VICT RIA GOLD CORP

EAGLE GOLD MINE

HEAP LEACH FACILITY EMERGENCY RESPONSE PLAN

Version 2024-01

MARCH 2024

THIS PAGE INTENTIONALLY LEFT BLANK

Document Control

DOCUMENT CONTROL

Submission History

Version Number	Version Date	Document Description and Revisions Made
2014-01	June 2014	Original submission drafted in June 2014 and submitted as an Appendix to the Heap Leach and Process Facilities Plan submitted August 2014 to the Department of Energy, Mines and Resources in support of an application for a Quartz Mining Licence and to the Yukon Water Board in support of an application for a Type A Water Use License for the full Construction, Operation and Closure of the Project.
2017-01	Nov 2017	Revisions made to reflect the current site general arrangement and submitted to the Department of Energy, Mines and Resources and the Yukon Water Board in advance of Heap Leach Facility construction.
2019-01	May 2019	Revisions made to reflect current personnel position titles, organizational chart and updated reference material and submitted to the Department of Energy, Mines and Resources 60 days prior to operations pursuant to QML-0011.
2024-01	March 2024	Revisions made to reflect as-built Mine configuration and to address Yukon Government review comments dated January 30, 2023.

Version 2024-01 of the Heap Leach Facility Emergency Response Plan (the Plan) for the Eagle Gold Mine has been revised in March 2024 to update Version 2019-01 submitted in May 2019. The table below is intended to identify modifications to the Plan and provide the rationale for such modifications.

Section	Revision/Rationale
General	 Updated to Victoria Gold Corp. template
2 Heap Leach Facility Emergency Response Plan Purpose	 References to Mining Association of Canada guidance
3 Heap Leach Facility Overview	 Updated to reflect as-built configuration of the heap leach facility
Table 4.2-1 Emergency Response Designates	 Deleted construction phase
5.2 Emergency Classification	 Update to Events Pond trigger to align with HLF OMS Included ADR Plant emergency classifications
5.3 Communication with Stakeholders	 Revised to include First Nation of Na-Cho Nyak Dun for Tier 2 and Tier 3 Communication Protocols

Version 2024-01 Revisions

Eagle Gold Mine Heap Leach Facility Emergency Response Plan

Document Control

Section	Revision/Rationale			
6 Emergency Scenario Causes, Preventative Measures and Response	 Revised Section 6.0 to align preventative measures and detection methods with potential causes. Deleted cyanide release during transport scenario as this is covered under Cyanide Management Plan. 			
7 Hydrogen Cyanide Information	 Deleted information that is duplicated from Cyanide Emergency Response Procedures (VGC-CMP-SOP-020) to avoid inconsistent information. 			
8 Evacuation	Updated to clarify authority and trigger events to order evacuation.Updated Figure 8-1			

Table of Contents

TABLE OF CONTENTS

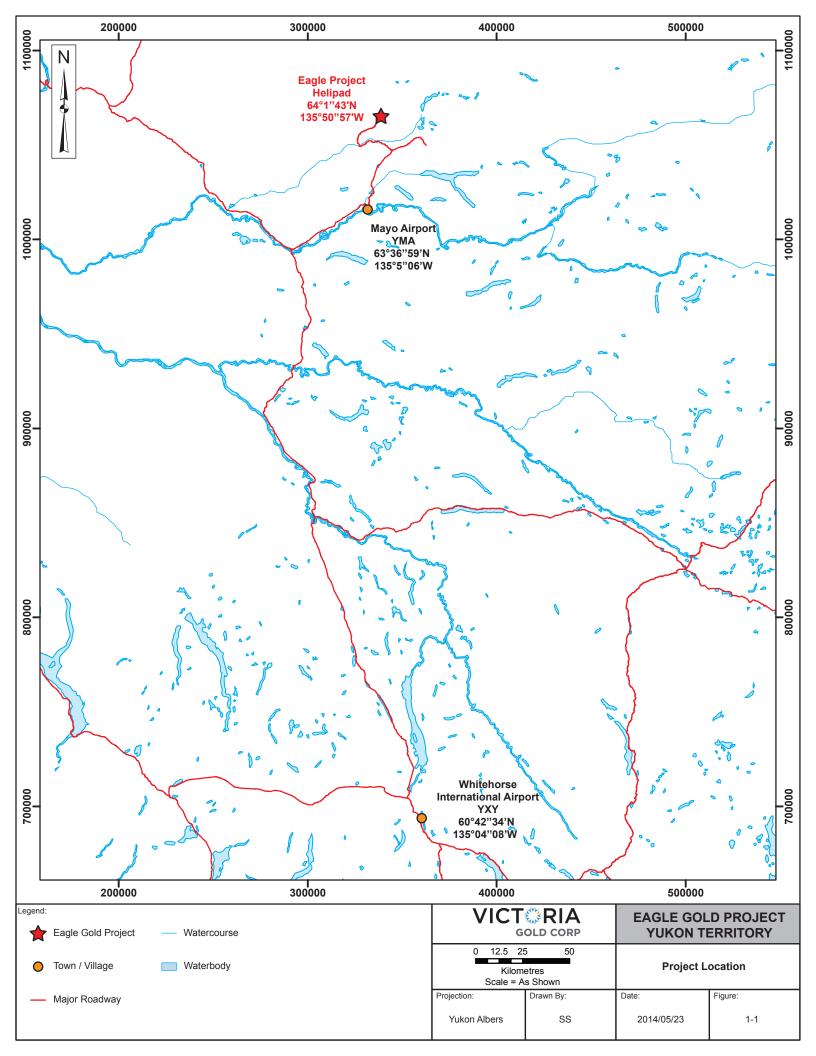
1	Intro	duction		1
2	Неар	Leach I	Facility Emergency Response Plan Purpose	3
3	Неар	Leach I	Facility Overview	4
	3.1	Heap Le	each Embankment and In-Heap solution pond	4
	3.2	Events	Pond	4
	3.3	Liner Sy	ystem	4
	3.4	Overline	er Drain Fill	4
	3.5	Solutior	n Collection System	4
	3.6	Leak De	etection and Recovery System	5
	3.7	Underd	rain System	5
	3.8	Solutior	n Conveyance and Pumping Systems	5
	3.9	Adsorpt	ion Desorption Recovery Plant	5
4	Orga	nization	and Responsibility	6
	4.1	Emerge	ncy Response	6
	4.2	Delegat	ion of Responsibilities	9
5	Emei	gency D	Detection and Classification	11
	5.1	Emerge	ncy Detection	11
	5.2	Emerge	ency Classification	11
	5.3	Commu	inication With Stakeholders	13
		5.3.1	Tier 1 Communication Protocol	13
		5.3.2	Tier 2 Communication Protocol	13
		5.3.3	Tier 3 Communication Protocol	14
6	Emei	gency S	Scenario Causes, Preventative Measures and Response	15
	6.1	Heap Le	each Facility Embankment failure	16
	6.2	In Heap	Pond Solution Escape	
	6.3	Events	Pond Failure	
	6.4	Liner Sy	ystem Failure	22
	6.5	Solutior	n Collection System Failure	27
	6.6	Ore Hea	ap Slope Failure	
	6.7	Closure	Drain System Failure	30
	6.8	Release	e of HCN Gas or Solution Spill within the ADR Plant	31
7	Hydr	ogen Cy	anide Information	33
8	Evac	uation		34
9	Refe	rences		36

Table of Contents

List of Tables

Table 4-1:	Emergency Response Designates	. 9
Table 5-1:	Emergency Levels	11
Table 5-2:	Emergency Level Determination	11
Table 6-1:	In-Heap Pond Alert Levels	24
Table 6-2:	Events Pond Primary Liner Leakage Results and Alert Levels	25

List of Figures


Figure 1-1:	Mine Location	2
Figure 4-1:	Emergency Response Organizational Chart	8
Figure 4-2:	Emergency Response Process	9
Figure 8-1:	Inundation Map and Evacuation Route3	5

Section 1 Introduction

1 INTRODUCTION

Victoria Gold Corp. (VGC) operates the Eagle Gold Mine in central Yukon. The Eagle Gold Mine ('the' Mine) is located 85 km from Mayo, Yukon and is accessed using highway and access roads as shown on Figure 1-1.

The Mine includes open pit mining and gold extraction using a three-stage crushing process, heap leaching, and a carbon adsorption, desorption, and recovery system over the mine life.

2 HEAP LEACH FACILITY EMERGENCY RESPONSE PLAN PURPOSE

The purpose of this Heap Leach Facility Emergency Response Plan (the Plan) is to ensure that an adequate level of emergency preparedness and response is available in the event of an emergency scenario involving the Heap Leach Facility (HLF) or associated structures. The Plan is supplemental to the Eagle Gold Mine Emergency Response Plan.

This plan was developed based on the following guidelines:

- Guidelines from the Canadian Dam Association (2013) including the Application of Dam Safety Guidelines to Mining Dams (CDA 2014);
- International Cyanide Management Code (2016);
- Developing an operation, maintenance and surveillance Manual for tailings and water management facilities (MAC 2021a);
- A Guide to the Management of Tailings Facilities (MAC 2021b)
- Type A and B Quartz Mining Undertakings Information Package for Applicants (2012); and,
- Plan Requirement Guidance for Quartz Mining Projects (2013).

Section 3 Heap Leach Facility Overview

3 HEAP LEACH FACILITY OVERVIEW

The Heap Leach Facility (HLF) is a valley fill design which incorporates an earthfill/rockfill embankment that provides stability to the base of the heap and the stacked ore. The embankment also creates an In-Heap Pond leaching configuration that provides storage of pregnant solution within the pore spaces of the ore.

The major design components for the HLF include the following: the embankment and the In-Heap Pond; a composite liner system; solution recovery wells; associated piping network for solution collection and distribution; a leak detection and recovery system (LDRS); and a downstream Events Pond to contain excess solution that results from extreme precipitation or emergency events.

3.1 HEAP LEACH EMBANKMENT AND IN-HEAP SOLUTION POND

The embankment is an earthfill/rockfill structure with a geo-membrane lined upstream face to ensure containment integrity. The final embankment crest is at 939.5 masl and includes an 8 m crest width for road and pipeline access, and 2.5H:1V upstream and downstream slopes.

The In-Heap Pond stores process solution within the pore space of the ore, directly up gradient of the confining embankment. In the event the design capacity is exceeded, the spillway in the In-Heap Pond will enable a controlled discharge of water to the Events Pond.

3.2 EVENTS POND

The Events Pond is sized to provide storage for the Probable Maximum Flood (PMF) storm event from the ultimate HLF (all phases). The PMF event rainfall depth was estimated to be 256 mm which is assumed to contribute entirely over the ultimate HLF pad footprint.

3.3 LINER SYSTEM

The liner for the HLF in-heap pond and the Events Pond consists of a double composite geomembrane and underlying low-permeability bedding material (geosynthetic clay liner or GCL), with the rest of HLF liner consisting of single composite liner and a GCL. The primary purpose of the composite liner system is to prevent the loss of pregnant leach solution (PLS) for both environmental and economic reasons.

3.4 OVERLINER DRAIN FILL

The overliner drain fill (ODF) is a layer of crushed material placed over the entire In-Heap Pond and heap leach pad area including the upstream face of the confining embankment. The ODF minimizes the hydraulic head on the liner system to reduce the risk of PLS leakage and protects the liner system from damage during ore placement.

3.5 SOLUTION COLLECTION SYSTEM

Pregnant leach solution is collected in the high permeability ODF at the base of the heap leach pad, with perforated collection pipes placed within the ODF to increase solution removal rates. The collection pipe network directs the solution to the sump at the toe of the embankment for pumping through inclined riser pipes to the process plant.

Section 3 Heap Leach Facility Overview

The base of the sump is located below the elevation of the surrounding liner and the liner system and LDRS extends under the sump. Solution is pumped from the sump through inclined risers to the process plant. The inclined arrangement consists of thick-walled, steel pipes to allow for raising and lowering of a submersible pump. Pumps have the capacity to meet the solution application throughflow. A back-up riser pipe is installed to maintain access to the sump in the event that any of the riser pipes become blocked.

3.6 LEAK DETECTION AND RECOVERY SYSTEM

A LDRS within the In-Heap Pond and the Events Pond consists of a monitoring sump equipped with an automatic, fluid-level activated pump located between the top and bottom liners. The pump is sized to sufficiently remove fluids to minimize head on the bottom liner and also connected to a flow meter to provide the volumes recovered over specific time intervals.

3.7 UNDERDRAIN SYSTEM

The HLF underdrain system provides for the collection and drainage of subsurface water beneath the lined HLF to limit upward pressure on the facility liner. The underdrain consists of geofabric wrapped around granular drain rock backfill materials and 100 mm perforated pipes placed at regular intervals (approximately 75 m spacing). The drains convey unaffected subsurface water to collector pipes that discharge to an outlet monitoring vault. The vault is equipped with an outflow drain pipe that allows for the transfer of the captured water to the Events Pond.

3.8 SOLUTION CONVEYANCE AND PUMPING SYSTEMS

Barren solution containing cyanide is applied to the ore stacked on the HLF to extract the gold. After passing through the ore, this solution is collected by the solution collection system.

A series of barren solution pumps located at the Adsorption Desorption Recovery (ADR) Plant pump solution to the Heap Leach Pad. A series of pipe headers distribute the solution to secondary and tertiary headers, and ultimately drip emitters placed at the ore stack.

The process pumping system includes pumps, pipelines, valves, and associated controls to move solution between the ADR plant and the Heap Leach Pad.

3.9 ADSORPTION DESORPTION RECOVERY PLANT

Gold is recovered from the PLS by activated carbon adsorption and pressurized cyanide/caustic desorption, followed by electrowinning onto stainless steel cathodes, and then subsequent on-site smelting to gold doré. This process is referred to as the adsorption, desorption and recovery process. The gold-barren leach solution that remains after passing the PLS through the carbon columns is replenished with reagents for optimum cyanide concentration and pH control and re-circulated back to the Heap Leach Pad as barren solution.

Sodium cyanide briquettes are added to the system via 1 tonne super sacks. The sodium cyanide is mixed in the cyanide mix tank and then transferred to the cyanide storage tank. This concentrated cyanide solution is added into the barren solution tank or to the carbon columns, as required. Caustic solution is used in the system for acid neutralization and for preparing the fresh barren solution, as needed.

Section 4 Organization and Responsibility

4 ORGANIZATION AND RESPONSIBILITY

4.1 EMERGENCY RESPONSE

Clearly defined roles and responsibilities are vital for effective and timely response to an emergency situation. The key roles for emergency response related to the Mine are described below and depicted in Figure 4-1.

Discoverer

The Discoverer is any individual witnessing an emergency on the Mine site and is responsible for initiating a Code 1 emergency response. The Discoverer will call out on radio channel 1 "Code 1, Code 1, Code 1" and clearly state their name, and the nature and location of the emergency. The Discoverer will then follow all instructions provided by the ERC.

Emergency Response Coordinator

The Emergency Responder Coordinator (ERC) will respond to the Discoverer on Channel 1 to request confirmation of the nature and location of the emergency. Once the emergency details have been confirmed, the Emergency Responder will provide instructions to the Discoverer on the appropriate immediate response the Discoverer should undertake.

The ERC will determine whether to investigate on scene prior to initiating the full "Code 1" protocol or having the Emergency Response Team (ERT) paged out. If investigating, the ERC will advise a delay in paging the ERT and advise medical staff to standby.

The ERC will initiate "Code 1" protocol as necessary.

If an investigation prior to initiating a full "Code 1" protocol has not occurred, the ERC will respond to the scene of the incident and conduct initial scene assessment. Based on initial scene assessment, the ERC will coordinate resources required with Mine Rescue Captain and advise the Incident Commander.

Emergency Response Team

The ERT will mobilize to the scene and the first, or most senior ERT member, will conduct an initial assessment and assume command of the scene. The ERT team member who assumes control of the scene will not relinquish control of the scene until the arrival of the Emergency Response Coordinator (ERC).

First Aid Attendants

Any First Aid Attendants on the Mine site that are not part of the ERT will immediately cease all activity upon hearing the Code 1 and ensure they are in a location where they can clearly hear any radio broadcasts for further assistance. If further assistance is required, they will mobilize to the scene or any other location as directed by the ERC.

If a First Aid Attendant is in the immediate area of the emergency, they are to report to the scene and assist with the efforts of the Discoverer or identify themselves to the ERT as a First Aid Attendant and await further instructions.

Section 4 Organization and Responsibility

Incident Commander

The Incident Commander will immediately report to the ICC when a Code 1 response has been initiated. The IC will be responsible for communicating the nature and extent of any emergency to VGC senior management.

Prior to the arrival of related Governmental Agencies, only the IC has the authority to order the evacuation of personnel from the Mine site or the authority to give the "All Clear" order, indicating that it is safe to reenter an area or building following an evacuation.

VGC Senior Management

VGC Senior Management will be responsible for communication with relevant Yukon Government agencies based on information provided by the IC.

All Other Site Personnel

All site personnel that are not directly involved in emergency response efforts will cease work upon hearing a "Code 1", unless the cessation of their work could result in an emergency situation and will observe radio silence on Channel 1 until an "All Clear" has been given. Supervisors may use their working channel to muster personnel.

Workers that are outside and need to seek shelter due to weather conditions may do so carefully and their supervisor's knowledge.

If an evacuation of an affected work area is necessary, the are Supervisor are responsible for accounting for personnel under their care at the muster station. Personnel are not to leave their muster station unless an "All Clear" order has been given or their location becomes unsafe.

Incident Command Center

Each incident in which a Code 1 response has been raised will require the activation of the Incident Command Center (ICC). The ICC will be able to receive and send critical communications (telephone, VHF radio and fax) and will be operated continuously throughout the incident. The ICC is located in the Administrative Office Boardroom on site and chaired by the Incident Commander. A secondary location will be established in the VGC Vancouver office as necessary.

Section 4 Organization and Responsibility

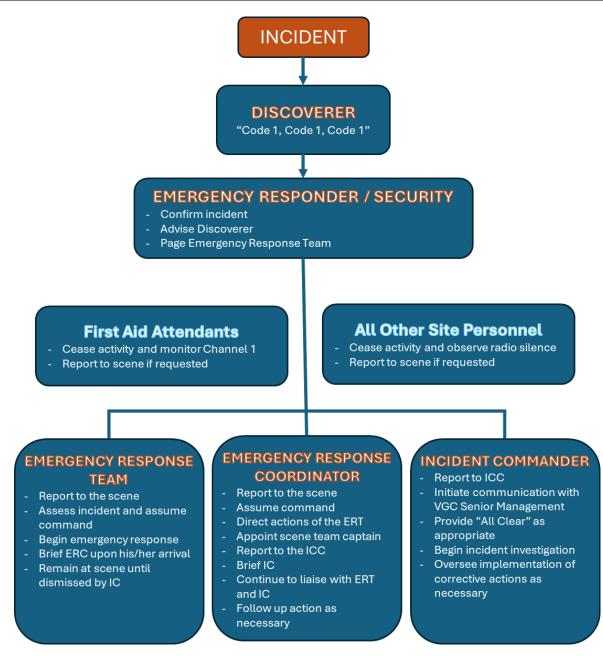
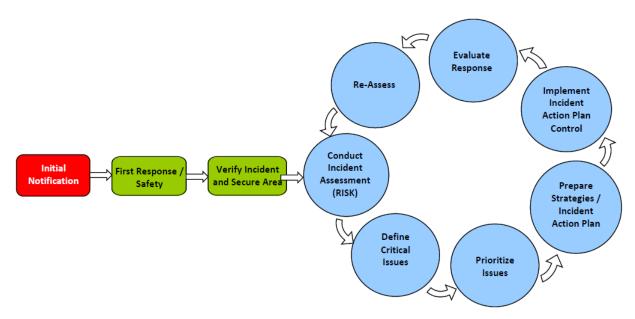



Figure 4-1: Emergency Response Organizational Chart

Section 4 Organization and Responsibility

Figure 4-2: Emergency Response Process

4.2 DELEGATION OF RESPONSIBILITIES

The Mine is a continuous operation with work activities being undertaken 24 hours a day for 365 days a year. Continuous operations require a planned and documented delegation of responsibilities to ensure the integrity of emergency response. The Mine General Manager is ultimately responsible for ensuring that all key positions related to emergency response are staffed by competent personnel. The delegates for each of the emergency response positions will be posted in conspicuous locations around the Mine site including key planning and meeting areas.

The currently approved delegates for emergency response are provided in Table 4-1.

Emergency Response Position	Mine Phase	Primary Personnel	Designate	Minimum Skills/Qualifications	
Emergency Responder	Construction and Operations	ICC & First Aid dedicated First Aid Attendant	ICC & First Aid dedicated First Aid Attendant cross shift	Occupational First Aid Level 3 WHMIS	
	Closure	First Aid Attendant	First Aid Attendant	Occupational First Aid Level 3 WHMIS	
Emergency Response Team	Construction and Operations	Various	Various	Occupational First Aid Level 1 Surface Mine Rescue WHMIS Industrial Fire Brigade Spill Response Hazardous Materials Handling	

 Table 4-1:
 Emergency Response Designates

Eagle Gold Mine Heap Leach Facility Emergency Response Plan

Section 4	Organization and	Responsibility

Emergency Response Position	Mine Phase	Primary Personnel	Designate	Minimum Skills/Qualifications
	Closure	Various	Various	Occupational First Aid Level 1 WHMIS Spill Response Hazardous Materials Handling
Emergency Response Coordinator	Construction and Operations	Health, Safety and Security Manager	Safety Coordinator	Occupational First Aid Level 3 Surface Mine Rescue WHMIS Industrial Fire Brigade Spill Response Hazardous Materials Handling
	Closure	Various	Various	Occupational First Aid Level 3 WHMIS Industrial Fire Brigade
Incident Commander	Construction and Operations	Mine General Manager	Health, Safety and Security Manager	Surface Mine Rescue WHMIS Industrial Fire Brigade Spill Response Hazardous Materials Handling
	Closure	Site Manager	Camp Coordinator	WHMIS Spill Response Hazardous Materials Handling

Section 5 Emergency Detection and Classification

5 EMERGENCY DETECTION AND CLASSIFICATION

5.1 EMERGENCY DETECTION

As described in operational and environmental management plans developed for the Mine, a range of monitoring and inspections are conducted to ensure that Mine features operate as intended. Unusual conditions or emergency events may be detected by the planned monitoring and inspection but may also be detected by:

- Observation by VGC personnel or contractors during the ordinary course of operations
- Observation by government personal (local, territorial, federal), visitors, or the public
- Evaluation of instrumentation data
- Earthquakes felt or reported in the vicinity of the Mine
- Advanced warning of conditions that may cause an unusual event or emergency (e.g. severe weather warnings, forest fires, etc.)

For the purposes of this plan, unusual conditions or emergency events are situations that are different from the normal or expected conditions of the heap leach facility. These unusual conditions may indicate problems needing further monitoring, inspection, or corrective measures or may indicate an emergency condition requiring emergency response. Table 5-1 provides a description of the emergency levels which may be detected on the Mine.

Table	J-1. Linergency Levels	
Emergency Level		Description
1	Non-failure	Abnormal situation which has not threatened the operation, or structural integrity, of a system.
2	Potential failure developing	Abnormal situation which may eventually lead to a system failure but there is no immediate threat
3	Imminent or actual failure	Extremely urgent situation where a system failure is occurring, or its failure is imminent

Table 5-1:Emergency Levels

5.2 EMERGENCY CLASSIFICATION

The design, construction, and operation of the heap leach facility are all intended to mitigate the possibility of an emergency event developing; however, the potential for an emergency event does exist. Table 5-2 provides some of the unusual conditions and emergency events that have been planned for and also provides the anticipated emergency level. This information is provided as a general guide only and the professional opinion of qualified personnel should always be strongly considered.

Table 5-2: Emergency Level Determination

Facility or Event	Unusual Condition	Emergency Level
HLF Spillway	Process solution is spilling to Events Pond	1

Eagle Gold Mine Heap Leach Facility Emergency Response Plan

Facility or Event	Unusual Condition	Emergency Level
	Process solution is spilling to Events Pond which is at red level condition (water level above 888 m asl)	2
	Process solution is spilling to Events Pond which is at full capacity	3
	New cracks in the embankment less than 0.5 cm wide without seepage	1
	New cracks in the embankment greater than 0.5 cm wide without seepage	2
Embankment	Cracks in the embankment with seepage	
Emparkment	Visual movement/slippage of the embankment slope	2
	Sudden or rapidly proceeding slides of the embankment slopes	3
	Process solution is overtopping embankment crest	3
	Events Pond is at red level condition (water level above 888 m asl)	2
	Fluid level has encroached freeboard and rising flow over the Events Pond spillway is imminent or occurring	3
	New cracks in the pond slopes less than 0.5 cm wide without seepage	1
Events Pond	New cracks in the pond slopes greater than 0.5 cm wide without seepage	2
	Cracks in the pond slopes with seepage	3
	Visual movement/slippage of the pond slopes	2
	Sudden or rapidly proceeding slides of the pond slopes	3
Ore been	Visual movement/slippage of the ore heap (shallow slope failure)	2
Ore heap	Sudden or rapidly proceeding slides of the ore heap (deep slope failure)	3
	In Heap Pond Alert Level 1 (refer to Table 6-1, below)	1
Lines and LDDC	In Heap Pond Alert Level 2 (refer to Table 6-1, below)	
Liner and LDRS	Events Pond Alert Level 1 (refer to Table 6-2, below)	1
	Events Pond Alert Level 2 (refer to Table 6-2, below)	2
	HCN gas release in ADR above 10 ppm with no first aid required to any workers	1
	HCN gas release in ADR with first aid required on site	2
ADR Plant	HCN gas release in ADR with response requiring transport of affected individual(s) off site	3
	Sodium cyanide spill in unreactive location	1
	Spill containing WAD cyanide contained within ADR	1
	Spill containing WAD cyanide released outside of ADR presenting risk to watercourse or personnel	3
	Measurable earthquake felt or reported on or within 100 km of the Mine	1
Earthquake	Earthquake resulting in visible damage to the HLF or appurtenances	2
	Earthquake resulting in uncontrolled release of PLS from the HLF	3
Security Threat	Verified threat that, if carried out, could result in damage to the HLF or appurtenances	2

Section 5 Emergency Detection and Classification

Facility or Event	Unusual Condition	Emergency Level
	Detonated bomb or act of sabotage/vandalism that has resulted in damage to the HLF or appurtenances	3

5.3 COMMUNICATION WITH STAKEHOLDERS

VGC's response and communication procedures for heap leach facility scenarios are based on a threetiered system linked to the emergency levels. Broadly, the three tiers for response and communication are shown in Table 5-1.

The tiered communication and emergency level system has been developed so that VGC Senior Management and site personnel are able to notify appropriate communities, government agencies, and other stakeholders of an emergency. Proper communication of an event involving heap leach facility is intended to reduce the likelihood of a panicked response which may exacerbate the emergency.

5.3.1 Tier 1 Communication Protocol

If a scenario is deemed to be a "Non-Failure" situation then the primary communication responsibility is to report the situation to an immediate supervisor and/or the Manager of Health, Safety and Security. The goal of the communication is to ensure that all relevant personnel are aware of the situation so corrective measures can be taken as necessary. Any site personnel made aware of a Tier 1 emergency level event are to limit communication to internal VGC personnel and any decision to communicate the situation to government agencies, the media, or local communities is at the discretion of VGC Senior Management.

5.3.2 Tier 2 Communication Protocol

If a scenario is deemed a "Potential failure developing" situation, the communication level is expanded outside of VGC. The responsibility for this communication is the Mine Manager and/or the Manager of Health, Safety and Security once they have been made aware of the situation. The goal of the communication is to ensure that the relevant government agencies are aware of the situation and are advised that VGC is taking appropriate action to correct the situation and assistance is likely not immediately required.

The organizations to be contacted will vary based on the type of emergency developing, however the Yukon Workers' Compensation Health and Safety Board should be notified (867-667-5450) and at the discretion of the Mine Manager and/or the Manager of Health, Safety and Security the following agencies may also be notified:

- Yukon Emergency Medical Service (EMS) 867-667-3333
- Mayo RCMP 867-996-5555
- Mayo Fire and Ambulance 867-996-2222
- Yukon Spill Report Centre 867-667-7244
- Yukon Water Board 867-456-3980
- Transport Canada CANUTEC 24-hour service 613-996-6666

Section 5 Emergency Detection and Classification

- Yukon Government Energy, Mines and Resources CS&I Mayo 867-996-2568
- Yukon Government Energy, Mines and Resources CS&I Whitehorse 867-456-3882
- First Nation of Na-Cho Nyak Dun, Lands Manager, 867 996-2265 ext. 143
- Cyanco incident management and emergency response support, 1-800-424-9300

5.3.3 Tier 3 Communication Protocol

If an "Imminent or actual failure" situation is developing at the Mine site, the communication is expanded outside of VGC and includes local stakeholders. This situation may require assistance and has the potential to affect communities.

VGC Senior Management will have responsibility for communicating a Tier 3 emergency; however, if the Mine General Manager cannot immediately contact them, the Mine General Manager is to assume communication responsibility until VGC Senior Management can assume control.

The organizations to be contacted will vary based on the type of emergency developing, however the Yukon Workers' Compensation Health and Safety Board must be notified (867-667-5450) and following agencies may also be notified so that they can provide assistance with the response or with the notification of affected communities:

- Yukon Emergency Medical Service (EMS) 867-667-3333
- Mayo RCMP 867-996-5555
- Mayo Fire and Ambulance 867-996-2222
- 24 HOURS Yukon Spill Report Centre 867-667-7244
- Yukon Water Board 867-456-3980
- Transport Canada CANUTEC 24-hour service 613-996-6666
- Yukon Government Energy, Mines and Resources CS&I Mayo 867-996-2568
- Yukon Government Energy, Mines and Resources CS&I Whitehorse 867-456-3882
- First Nation of Na-Cho Nyak Dun, Lands Manager, 867 996-2265 ext. 143
- Cyanco incident management and emergency response support, 1-800-424-9300

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6 EMERGENCY SCENARIO CAUSES, PREVENTATIVE MEASURES AND RESPONSE

To effectively and proactively manage the HLF, there is a need to have a broad understanding of all of the associated uncertainties, risks and consequences. It is important that focusing on one risk component, such as a slope failure, doesn't lead to other components being overlooked. The Failure Modes and Effects Analysis (FMEA) methodology allows a balanced evaluation of the risks associated with various components of a system. A FMEA for the HLF was undertaken to support detailed design and to inform development and operational planning for the Mine.

The HLF FMEA identified a range of failure modes over the major HLF components which, during construction and operations, are mitigated by standard engineering and design practices. However, planning for emergency response in the unlikely event that these failure modes are experienced is a key proactive management tool.

In addition to the failure modes identified by the FMEA, consideration is also given to activities associated with the operation of the HLF which would not have implications for the structural and functional integrity of the HLF but could result in an emergency. Specifically, additional considerations to ensure the safe operation of the HLF primarily involve the safe handling and use of cyanide as described in the Cyanide Management Plan and Cyanide Emergency Response Procedures (VGC-CMP-SOP-020).

The following emergency scenarios have been considered for the heap leach facility:

- 1. HLF embankment failure (hydraulic, structural or seepage)
- 2. In-Heap Pond solution escape
- 3. Events Pond failure
- 4. Liner system failure
- 5. Solution collection system failure
- 6. Ore heap slope failure
- 7. Closure Drain System failure
- 8. Hydrogen cyanide gas release or liquid cyanide solution spill in the ADR plant
- 9. Hydrogen cyanide release during transportation (See Cyanide Management Plan)

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.1 HEAP LEACH FACILITY EMBANKMENT FAILURE

Incident	HLF Embankment Failure		
Potential Causes	 Hydraulic (overtopping of dam crest or erosion of embankment toe): Overtopping of dam crest during runoff event due to spillway plugging Embankment toe erosion due to misdirected spillway outlet discharge 	 Structural (foundation or slope failure): Poor quality control during foundation preparation and embankment fill placement Extraordinary seismic event exceeding projected maximum event 	 Seepage Internal erosion / progressive piping of fines through embankment
Preventative Measures	 Follow procedures identified in OMS Manual including regular site inspections by mine personnel and dam safety inspections and reviews by engineer Implement high level of construction quality control and assurance with regular inspections by the engineer Push snowpack into large piles to decrease rate of snowmelt Preventative maintenance Event driven maintenance 	 Follow procedures identified in OMS Manual including regular site inspections by mine personnel and dam safety inspections and reviews by engineer Implement high level of construction quality control and assurance with regular inspections by the engineer Preventative maintenance 	 Maintain heap water balance operational criteria and follow procedures identified in the HLF Contingency Water Management Plan for solution management Follow procedures identified in OMS Manual including regular site inspections by mine personnel and dam safety inspections and reviews by engineer Implement high level of construction quality control and assurance with regular inspections by the engineer Preventative maintenance
Detection Method	 Regular inspection of spillway and outfall by site personnel and engineer Regular inspection of dam face and toe area by site personnel and engineer 	 Construction QA/QC program Regular inspection by engineer during construction Compliance with Canadian Dam Association Technical Bulletin for Seismic Hazard Considerations for Dam Safety Dam instrumentation 	Seepage monitoring
Site Response	 Initiate "Code 1" as per "Initial Respons Administer first aid as required Evacuate down gradient work areas 	se - Code 1 Procedure"	

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Incident	HLF Embankment Failure			
	Immediate notification of VGC Senior Management so communication protocol can be enacted			
	 Immediate lowering of PLS volumes to safe levels by any or all of the following methods: 			
	 Pumping to Events Pond 			
	 Increasing area under leach (i.e. returning PLS into circulation) 			
	 Excavation of additional down gradient emergency management pond 			
	 Pumping to MWTP for treatment and release 			
	 Pumping to water management ponds (e.g. Lower Dublin South Pond) if appropriate 			
	 Activating spare vertical turbine pump 			
	Buttress embankment with structural fill such as waste rock			
	 Inspect and clear the HLF spillway as necessary 			
	Restore freeboard by placing sandbags if necessary			
	Contain any spill of PLS to the greatest extent possible			
Emergency Level	Tier 3			
	Major damage to multiple pad components			
Potential Effects	 Damage to liner system and loss of product - solution leakage 			
	Damage to collection piping system			
	Uncontrolled release of ore and solution			
	Incident/accident investigation			
	Inspection by geotechnical engineer			
Follow Up	Cease pad loading and new solution application until repair and geotechnical inspection complete			
	Environmental remediation if PLS is released			

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.2 IN HEAP POND SOLUTION ESCAPE

Incident	In Heap Pond Solution Escape			
Potential Causes	Poor quality control during foundation preparation and embankment fill placement	Damage to liner system after construction during ore placement	Failure of electrical or pump system leading to solution buildup in excess of storage capacity	Extraordinary combination of upset events occurring simultaneously resulting in loss of storage in In-Heap Pond
Preventative Measures	 Implement high level of construction quality control and assurance with regular inspections by the engineer 	 Follow procedures identified in OMS Manual including: stacking plan and ore placement procedures dam safety inspections and reviews by engineer monitoring of solution levels 	 Maintain heap water balance operational criteria and follow procedures identified in the HLF Contingency Water Management Plan for solution management Site electrical system includes switch gear to allow power to be sourced from YEC grid or on site back up diesel generation Regular inspection of back up electrical and pumping equipment to ensure operability in case of emergency Ensure availability of backup PLS pump 	 Implement high level of construction quality control and assurance with regular inspections by the engineer Follow procedures identified in OMS Manual including: stacking plan and ore placement procedures dam safety inspections and reviews by engineer monitoring of solution levels Regular inspections
Detection Method	 Construction quality control and assurance program Regular inspection by engineer during construction and operation 	 Regular inspection by engineer during construction and operation In-Heap Pond Leak Detection and Recovery System (LDRS) 	 In-Heap Pond and flow instrumentation: Level meter in pond Flow meters within solution recovery system Remote system performance monitoring software 	 Construction QA/QC program Regular inspection by engineer during construction and operation
Site Response	 Initiate "Code 1" as per "Init 	ial Response - Code 1 Procedure"		

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Incident	In Heap Pond Solution Escape
	Administer first aid as required
	Immediate notification of VGC Senior Management so communication protocol can be enacted
	 Immediate lowering of PLS volumes in Events Pond by pumping of PLS to MWTP for treatment and release
	Excavation of additional down gradient emergency management pond
	Restore freeboard by placing sandbags if necessary
	Inspect and repair any damaged liner and solution collection components
	Contain any spill of PLS to the greatest extent possible
Emergency Level	Tier 3
Potential Effects	Uncontrolled release of solution to environment
	Incident/accident investigation
	Inspection by engineer of impacted components
Follow Up	Cease pad loading and new solution application until repair and inspection complete
	 Increased monitoring frequency until effectiveness of response assured
	Environmental remediation if PLS is released

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.3 EVENTS POND FAILURE

Incident	Events Pond Failure			
Potential Causes	Poor quality control during foundation preparation and embankment fill placement	Damage to liner system after construction during operations (ice damage, wildlife damage, equipment damage, etc.)	Failure of electrical or pump system leading to solution buildup in excess of storage capacity	Extraordinary combination of upset events occurring simultaneously resulting in loss of storage capacity in Events Pond
Preventative Measures	Implement high level of construction quality control and assurance with regular inspections by the engineer	 Follow procedures identified in OMS Manual including: dam safety inspections and reviews by engineer monitoring of water levels Regular inspections Wildlife deterrents 	 Maintain heap water balance operational criteria and follow procedures identified in the HLF Contingency Water Management Plan for solution management Regular inspection of back up electrical and pumping equipment to ensure operability in case of emergency Site electrical system includes switch gear to allow power to be sourced from YEC grid or on site back up diesel generation Ensure availability of other pumps that can be deployed to the Events Pond as necessary. 	 Implement high level of QA/QC with regular inspections by the engineer Follow procedures identified in OMS Manual including: dam safety inspections and reviews by engineer monitoring of water levels Maintain heap water balance operational criteria and follow procedures identified in the HLF Contingency Water Management Plan for solution management Regular inspections
Detection Method	 Construction QA/Qc program 	 Regular inspection by engineer during construction and operation Events Pond Leak Detection and Recovery System (LDRS) Visual inspections 	 Water levels in In-Heap Pond and Events Pond Operational status of major pump systems Remote system performance monitoring software 	 Construction QA/QC program Regular inspection by engineer during construction and operation Events Pond Leak Detection and Recovery System (LDRS)

Eagle Gold Mine

Heap Leach Facility Emergency Response Plan

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Incident	Events Pond Failure	
Site Response	 Initiate "Code 1" as per "Initial Response - Code 1 Procedure" Administer first aid as required Immediate notification of VGC Senior Management so communication protocol can be enacted Immediate lowering of solution volumes in Events Pond by any or all of the following methods: Increasing area under leach (i.e., returning PLS into circulation) Pump fluid to MWTP for treatment and release Excavation of additional down gradient emergency management pond Restore freeboard by placing sandbags if necessary Buttress embankment with structural fill such as waste rock Inspect and repair any damaged liner and solution collection components Remove or repair liner system in Events Pond 	 Visual inspections Water levels in In-Heap Pond and Events Pond Snowpack levels on heap
Emergency Level	Contain any spill of PLS to the greatest extent possible Tier 3	
Potential Effects	 Damage to liner system and loss of product - solution leakage Uncontrolled release of solution to environment 	
Follow Up	 Incident/accident investigation Inspection by geotechnical engineer Environmental remediation if PLS is released 	

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.4 LINER SYSTEM FAILURE

Incident	Liner System Failure			
Potential Causes	Poor fabrication quality	Damage to system components during construction	Damage to system components after construction during ore placement	Differential settlement caused by improper foundation preparation
Preventative Measures	 Follow technical specifications including compliance testing of geosynthetics during procurement 	 Follow technical specifications including construction of a test fill program to establish proper construction procedures to limit damage Implement high level of QA/QC with regular inspections by the engineer 	 Follow procedures identified in OMS Manual including stacking plan and ore placement procedures 	 Implement high level of construction QA/QC with regular inspections by the engineer
Detection Method	 Quality control during manufacturing Compliance testing during procurement 	 Construction QA/QC program Visual inspection In-Heap Pond LDRS system Monitoring vault flows (quantity and quality) Regular inspection by engineer during construction 	 In-Heap Pond LDRS system Monitoring vault flows (quantity and quality) Visual inspections of ore stack 	 Construction QA/QC program Visual inspection In-Heap Pond LDRS system Monitoring vault flows (quantity and quality)
Site Response	 Contain any spill of PLS to th Increase monitoring frequentidentified, temporarily cease affected area for failure in HI 	in affected area of liner failure in HL ne greatest extent possible cy of underdrain vault for possible P solution application in affected area	LS solution leakage through second , drill and case borehole and pump b	

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Incident	Liner System Failure
Incluent	
	Restrict leaching operations in affected area of liner failure in HLF
	 Increase monitoring frequency of underdrain vault for possible PLS solution leakage through secondary liner and GCL. If PLS solution identified, temporarily cease solution application in affected area, drill and case borehole and pump bentonite or similar material to affected area for failure in HLF
	Install interlift liner where practical
	Contain any spill of PLS to the greatest extent possible
	Leakage rate above alert level 2 based on In-Heap Pond elevation
	Isolate leak if possible
	Restrict leaching operations in affected area of liner failure in HLF
	 Increase monitoring frequency of underdrain vault for possible PLS solution leakage through secondary liner and GCL. If PLS solution identified, temporarily cease solution application in affected area, drill and case borehole and pump bentonite or similar material to affected area for failure in HLF
	Install interlift liner where practical
	Unload ore and repair any damaged liner for failure in HLF
	Contain any spill of PLS to the greatest extent possible
	Event Pond liner leakage <60,000L
	Isolate leak if possible
	Electrical leak detection and repair of damaged location
	Event Pond liner leakage >60,000L
	Isolate leak if possible
	Electrical leak detection and repair of damaged location
	Remove and replace liner system in Events Pond
	Damage above IHP area
	 Restrict leaching operations in affected area of liner failure in HLF
	 Increase monitoring frequency of underdrain vault for possible PLS solution leakage through primary liner and GCL. If PLS solution identified, temporarily cease solution application in affected area, drill and case borehole and pump bentonite or similar material to affected area.
	Unload ore and repair any damaged liner for failure in HLF
	Install interlift liner where practical
	Contain any spill of PLS to the greatest extent possible

Eagle Gold Mine

Heap Leach Facility Emergency Response Plan

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Incident	Liner System Failure
	Pond alert levels are specific to the pond water elevation (see Tables 6-1 and 6-2):
	In-Heap Pond alert level 1 - Tier 1
	In-Heap Pond alert level 2 - Tier 2
Emergency	Events Pond alert level 1 - Tier 1
Level	Events Pond alert level 2 - Tier 2
	Liner damage above IHP area
	No detection of CN in underdrain system and area not leached - Tier 1
	Detection of CN in underdrain system - Tier 2
Potential	Loss of product - solution leakage
Effects	Uncontrolled release of solution to environment
	Incident/accident investigation
Follow Up	Increased monitoring frequency until effectiveness of response assured
	Environmental remediation if PLS is released

Table 6-1:In-Heap Pond Alert Levels

In-Heap Pond Elevation (masl)	Alert Level 1 (L/day)	Alert Level 2 (L/day)
913	160	3,300
914	810	16,000
915	1,300	26,000
916	1,900	39,000
917	2,600	53,000
918	3,500	69,000
919	4,400	89,000
920	5,600	110,000
921	6,800	140,000
922	8,200	160,000

Eagle Gold Mine Heap Leach Facility Emergency Response Plan

In-Heap Pond Elevation (masl)	Alert Level 1 (L/day)	Alert Level 2 (L/day)
923	9,700	190,000
924	11,000	230,000
925	13,000	270,000
926	16,000	310,000
927	18,000	370,000
928	21,000	420,000
929	24,000	490,000
930	28,000	550,000
931	32,000	640,000
932	36,000	720,000
933	41,000	820,000
934	47,000	940,000
935	53,000	1,100,000
936	61,000	1,200,000
937	69,000	1,400,000
938	77,000	1,500,000
939 (embankment crest)	83,000	1,700,000

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Table 6-2: Events Pond Primary Liner Leakage Results and Alert Levels

Event Elevation (masl)	Alert Level 1 (L/day)	Alert Level 2 (L/day)
883	4,700	150,000
884	7,800	250,000
885	11,000	350,000

Eagle Gold Mine

Heap Leach Facility Emergency Response Plan

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Event Elevation (masl)	Alert Level 1 (L/day)	Alert Level 2 (L/day)
886	14,000	460,000
887	18,000	580,000
888	22,000	700,000
889	26,000	830,000
890	31,000	970,000
891	35,000	1,100,000
892	40,000	1,300,000
893	45,000	1,400,000
894	51,000	1,600,000
895 (spillway invert 894.5)	57,000	1,800,000
895.5 (crest)	60,000	1,900,000

6.5 SOLUTION COLLECTION SYSTEM FAILURE

Incident	Solution Collection System Failure		
Potential Causes	Poor quality control during installation	Damage to system during ODF placement	Damage to system during ore placement
Preventative Measures	 Follow technical specifications including compliance testing of geosynthetics during procurement Follow technical specifications including construction of a test fill program to establish proper construction procedures to limit damage 	 Follow technical specifications including construction of a test fill program to establish proper construction procedures to limit damage Follow procedures identified in OMS Manual including stacking plan and ore placement procedures 	 Follow procedures identified in OMS Manual including stacking plan and ore placement procedures
Detection Methods	Construction QA/QC program	 In-Heap Pond LDRS system Monitoring vault flows (quantity and quality) Visual inspection HLF pad piezometer installed in overliner 	 In-Heap Pond LDRS system Monitoring vault flows (quantity and quality) Visual inspection HLF pad piezometer installed in overliner
Site Response	 Unload ore and repair or replace where practical Install interlift liner and collection piping system where practical 		
Emergency Level	Tier 2		
Potential Effects	 Elevated hydraulic head in ore pile Loss of ability to control water balance 		
Follow Up	 Incident/accident investigation Increased monitoring frequency until effectiveness of response assured 		

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.6 ORE HEAP SLOPE FAILURE

Incident	Ore Heap Slope Failure		
Potential Causes	Improper ore placement methods causing ore pile slope failure	Elevated phreatic level or erosion causing ore pile slope failure	
Preventative Measures	Follow procedures identified in OMS Manual including stacking plan and ore placement procedures	 Maintain operational controls for solution management Follow procedures identified in OMS Manual including: Visual inspections of ore pile for erosion Stacking plan and ore placement procedures Monitoring of ore pile phreatic levels 	
Detection Method	Visual inspection	 In-Heap Pond LDRS Monitoring vault flows (quantity and quality) Visual inspection HLF pad piezometer installed in overliner 	
Site Response	 Initiate "Code 1" as per "Initial Response - Code 1 Procedure" Administer first aid as required Immediate notification of VGC Senior Management so communication protocol can be enacted Immediate lowering of PLS volumes to HLF Operating Volume by any or all of the following methods: Pumping to Events Pond Increasing area under leach (i.e. returning PLS into circulation) 		
Emergency Level	Deep Slope Failure - Tier 3 Shallow Slope Failure - Tier 2		
Potential Effects	 Major damage to multiple pad components Damage to liner system and loss of product - solution leakage 		

Eagle Gold Mine

Heap Leach Facility Emergency Response Plan

Section 6 Emergency Scenario Causes, Preventative Measures and Response

Incident	Ore Heap Slope Failure		
	Damage to collection piping system		
	Uncontrolled release of ore and solution		
Follow Up	Incident/accident investigation		
	Inspection by geotechnical engineer		
	Environmental remediation if PLS is released		
	Cease pad loading in affected area until repair complete		

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.7 CLOSURE DRAIN SYSTEM FAILURE

Incident	Closure Drain System Failure		
Potential Causes	Clogging of sump materials	Damage during or after construction	
Preventative Measures	 Develop contingency plan for alternative method of draining heap, such as drilling through ore pile into underdrains 	 Develop contingency plan for alternative method of draining heap, such as drilling through ore pile into underdrains Implement high level of construction quality control and assurance with regular inspections by the engineer 	
Detection Method	Flows at monitoring vaultVisual inspection	Flows at monitoring vaultVisual inspection	
Site Response	 Drill through ore pile into underdrains Pump PLS to MWTP for treatment Drill and case horizontal wells at base of embankment for passive drainage at closure 		
Emergency Level			
Potential Effects	Failure to drain heap		
Follow Up	 Incident/accident investigation Increased monitoring frequency until effectiveness of response assured 		

Section 6 Emergency Scenario Causes, Preventative Measures and Response

6.8 RELEASE OF HCN GAS OR SOLUTION SPILL WITHIN THE ADR PLANT

Incident	Release of HCN Gas or Solution	Spill within the ADR Plant		
Potential Causes	Accidental release of dry sodium cyanide which is then exposed to acids, acid salts, water, moisture or carbon dioxide	Rupture or failure of tanks, pipelines, fittings or valves containing cyanide solution	Temporary loss of process pH control systems	Power outage or pump failure
Preventative Measures	 Hazard identification and response training for relevant ADR Plant Personnel Installation and regular testing of fixed HCN detectors and portable HCN monitors 	 Preventative maintenance Event driven maintenance Hazard identification and response training for relevant ADR Plant Personnel High level of QA/QC Installation and regular testing of fixed HCN detectors and portable HCN monitors 	 Preventative maintenance Event driven maintenance Hazard identification and response training for relevant ADR Plant Personnel 	 Preventative maintenance Event driven maintenance Hazard identification and response training for relevant ADR Plant Personnel High level of QA/QC
Detection Method	 Event driven inspection Activation of fixed HCN detectors or portable HCN monitors Notification of elevated HCN levels in remote system performance monitoring software 	 Routine facility inspection Event driven inspection Activation of fixed HCN detectors or portable HCN monitors Notification of elevated HCN levels in remote system performance monitoring software 	 Routine facility inspection Event driven inspection Activation of fixed HCN detectors or portable HCN monitors Notification of elevated HCN levels in remote system performance monitoring software 	 Routine facility inspection Event driven inspection Activation of fixed HCN detectors or portable HCN monitors Notification of elevated HCN levels in remote system performance monitoring software
Site Response	 Evacuate area Small spills in reactive con Large spills in reactive cor Administer first aid as requir ERT or other trained and eq 	al Response - Code 1 Procedure" ditions - 60 m in all directions, 200 n ditions - 390 m in all directions, 1.3 ed uipped personnel stop release, cont C Senior Management so communi	km downwind ain spill, and neutralize if possible	

Eagle Gold Mine

Heap Leach Facility Emergency Response Plan

Section 6 Emergency Scenario Causes, Preventative Measures and Response

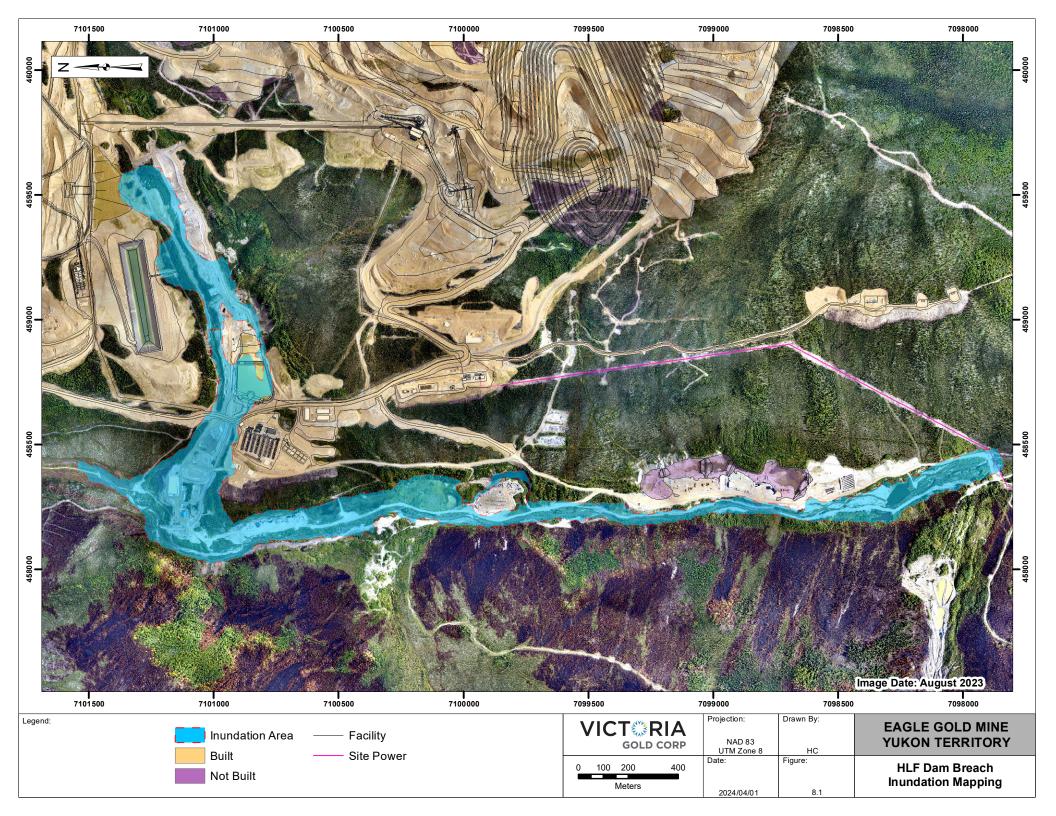
Incident	Release of HCN Gas or Solution Spill within the ADR Plant		
	Construct emergency catchment areas if secondary containment breached		
Emergency Level	Tier 1 - 3		
Potential Effects	• Fatality		
	Incident/accident investigation		
Follow Up	Pump spilled solutions back in the cyanidation process		
	Environmental remediation if PLS is released		

Section 7 Hydrogen Cyanide Information

7 HYDROGEN CYANIDE INFORMATION

Hydrogen cyanide gas is an extremely toxic, flammable compound which can be produced by the decomposition of sodium cyanide when exposed to acids, acid salts, water, moisture and carbon dioxide. HCN gas is colorless with a faint odor of bitter almonds and can be smelled in the concentration range of 1 - 5 parts per million (ppm). Exposure to HCN gas concentrations greater than 50 ppm for 30 minutes can result in cyanide poisoning and any exposed individual must obtain immediate medical treatment.

In a release situation, the immediate release area and a downwind isolation zone must be established. Vapor generation will be very rapid and vapors can travel a considerable distance. All ignition sources must be removed as vapors are easily ignitable at ambient temperature conditions. For information on responding to an emergency involving hydrogen cyanide refer to the Cyanide Emergency Response Procedures (VGC-CMP-SOP-020).


Section 8 Evacuation

8 EVACUATION

The emergency scenarios considered for the heap leach facility will under most circumstances require only temporary evacuation from an affected work area. Only in an extreme circumstance should a full site evacuation be undertaken. A full evacuation can only be authorized by the Mine General Manager or designated Incident Commander.

Based on the anticipated emergency scenarios for the heap leach facility only a major failure of the embankment due to an extraordinary seismic event during periods of extreme cold weather present a situation in which a full evacuation should be considered. Site evacuation may be authorized by the Mine General Manager or designated Incident Commander if catastrophic failure of the HLF embankment has occurred or is assessed to be imminent.

As part of the FMEA and design of the Mine an inundation map was developed which predicts the locations which would be flooded by PLS during a catastrophic failure of the embankment. Figure 8-1 illustrates the anticipated inundation areas for a catastrophic failure of the HLF embankment. It should be noted that camp area is outside of the inundation zone and will serve as muster location in case site evacuation is ordered.

Section 9 References

9 REFERENCES

CDA. 2014. Dam Safety Guidelines to Mining Dams.

Mining Association of Canada (MAC). 2021a. Developing an operation, maintenance and surveillance Manual for tailings and water management facilities.

Mining Association of Canada (MAC). 2021b. A Guide to the Management of Tailings Facilities.