOTA	L NO. OF C	ONTAINEF	as	(Signature)	. ((Time)	(Signat	ure)					(Time)
P.O. NO.	REC'D GOOD CONDITION			(Printed Name) (Date)			(Printed Name) (Date)								
SHIPPED VIA: (Company)					(Company)			(Comp	any)						
RECEIVED BY (COURIER) SPECIAL INSTRUCTIONS/COMMENTS:							RECE	VED BY (L	ABORA	TORY)			000		
			Parties of the second	T. A. H. H. Grande P. N.		(Signature)		(Time)	(Signal	ure) KM	Su l	Cry.		11965	(Time) (Date)
	District Control			inima i		(Printed Name)		(Date)	(Printe	d Name)		7		mar dal 1	(Date)
	Appropriate Control	100		Jan Mari		(Company)						Barbara Barbara		net region	