

Phase II Expansion Detailed Design – Revision 1 Dry Stack Tailings Facility Keno Hill District Mill Site, Yukon

PRESENTED TO Hecla Mining Company

MARCH 29, 2024 ISSUED FOR USE FILE: 704-ENG.WARC04307-01

> Tetra Tech Canada Inc. 61 Wasson Place Whitehorse, YT Y1A 0H7 CANADA Tel 867.668.3068 Fax 867.668.4349

This page intentionally left blank.

TABLE OF CONTENTS

1.0	INTR	RODUC	TION	1
	1.1	Detaile	ed Design Revision 1 Update	1
20	BAC	KCPO		2
2.0		Conor		۲
	2.1 2.2	Dhaco	al	Z
	2.2	Phase	Il Summary	Z
	2.0	T Hase		2
3.0	PHA	SE II G	EOTECHNICAL INVESTIGATION	3
	3.1	Genera	al	3
	3.2	Surfac	e Conditions	3
	3.3	Subsu	rface Conditions	3
	3.4	Ground	dwater	4
	3.5	Perma	frost	4
	3.6	Bedroo	ck	4
	3.7	Labora	atory Testing	4
	3.8	Ground	d Temperature Cables	4
				_
4.0	PHA	SEILE	XPANSION DESIGN	5
	4.1	Desigr	References and Background Documents	5
	4.2	Desigr	Classification and Criteria	6
	4.3	Tailing	s Parameters	6
	4.4	Consid	lerations from Phase I Performance	7
	4.5	Found	ation Soil and Permafrost Conditions	7
	4.6	Geome	etry	8
	4.7	Found	ation Components	8
		4.7.1	Drainage Blanket	8
		4.7.2	Geosynthetic Clay Liner	9
		4.7.3	Geonet and Non-Woven Geotextile Drain	9
		4.7.4	Interface Direct Shear Testing	9
		4.7.5	Foundation Materials Quantities	9
	4.8	Seismi	city	9
	4.9	Stabilit	y of DSTF	10
		4.9.1	General	10
		4.9.2	Acceptance Criteria	10
		4.9.3	Soil Strength Parameters	10
		4.9.4	Analysis Results	12
	4.10	Seismi	c Displacement	12
	4.11	Thaw (Consolidation	12
	4.12	Liquefa	action Assessment	13
	4.13	Creep	13	
	4.14	Geothe	ermal Analysis	13
		4.14.1	Phase I Pre-Construction Thermal Analysis	13
		4.14.2	Phase I Post-Construction Thermal Analysis	14

	4.15	 4.14.3 Phase II Thermal Analysis Surface Water Management 4.15.1 General23 4.45.2 Univid During II Dimension Demo 	.20 .23
		4.15.2 Uphill Runoff Diversion Berm	23
		4.15.3 Toe Runon Collection Ditch 4.15.4 Collection Sump and Conveyance	.23
5.0	FOUI	NDATION PREPARATION AND CONSTRUCTION	24
	5.1	DSTF Foundation	24
	5.2	Buttress Construction	24
	5.3	Interior Berm Construction	25
6.0	OPE	RATION, MAINTENANCE, AND SURVEILLANCE	25
	6.1	OMS Manual	25
	6.2	Tailings Placement and Operation	25
	6.3	Instrumentation and Monitoring	26
7.0	DST	CLOSURE PLAN	27
8.0	CLO	SURE	28
REFE		CES	29

LIST OF TABLES IN TEXT

	_
Table 1: Ground Temperature Cables	. 5
Table 2: Tailings Parameters	. 7
Table 3: Summary of Phase II Geometry and Volumes	. 8
Table 4: Estimated Foundation Material Quantities	. 9
Table 5: Slope Stability Factors of Safety	10
Table 6: Seismic Stability Criteria	10
Table 7: Soil Strength Parameters in Stability Analysis	11
Table 8: Phase II Slope Stability Analysis Results	12
Table 9. Predicted Seasonal Air Temperature Changes in Zone W1 (CSA 2010)	14
Table 10. Material Properties at BH40	15
Table 116. Mean Climatic Conditions at Keno Hill	16
Table 127. Overview of SSP Scenarios	17
Table 13. Changes in Temperature using CMIP6 for SS3-7.0 (50th percentile)-Celsius Degrees	18
Table 14. Changes in Temperature using CMIP6 for SSP4-6.0 (50 th percentile)-Celsius Degrees	18
Table 15. Depth of Permafrost Thaw at BH40 from Original Ground Surface Elevation	19
Table 16. Depth of Permafrost Thaw at BH22-40B from Original Ground Surface Elevation	20
Table 17. Material Properties at BH22-08	21
Table 18. Material Properties at BH22-10	21
Table 19. Depth of Permafrost Thaw at BH22-08 from Original Ground Surface Elevation	22
Table 20. Depth of Permafrost Thaw at BH22-10 from Original Ground Surface Elevation	23
Table 21: Expected Tailings Generation. Provided by Hecla	26

APPENDIX SECTIONS

FIGURES

- Figure 1 Overall DSTF Final Construction Plan
- Figure 2 Phase II Final Construction Plan
- Figure 3 Cross-sections 1 of 3
- Figure 4 Cross-sections 2 of 3
- Figure 5 Cross-sections 3 of 3
- Figure 6 Typical Details
- Figure 7 Instrumentation Plan

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Borehole Logs and Laboratory Testing Results
- Appendix C Ground Temperature Cable Data
- Appendix D Tailings and Interface Direct Shear Laboratory Test Data
- Appendix E Stability Analysis Results
- Appendix F Geothermal Model Figures

1.0 INTRODUCTION

NND EBA Land Protection Corp., operating as NELPCo Limited Partnership (NELPCo) was retained by Hecla Mining Company (Hecla) to complete the design for the Phase II expansion of the Dry Stacked Tailings Facility (DSTF) at the Keno Hill mine site located near Keno City, YT.

NELPCo is a limited partnership corporation owned by the NND Development Corporation (NNDDC) and Tetra Tech Canada Inc. (Tetra Tech). Tetra Tech is NELPCo's exclusive engineering services provider.

The detailed design for the existing DSTF, known as Phase I, was submitted in 2011. Since then, Tetra Tech has completed monitoring and reviews of the facility's construction and performance.

This report presents the background information related to the existing DSTF design, construction, and performance; summarizes the subsurface conditions encountered during geotechnical evaluations; and details the Phase II expansion design.

Additional information related to Tetra Tech's limitations on the use of this report are included in Appendix A.

1.1 Detailed Design Revision 1 Update

This revised and updated design was completed to address feedback provided by Yukon Government, Energy, Mines and Resources (EMR) related to incorporating facility classification and design criteria from their "Guidelines for Mine Waste Facilities" document issued in February 2023 (EMR, 2023).

Key components in this design revision include:

- Classification of Facility as Class II per Table 4-1 of 2023 EMR Guidelines.
- Update of design criteria per Class II facility as in Table 5-2 of 2023 EMR Guidelines, including updated design earthquake event and Factors of Safety (FOS) for stability.
- Completion of interface direct shear testing on foundation components and incorporation of results into design.
- Incorporation of tailings laboratory testing data completed since previous submission.
- Modifications of facility geometry including:
 - Redesign and alignment of toe buttress feature to tie into P1 berm constructed in fall 2023;
 - Addition of interior berm feature for stability;
 - Final tailings design slope now 3.25H:1V; and
 - Minor adjustments to overall facility shape and extents.
- Updated stability analyses and estimation of seismic displacement.
- Per Table 5-2 of the Guidelines, surface water conveyance systems are to be designed for a 1:200-year event during operations and 1:500 year during). The system will be constructed to the 1:200-year event for operations, and as mine and area plans are confirmed prior to closure, the capacity of the system will be reviewed and if necessary improved to address closure requirements (pers. Communication, H. McIntyre, November 9, 2023).

2.0 BACKGROUND

2.1 General

The Keno Hill Silver District Operation (Keno Hill) consists of a silver-lead-zinc mine operated by Alexco Keno Hill Mining Corporation (AKHM), which was acquired by Hecla Mining Company (Hecla) in 2022. The mill site is located approximately 1 km west of Keno City, Yukon.

The site is operated under Quartz Mining License No. QML-0009.

2.2 Phase I Summary

The existing Phase I of the DSTF was designed in 2011 by EBA, a Tetra Tech Company (EBA, A Tetra Tech Company 2011). This design summarized previously completed investigation, evaluation, and design work.

Phase I design drawings were updated in June 2022 to reflect the as-built conditions in the final design.

Construction and operation of Phase I area have generally progressed per the 2011 detailed design.

Tetra Tech understands that changes in mine planning led to the entire Phase I footprint not being constructed. An area included in the footprint immediately north of the mill is now used as a fuel storage area, turnaround, and laydown area.

Generally, the Phase I facility has performed well. Some areas of localized tension cracks and other near surface instabilities have been observed and are addressed by site staff as they occur with input from Tetra Tech. We have typically attributed these issues to expected permafrost thaw settlement and in some cases inconsistent tailings placement and compaction.

Monitoring instrumentation was installed during the design and construction of Phase 1, consisting of ground temperature cables (GTCs), slope indicators (SIs), and one standpipe piezometer. Data was collected over the years since installations, however to date, most of these instruments have been damaged beyond function or repair. Closure planning will include the design and installation of necessary instrumentation in Phase I.

The performance of Phase I to date has been considered in the design of Phase II.

2.3 Phase II Summary

The Phase II expansion is located immediately south and southwest of the existing Phase I. The area is mostly undeveloped and undisturbed, except for a waste rock storage area along the western edge of the footprint, and existing roadways along the footprint perimeters. Immediately north and northwest of Phase II is the former Keno City waste dump and access road, respectively.

Preliminary geotechnical investigation and design work was previously completed by Tetra Tech (Tetra Tech EBA 2015). The detailed design herein has expanded on the preliminary work completed and incorporates engineering observations and judgement of the performance of Phase 1 to date.

3.0 PHASE II GEOTECHNICAL INVESTIGATION

3.1 General

Tetra Tech completed a geotechnical investigation for the Phase II expansion consisting of a drilling program, laboratory testing on select samples, and installation of ground temperature monitoring instrumentation. Previously completed geotechnical investigative work was reviewed and referenced during the development of the drilling program.

Hecla retained Boart Longyear (Boart) to provide their track-mounted LS 250 MiniSonic drill rig for the geotechnical drilling program. The program was conducted September 25, 2022, to October 4, 2022. Ten boreholes (BH22-01 through BH22-10) were advanced to termination depths that ranged from 15.2 m to 30.5 m.

The boreholes were logged in the field by Jacob Swartz, EIT, a geotechnical engineer from Tetra Tech's Whitehorse office. Each borehole was advanced in 1.5 m increments, and disturbed samples were collected and returned to Tetra Tech's Whitehorse laboratory for geotechnical index testing. Disturbed samples were also collected for field jar tests to estimate ground ice contents.

Upon completion of drilling, boreholes were backfilled using drill cuttings to restore the original ground surface. Borehole locations are showing in the drawing package, and borehole logs and laboratory test results are included in Appendix B.

Select boreholes were chosen for GTC installation based on encountered subsurface conditions, and location within the proposed expansion.

3.2 Surface Conditions

The site of the Phase II expansion generally slopes approximately 5 – 15% to the west or southwest.

The western extents near the mill site have been used as a temporary waste rock storage area. The surface of this storage area is generally flat with a slight slope to the southwest. The waste rock layer tapers out into existing topography to the east and south and is estimated to extend up to 7 m in thickness along the northwestern edge prior to rock sourced for construction in 2023.

The remaining extents of the site are generally bordered by existing gravel roadways.

The interior of the expansion area is vegetated with shrubs and spruce trees. Vegetation is generally thicker and more mature to the east and southeast.

3.3 Subsurface Conditions

Subsurface conditions encountered within the Phase II DSTF footprint were similar to the Phase I conditions, with the exception of generally lower ground ice contents and moisture contents. The soils consisted of a thin organic cover overlying a locally ice-rich silt/sand till with sand and gravel seams deposited throughout. Coarse-grained sand/gravels were encountered underlying the till before the bedrock interface in BH22-01 and BH22-05.

BH22-04 was an outlier as the soil consisted mainly of a sand and gravel matrix for the entire depth. BH22-04 is located on a possible kame that is suspected to be a coarse-grained deposit deposited by glacial outwash. Large

gravel and boulders were encountered in multiple boreholes throughout the drilling and are estimated up to 0.5 m in diameter.

Detailed descriptions of the conditions encountered in each borehole are shown on the borehole logs and laboratory test results, which are attached in Appendix B.

3.4 Groundwater

Groundwater was not encountered during the drilling program.

3.5 Permafrost

Permafrost was encountered in most areas throughout the proposed Phase II DSTF, the exception being within the coarse-grained soil encountered near BH22-04. The ground ice contents estimated in the field ranged from non-visible and non-excess to visible. The ground ice volumes were estimated as a percentage visually and volumetrically through jar testing and ranged from less than 5% up to 45% as a percentage of the total soil volume.

The ice rich permafrost was generally observed in the upper 2.0 m to 4.0 m of original ground. BH22-10 contained the most rice-rich soil with ice contents estimated up to 45% by volume. The ground ice encountered in the upper 4 m was contained randomly oriented and stratified lenses in the soil samples collected. Below this, the ground ice was non-visible and with no excess ice.

A detailed description of permafrost conditions encountered is shown on the borehole logs in Appendix B.

3.6 Bedrock

Bedrock in the Keno City area typically consists of quartzite or schist. Quartzite or suspected quartzite was encountered at depth in BH22-01, 04, 05, 07, and 09. Bedrock is also visible at the surface in a few locations near the southern border of Phase I.

3.7 Laboratory Testing

Laboratory testing included determining natural moisture content on all samples, and particle size distributions (sieve/hydrometer) on selected samples. Laboratory test results are included in Appendix B.

3.8 Ground Temperature Cables

One GTC was installed in BH22-40B to replace a damaged instrument and ensure long-term monitoring of the Phase I DSTF. In Phase II, GTCs were installed in seven of the ten drilled locations. The cables installed consist of Tetra Tech cables that require manual readings and Beaded Stream cables that read, record, and transmit the data via a data logger.

Data collected from these instruments indicate that the permafrost within the DSTF footprint is warm, generally above -0.4°C. Table 1 below shows the instrumentation details installed at each borehole. The borehole logs in Appendix B show a visual breakdown of the bead depth placement.

Borehole Number	BH22-01	BH22-05	BH22-06	BH22-07	BH22-08	BH22-09	BH22-10	BH22- 40B
GTC Cable Type & No.	Tetra Tech #2819	Tetra Tech #2820	Tetra Tech #2821	Tetra Tech #2822	Beaded Stream #4473	Tetra Tech #2823	Beaded Stream #4474	Tetra Tech #2824
No. of Beads	16	16	16	16	36	16	25	16
OG Elevation (m)	917	931.7	933	924.4	926.5	924.1	918.6	N/A
Design Ground Elevation (m)	917	940	935.15	940	940	937.5	921.6	920
Bottom of Borehole Elevation (m)	902.5	904.9	902.5	909.9	903.6	895.8	896.0	906.6

Table 1: Ground Temperature Cables

The GTC cable length was chosen to accommodate the construction and placement of tailings to allow for longterm monitoring during and post-construction. The cables were ordered based on the design ground elevation and need to be adjusted throughout the construction process. It is recommended that Tetra Tech be contacted or onsite to ensure the GTC's are properly adjusted and set up throughout the construction and operation phases of the Phase II DSTF.

Ground temperature data collected to June 2023 is included in Appendix C.

4.0 PHASE II EXPANSION DESIGN

4.1 Design References and Background Documents

The following guidelines, references, and existing designs were reviewed during design:

- Guidelines for Mine Waste Management Facilities (EMR 2023).
- Guidelines for Mine Waste Dump and Stockpile Design by Mark Hawley and John Cunning (Hawley and Cunning 2017).
- Mined Rock and Overburden Piles Investigation and Design Manual British Columbia Mine Waste Rock Pile Research Committee (Piteau 1991).
- Detailed Design Dry-Stacked Tailings Facility, Keno Hill District Mill Site (EBA, A Tetra Tech Company 2011).
- Preliminary Engineering Design and Management Plan, Dry-Stacked Tailings Facility, Bellekeno Mine Mill Site (EBA 2010a).

- Runoff Diversion Structures Specifications, Dry-Stacked Tailings Facility, Keno Hill District Mill, YT (EBA 2010b).
- Various inspection reports, memorandums, and correspondence in relation to Phase I construction, operations, etc.

4.2 Design Classification and Criteria

The 2023 EMR Guidelines require filtered tailings facilities be classified using Table 4-1 and designed using criteria for that classification in Table 5-2.

Using Table 4-1, a classification of Class II for this facility is appropriate (based on presence of permafrost, and use of PAG materials). While the guidance suggests presence of permafrost that is not removed is rationale for a Class III designation, it is Tetra Tech's opinion based on experience monitoring Phase 1 and analyses of Phase 2 foundation soils that a reduction in designation for this criteria to Class II is appropriate.

Design criteria from Table 5-2 was used during the design including:

- Design earthquake event 1:2,475-year event;
- Lower bound shear strength properties including interface friction angles;
- Upper bound phreatic surfaces;
- Limit equilibrium methods of stability calculations;
- Pseudo-static calculations for earthquake design including deformation analyses;
- Lower bound shear strength properties;
- Static Factor of Safey of 1.5; and
- Psuedo-static Factor of Safey of 1.5.

4.3 Tailings Parameters

Assumed parameters related to tailings, tailings production, and placement are shown in Table 2. Tetra Tech completed laboratory testing on tailings produced in early 2011 and also between December 2021 and January 2024. Generally, tailings are composed of SILT, sandy to and SAND, trace clay, to a SAND and SILT, trace clay. There is some variability in composition due to milling processes and host rock composition. The laboratory results are included in Appendix D.

Criteria	Value
Tailings Production Rate	See Section 6.2
Percentage of Tailings Stored in DSTF	
Typical Particle Size Description	SILT, sandy to and SAND, trace clay
Bulk Density	2250 kg/m ³
Moisture Content	10-20%
Maximum Dry Density / Optimum Moisture	1885 – 1960 kg/m³ at 17% - 12%
Permeability, k	9.65E-8 m/s
Effective friction angle, ¢'	30-32°
Effective cohesion, c'	8-30 kPa

Table 2: Tailings Parameters

During production and deposition into Phase II, tailings samples should be collected and provided to Tetra Tech for laboratory analyses to confirm assumptions related to geotechnical properties. This may include grainsize analysis and/or direct shear testing, per OMS requirements.

We understand that Hecla may like to explore options to incorporate a fine-grained sludge product into the pressing procedure to ultimately deposit a mixed final tailings product in the DSTF. Tetra Tech has completed some testing to date on this product, however a mixing ratio is not included in this design. Additional testing is required to be completed and options related to mixing ratios and proper control of mixing to create a uniform product will be reviewed prior to placement of any such material within the DSTF.

4.4 Considerations from Phase I Performance

Generally, the Phase I area has performed to the design expectations. Some movements and distortions were expected. These have manifested as several longitudinal tension cracks perpendicular to the slope, and several small sinkholes. These have been repaired by site staff as required.

Constructed slopes in Phase I are generally 2H:1V to 2.5H:1V, with some localized steeper areas. The observed localized instabilities may be attributed to these steeper slopes, combined with occurrences of inconsistent placement and compaction procedures, as well as possible consolidation due to thaw of the underlying ice-rich permafrost. We understand areas of steepened slopes are to be regraded to design as required for closure.

4.5 Foundation Soil and Permafrost Conditions

Generally, subsurface conditions within the Phase II expansion footprint consist of a thin organic layer, underlain by ice-rich silt or sand till, underlain by bedrock. Sands and gravels were noted to be interbedded in some boreholes.

Up to 7 m of waste rock was located along the western edge of the footprint, near the toe of the proposed Phase II expansion at the time of the drilling program. Since then, construction activities have sourced some of this rock and the thickness of this layer varies.

A bedrock surface was inferred based on the drilling program as well as contact locations previously provided by AKHM.

Permafrost is expected to exists under most of the Phase II footprint. For stability purposes the ice-rich silt till layer was assumed to extend to bedrock, or indefinitely. This is considered conservative, as ground ice contents estimated based on field observations, jar tests, and laboratory moisture contents, were observed to decrease with depth. The long-term thaw of the ice-rich silt layer was also reviewed.

Tetra Tech assumes Hecla will complete the necessary reviews of underground infrastructure / "ground control" in the areas near the DSTF as and when required.

4.6 Geometry

The location and geometry of the Phase II expansion are shown in the drawing package. The final geometry of the Phase II expansion is generally based on the preliminary design concepts. Boundaries have been assumed based on limits provided by Hecla.

Generally, the expansion ties into the southern extents of Phase 1, expanding to the east and west as it advances to the south. Final tailings slopes are 3.25H:1V have been designed.

A toe buttress has been incorporated into the design to assist in achieving minimum factors of safety against failures through the foundation materials. This buttress will also be utilized to collect and convey surface runoff along the western slope and toe. The surface of the buttress is expected to have a gradient of approximately 2%, sloping from the north to the south. A cut/fill operation is anticipated using the local waste rock that is on site. The height of the required fill varies up to approximately 5.5 m at the northern end. The north end of the buttress has been designed to tie into the P1 Berm constructed in Fall of 2023.

To meet stability requirements, an interior berm of waste rock was incorporated into the design, approximately 20 m upgradient or east of the toe buttress. This berm is typically 3 m high at its centerline, its crest is 2.5 m wide, and it has 1.5H:1V slopes.

A summary of geometric details is shown below in Table 3.

Table 3: Summary of Phase II Geometry and Volumes

Criteria	Value
Estimated Footprint	30,000 m ²
Final Tailings Slope	3.25H:1V
Slope Degrees	17.1°
Slope Percent	30.7%
Final Crest Elevation	940 m
Estimated Tailings Tonnage	543,000 tonnes (assuming 2.29 T/m ³)
Estimated Volume of Tailings	237,000 m ³
Estimated Toe Buttress Volume	6,700 m ³
Estimated Interior Berm Volume	3,000 m ³

4.7 Foundation Components

The foundation design for the expansion is consistent with that of Phase 1. Components of the foundation are discussed below, in order of construction.

4.7.1 Drainage Blanket

A 0.6 m thick layer of free-draining granular material will be placed directly on the existing, undisturbed organic surface. This drainage blanket layer will allow for drainage of water generated from near-surface permafrost thaw out of the footprint, if required. It also allows for site preparation and a suitable bearing surface for the other seepage collection system components.

4.7.2 Geosynthetic Clay Liner

A geosynthetic clay liner (GCL) is to be installed above the drainage blanket to intercept any seepage from the DSTF and prevent tailings seepage from infiltrating the drainage layer and underlying foundation soils.

The GCL consists of a layer of bentonite clay between layers of woven geotextile and nonwoven geotextile. The nonwoven geotextile should be oriented upwards.

4.7.3 Geonet and Non-Woven Geotextile Drain

A geonet topped with non-woven geotextile is placed above the GCL and directly underneath the compacted tailings. This drain will aid in alleviating porewater pressure build-up.

This foundation system was designed for Phase 1 under the assumption that porewater from the DSTF would drain after placement. Performance and observations of Phase 1 including a standpipe piezometer installed on the lower bench of Phase 1 have not indicated the presence of seepage water within the geocomposite drain. For this reason, preliminary designs for Phase II excluded the GCL and drain. However, these components were re-instated into a revised preliminary design (Tetra Tech 2015) in response to comments from the Yukon Water Board.

4.7.4 Interface Direct Shear Testing

Interface direct shear testing was completed on the following interfaces:

- Tailings and Geotextile;
- Geotextile and Geonet;
- Geonet and GCL; and
- GCL and Drainage Blanket material.

For stability modelling purposes, results from these tests indicated a maximum equivalent angle of friction of 20° (i.e., this was the lowest of the interface test results, and therefore carried through analyses). Results of direct shear testing are included in Appendix D.

4.7.5 Foundation Materials Quantities

Estimates for total quantities of each foundation component are provided below in Table 4.

Table 4: Estimated Foundation Material Quantities

Component	Estimated Quantity	Comments
Drainage Blanket	18,000 m ³	Total volume in place
GCL	35,000 m ²	Assuming 4.5 m wide rolls. 0.6 m overlap
Geocomposite Drain	35,000 m ²	Assuming 4.5 m wide rolls. 0.6 m overlap

4.8 Seismicity

The design seismic event selected was a 1 in 2,475-year return period as required by a Class II facility in Table 5-2 of EMR's 2023 Guidelines. A seismic site designation of Class D was selected.

4.9 Stability of DSTF

4.9.1 General

The stability of the Phase II expansion was evaluated using Geostudio 2021 Slope/W limit equilibrium slope stability software, commercially available from Geo-Slope International Ltd.

Sections for analyses were selected based on:

- Location relative to existing infrastructure;
- Final height of placement; and
- Existing topography grades.

All stability models assumed a subgrade slope (i.e., slope of drainage blanket material on which the liner is installed) of 4H:1V, or 14°. This was selected to account for any as-built or survey discrepancies with vegetation and increased conservatism in the stability models. The expected maximum subgrade or installed drainage blanket and liner slope along the footprint is flatter at approximately 5.5H:1V or 10°.

4.9.2 Acceptance Criteria

Acceptance criteria for stability analyses was selected from Table 5-2 of the EMR Guidelines based on a Class II facility and is shown below in Table 5.

Table 5: Slope Stability Factors of Safety

Case	Factor of Safety
Static Operations	1.5
Static Closure	1.5
Seismic (Psuedo-static)	1.0

Seismic Stability Analysis

As noted above in Section 4.7, the design seismic event selected was a 1 in 2,475-year return period. Pseudostatic analysis was used to evaluate the potential effect of seismic loading on the DSTF. This method simulates seismic loading by applying constant horizontal and/or vertical forces. A summary of seismic parameters used during the design is summarized below in Table 6.

Table 6: Seismic Stability Criteria

	Selected Value	Source / Comment
Design Event	1:2475 year	2023 EMR Guidelines
Horizontal Seismic Coefficient (k _h) of	¹ / ₂ x PGA (0.139), up to 1.0 x PGA (0.278) for Site Class D	Hynes-Griffin and Franklin,1984

4.9.3 Soil Strength Parameters

During the stability analyses, seven material types were modelled. These are shown in Table 7 and described in further detail in the sections below.

Matarial	Linit Maight (kN/m3)	Frictional Strength			
Material		Friction (Φ)	Cohesion (kPa)		
Bedrock	Bedrock was considered impenetrable in this analysis.				
Frozen Ice-Rich Silt Till	11.8	30°	0		
Thawed Silt Till	19.1	30°	0		
Tailings	22.5	30°	8		
Cover and Drainage Blanket Gravel	24	35°	0		
Geocomposite Liner and Drain	20	16°	0		
Waste Rock	24	40°	0		

Table 7: Soil Strength Parameters in Stability Analysis

4.9.3.1 Bedrock

Tetra Tech understands bedrock encountered in the area is typically competent quartzite. The strength of this material is assumed to be much greater than that of the foundation soils and overburden material. The bedrock has been assumed to be impenetrable for modelling purposes.

4.9.3.2 Frozen Ice-Rich Silt Till

The existing DSTF design assumed that the ice-rich silt till layer extended down to bedrock.

In Phase I, the ice-rich till was evaluated for short term conditions (i.e., construction, operations, psuedostatic case) assuming it behaved as a frictional material, and for long term conditions (i.e., closure) assuming only cohesive properties of frozen soil and negating any frictional strength.

For Phase II analyses, based on Tetra Tech's understanding through instrumentation monitoring completed for Phase I to date, and the updated thermal modelling discussed in Section 4.12, the frozen foundation soils are likely to thaw in the long term. Therefore, we have chosen to assume only a frictional behavior for the long-term case.

4.9.3.3 Thawed Silt Till

Under the long-term scenario, Tetra Tech has assumed the ice-rich till has thawed. Tetra Tech considers the assumed strengths which were determined by direct shear testing during Phase I design appropriate for application here.

4.9.3.4 Tailings

Tetra Tech has completed several iterations of direct shear testing on tailings produced. The lower bound limits of angle of friction and cohesion were used stability purposes. Bulk density has been estimated by assuming 15% moisture content applied to the laboratory determined maximum dry density.

4.9.3.5 Surface Cover and Drainage Blanket Gravels

The friction angle of the gravel was conservatively assumed as 35° based on Tetra Tech's experience with gravels in the Keno City area. This was reduced to 30° for gravel placed in a loose state. The bulk density was based on a maximum dry density of 2385 kg/m3. It is assumed that the gravel would be placed at 95% standard proctor maximum dry density and 8% moisture for the drain area and 90% density and 4% moisture for the cover material.

4.9.3.6 Foundation Materials

As noted in Section 4.7.5, interface direct shear testing was completed on foundation materials. The lower bound equivalent angle of friction from these tests was utilized during slope stability analyses – further reduced by 20% per recommendations by Hynes-Griffin and Franklin,1984.

4.9.4 Analysis Results

A summary of the determined FoS for each of the evaluated scenarios is provided below in Table 8. Slope stability figures are included in Appendix E.

Evaluated Scenario	Minimum		C	alculated Fo	Iculated FoS		
Evaluated Scenario	FoS	Section A	Section B	Section C	Section D	Section E	
Fully Frozen - Static Shallow (short-term)	1.5	2.2	2.2	2.2	1.9	1.7	
Fully Frozen - Static Deep (short-term)	1.5	1.9	2.0	1.8	1.9	2.0	
Fully Frozen - Pseudostatic Shallow (short-term)	1.0	1.5	1.4	1.5	1.4	1.4	
Fully Frozen - Pseudostatic Deep (short- term)	1.0	1.3	1.4	1.3	1.3	1.4	
Fully Thawed - Static Shallow (long-term)	1.5	2.1	2.1	2.2	2.0	1.7	
Fully Thawed - Static Deep (long-term)	1.5	2.1	2.1	2.0	2.0	2.2	
Fully Thawed - Pseudostatic Shallow (long-term)	1.0	1.4	1.4	1.5	1.4	1.0	
Fully Thawed - Pseudostatic Deep (long- term)	1.0	1.4	1.4	1.3	1.4	1.3	
Foundation Analysis - Static Deep (long- term)	1.5	2.1	1.6	1.5	1.5	1.6	
Foundation Analysis - Pseudostatic Deep (long-term)	1.0	1.1	1.0	1.0	1.0	1.0	

Table 8: Phase II Slope Stability Analysis Results

All calculated FoS met the minimums required.

4.10 Seismic Displacement

Seismic displacement was estimated using methods by Bray and Macedo for shallow crustal earthquakes. Assuming a relatively large 7.5 magnitude earthquake, displacements along different sections were estimated at approximately 35 cm with a probability of exceedance of 5%, and 54 cm with a probability of exceedance of 2%.

4.11 Thaw Consolidation

During the preliminary design of Phase I, thaw consolidation testing on select samples and one-dimensional thaw analysis were completed (EBA 2010a). This analysis attempted to provide upper bound estimates of the possible accumulative distortion in perpetuity due to the thaw of the ice-rich and ice-poor silt till. This analysis was considered conservative, and only applicable to the selected and analyzed borehole. The detailed design (EBA 2011) took a more generalized approach, indicating a potential and anticipation for localized differential movement and settlement to occur under the DSTF.

The Phase II expansion has been designed with a similar consideration, noting that in general the ground ice and moisture contents encountered within the Phase II footprint were lower than those encountered under Phase I, and therefore less overall thaw consolidation movement is expected.

4.12 Liquefaction Assessment

A liquefaction assessment was completed during the Phase I detailed design. This assessment concluded:

- The tailings are not considered to be liquifiable as they are expected to be drained and unsaturated; and
- A FoS greater than or equal to 1.0 was determined against cyclic liquefaction in the foundation soils for an earthquake magnitude less than 8.0, which is considered to be an extreme event. It was estimated that the consequences of any liquefaction would amount to limited movement and cracking of the tailings, as opposed to catastrophic failure.

The foundation soils within Phase II are similar to those encountered in Phase I, with typically lower ground ice and moisture contents. The liquefaction assessment completed for Phase I was reviewed and considered appropriate and applicable to the Phase II expansion.

4.13 Creep

Ice and ice-rich soils can creep over time. The magnitude of movement due to creep is a function of stresses developed in the ice or soils.

Previous monitoring of slope inclinometer (SI) instrumentation installed within and around the Phase 1 footprint provided no indication of significant movement in the existing DSTF in the early years of operations. Unfortunately, there are no longer any functioning SI's. No massive ice was encountered during the geotechnical investigation of Phase II. Ground ice contents, estimated visually and based on moisture contents on collected samples, are lower compared to those encountered in Phase 1.

Based on these considerations, coupled with the understanding that in the long-term, complete thaw of the permafrost and ground ice is anticipated, negligible creep deformation is expected within or under Phase II. Continued visual and survey monitoring of the DSTF throughout its life is recommended.

4.14 Geothermal Analysis

4.14.1 Phase I Pre-Construction Thermal Analysis

Thermal analysis was previously completed in 2011 (Tetra Tech EBA 2011) to investigate the long-term impact of dry stacked tailings placement on the thermal regime of the underlying ground in the DTSF area under climatic conditions including a climate change scenario. The thermal analysis was completed using GEOTHERM, Tetra Tech's proprietary two-dimensional finite element software. Climatic conditions (e.g., monthly air temperatures, wind speed, solar radiation, snow cover) were obtained from the Mayo weather station.

Historical air temperature data at Mayo for the period of 1970 to 2010 indicated that the long-term climatic trend at Mayo is warming. The climate change thermal analysis considered a moderate greenhouse gas emission scenario with 1971-2000 baseline as summarized in Table 9 following CSA (2010) for Zone W1. As will be discussed in Section 4.14.2.5.2, the newer climate models show warmer temperature changes than what was originally used in this previous assessment.

Time of Year	2011 to 2040 (Celsius Degrees)	2041 to 2070 (Celsius Degrees)	2071 to 2100 (Celsius Degrees)
December to February	0.9	2.3	4.3
March to May	0.9	2.0	2.8
June to August	0.6	1.6	2.5
September to November	0.6	2.2	2.9

Table 9. Predicted Seasonal Air Temperature Changes in Zone W1 (CSA 2010)

Several assumptions were made regarding the placement of the dry stacked tailings as summarized below. No records are available after the issuance of this thermal analysis memo to confirm these assumptions during construction of the facility.

- Removing trees in the tailings placement area;
- Placing 0.5 m sand and gravel fill as drainage blanket over the area in February 2011;
- Placing tailings overlying the sand and gravel blanket beginning in June 2011;
- The total height of placed tailings was assumed to be 10 m by 2013;
- The initial temperature for sand and gravel drainage blanket was assumed to be -5°C; and
- The initial temperature for dry stacked tailings was assumed to be +20 °C.

The predicted rate of thaw into the permafrost is negligible during first several years after completion of the tailings placement and then starts to increase with time after that period. Of the several cases simulated in the thermal model to investigate the influence of climate change, it was predicted that the permafrost will disappear between 22 and 29 years after construction, while the ice layer will disappear between 46 and 53 years.

4.14.2 Phase I Post-Construction Thermal Analysis

4.14.2.1 General

The commercially-available finite element software Temp/W in GeoStudio 2021 R2 (Seequent 2022) was used to model and analyze the thermal performance of the dry-stack tailings facility post-construction. Temp/W can analyze simple conduction problems to complex surface energy simulations using a rigorous phase change formulation, providing an accurate solution to problems involving freeze-thaw of saturated-unsaturated porous media. Temp/W has been used in the industry to simulate cyclic changes in ground temperatures for the purpose of exploring frost protection layers below trafficable surfaces, insulation configurations for foundations, or studying the preservation of frost in permafrost zones, mine wastes, and soil covers.

Two borehole locations have available thermistor data. BH40 was installed in February 2012 and has snapshot temperature with depth data available between installation and May 2013. BH22-40B was installed in February 2023 and has snapshot temperature with depth data available for April through June 2023.

The conceptual model for BH40 from 2012 consists of 5.25 m of tailings, 0.5 m of drainage blanket, 0.5 m of sand and gravel fill, 1.0 m of peat layer overlying 9.6 m of ice-rich silt, 0.9 m of massive ice, 1.8 m of silt and gravel, 2.7 m of massive ice, 3.1 m of gravel, 2.2 m of silt and gravel, and 0.9 m of sand over bedrock.

The conceptual model for BH22-40B from 2023 consists of 7.4 m of tailings, 0.5 m of drainage blanket, 0.5 m of sand and gravel fill, 1.0 m of peat layer overlying 8.35 m of ice-rich silt, 1.8 m of silt and gravel, 2.7 m of massive ice, 3.1 m of gravel, 2.2 m of silt and gravel, and 0.9 m of sand over bedrock. The soil layers below the drainage blanket were assumed to be the same with BH40, with thinner ice-rich silt and no massive ice between ice-rich silt and silt and gravel layers.

These conceptual borehole models are considered conservative as related to permafrost and ground ice conditions, as they are based on the poorest conditions encountered in the area, and not necessarily modelled based on actual conditions as now known.

4.14.2.2 Material Properties

The material properties from the nearby BH35, completed during Phase I design, were used to model the temperature behavior at BH40. The material properties for BH35 were previously reported in Tetra Tech EBA (2011) and are summarized in Table 10. The snow layer during the winter months was assumed to have a constant thermal conductivity of 0.25 W/m² (see Section 4.14.2.3).

Material	Water Bulk Content Density		Thermal Co (W/m	Thermal Conductivity (W/m-°C)		Specific Heat (kJ/kg-°C)	
	(%)	(Mg/m³)	Frozen	Unfrozen	Frozen	Unfrozen	(MJ/m³)
Dry-stack Tailings	17	1.98	3.2	1.9	0.93	1.23	96
Sand and Gravel (Fill)	5	2.1	1.33	1.5	0.8	0.9	33
Peat before thaw consolidation	150	0.75	0.49	0.3	1.92	2.19	150
Peat after thaw consolidation	60	1.6	2.36	1.02	1.24	2.03	200
Silt (Till)	40	1.81	2.36	1.12	1.12	1.72	172
Ice	-	0.91	2.2	10	2.1	4.2	334
Silt and Gravel No. 1	10	2.25	2.21	1.71	0.86	1.05	68
Gravel	10	2.31	2.67	2	0.86	1.05	70
Silt and Gravel No. 2	15.5	2.19	2.59	1.7	0.92	1.2	98
Sand	10	2.25	2.27	1.73	0.86	1.05	68
Bedrock	1	2.63	4	4	0.75	0.77	9

Table 10. Material Properties at BH40

4.14.2.3 Boundary Conditions

Mean monthly air temperatures from January 2010 to April 2023 for Environment Canada's Mayo Station are shown in Figure F-1 (Appendix F). Other climatic data needed for the Surface Energy Balance boundary condition in Temp/W is summarized in Table 11. The Surface Energy Balance boundary condition considers the coupled soilatmosphere process that affects the thermal response of the ground. The monthly air temperatures in Table 11 were used to establish the initial ground conditions prior to tailings placement. The wind speed, snow cover, and solar radiation were assumed to be constant for each year of the analysis. Only the historical monthly air temperatures from the Mayo Station were varied in the analysis period.

The albedo was assumed to be equal to 0.7 when snow is present on the ground, and 0.35 when there is no snow. Albedo is the amount of solar radiation reflected by a surface, where 1.0 being a perfect reflector and 0 absorbing

all incoming solar radiation. A heat flux of 0.089 W/m² was applied at the base of the model to account for the geothermal heat.

Month	Measured Monthly Air Temperature ^(a) (°C)	Measured Monthly Wind Speed ^(b) (km/h)	Estimated Monthly Snow Cover ^(c) (m)	Estimated Daily Solar Radiation ^(d) (W/m ²)
January	-14.7	7.7	0.57	7.9
February	-14.0	5.4	0.57	32.9
March	-14.4	12.4	0.53	93.3
April	-4.9	11.8	0.41	174.2
Мау	3.4	8.8	0	224.2
June	9.6	7.5	0	240.8
July	10.8	8.2	0	208.3
August	8.0	8.7	0	157.5
September	1.9	8.5	0	90.4
October	-5.1	8	0.34	36.7
November	-13.6	8.9	0.48	11.3
December	-10.2	5.5	0.56	3.8
Mean Annual	-3.6	-	-	-

Table 116. Mean Climatic Conditions at Keno Hill

Notes:

(a) Based on measured monthly air temperatures at Mayo for the periods of 1971 to 2010, measured air temperatures at Galena Hill station for the period of 2007 to 2010

- (b) Based on measured data at Galena Hill station for the period of 2007 to 2010
- (c) Based on mean month-end snow data at Mayo (Climate Normals 1971-2000, Environment Canada website) and environmental conditions report (Access Consulting Group, 2009)
- (d) Based on Photovoltaic Potential and Solar Resource Maps of Canada

4.14.2.4 Climate Change Projection

The latest iteration of the global climate models (GCMs) for the Coupled Model Intercomparison Project Phase 6 (CMIP6) was released in 2021. The results of these GCMs were used in the latest Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) (IPCC 2021). A particular feature of the CMIP6 climate scenarios is the addition of the Shared Socio-economic Pathways (SSPs) that aims to include different mitigations and adaptations to ongoing growth in emissions. The SSPs are considered plausible narratives by the IPCC of global societal developments in the future without considering climate change, or mitigation or adaptation responses. SSP-based scenarios combine elements with the previous iteration of scenarios, the Representative Concentration Pathways (RCPs), which describe trajectories of change in atmospheric GHG and aerosol concentrations (and corresponding changes in radiative forcing) over time.

Two climate scenarios from the CMIP6 models were considered as summarized below. Table 12 provides an overview of the corresponding for the two climate scenarios used in the analysis.

- SSP3-7.0, radiative forcing between RCP6.0 (6 W/m²) and RCP8.5 (8.5 W/m²) and represents the medium to high end of the range of future forcing pathways.
- SSP4-6.0, radiative forcing of RCP6.0 (6 W/m²) and fills in the range of medium forcing pathways.

Climate Scenario	Narrative
SSP3-7.0	 A resurgent nationalism, concerns about competitiveness and security, and regional conflicts push countries to increasingly focus on domestic or, at most, regional issues.
	 Policies shift over time to become increasingly oriented toward national and regional security issues.
	 Countries focus on achieving energy and food security goals within their own regions at the expense of broader-based development.
	 Investments in education and technological development decline.
	 Economic development is slow, consumption is material-intensive, and inequalities persist or worsen over time.
	 Population growth is low in industrialized and high in developing countries.
	 A low international priority for addressing environmental concerns leads to strong environmental degradation in some regions.
SSP4-6.0	 Highly unequal investments in human capital, combined with increasing disparities in economic opportunity and political power, lead to increasing inequalities and stratification both across and within countries.
	 Over time, a gap widens between an internationally-connected society that contributes to knowledge- and capital-intensive sectors of the global economy, and a fragmented collection of lower-income, poorly educated societies that work in a labor intensive, low- tech economy.
	 Social cohesion degrades and conflict and unrest become increasingly common.
	 Technology development is high in the high-tech economy and sectors.
	 The globally connected energy sector diversifies, with investments in both carbon- intensive fuels like coal and unconventional oil, but also low-carbon energy sources. Environmental policies focus on local issues around middle and high income areas.

Table 127. Overview of SSP Scenarios

Figure F-2 (Appendix F) from Riahi et al. (2016) shows a comparison of the temperature change at the Earth's surface between CMIP5 and CMIP6 models, and between each RCP and SSP climate scenarios. The CMIP6 models are slightly warmer than those projected from the CMIP5 models. SSP4-6.0 is analogous to the intermediate case in the previous iterations of the climate change models along with RCP4.5 (i.e., in CMIP5) and SSP2-4.5 (i.e., in CMIP6). Hausfather and Peters (2020) have demonstrated that both SSP5-8.5 and SSP3-7.0 are both highly unlikely and unlikely scenarios, respectively. Given the current climate policies, Hausfather and Peters (2020) showed that the likely plausible trajectory follows SSP4-6.0. SSP3-7.0 was still used in the climate change assessment as part of the sensitivity analysis.

The mean annual air temperature for the two climate scenarios is provided in Figure F-3 (Appendix F). The 50th percentile for the region of Yukon averaged over 20 years was selected. Only the mean annual temperatures are shown in Figure F-3, but the analysis considered the temperature change with respect to seasonal variability relative to a reference period of 1995-2014 as summarized in Table 13 and Table 14 for SSP3-7.0 and SSP4-6.0, respectively. The temperature change is added at the beginning of the timestep (e.g., adding 1.90°C for the monthly mean temperatures of December to February for SSP3-7.0) and held constant for the subsequent 20 years. At year

2041, the increment between 2021-2040 and 2041-2060 is added to the temperatures calculated at 2040 (e.g., adding increment of 0.54°C for the monthly mean temperatures of December to February for SSP3-7.0) and held constant again for the subsequent 20 years. This process is repeated for each time of year and every 20 year period until 2100. As noted in the AR6 (IPCC 2021), the radiative forcing for SSP4-6.0 is expected to stabilize at the end of the century, hence the temperatures between 2080 and 2100 are less than that of the SSP3-7.0 values. SSP3-7.0 is projected to continue to increase after 2100.

Given the range of natural climate variability and uncertainties regarding future greenhouse gas emission pathways and climate responses, the literature suggests changes projected by one climate model should not be used in isolation (ECCC n.d.). Therefore, both SSP3-7.0 and SSP4-6.0 climate scenarios considered in the analysis used a multi-model ensemble that includes several GCM models. This data is publicly available in https://climatescenarios.canada.ca/?page=cmip6-scenarios.

Time of Year	2021 to 2040	2041 to 2060	2061 to 2081	2081 to 2100
December to February	1.16	2.69	4.11	5.76
March to May	1.13	1.93	3.35	4.44
June to August	0.95	1.88	2.93	4.22
September to November	1.30	2.39	3.60	4.66
Annual	1.12	2.17	3.52	4.77

Time of Year	2021 to 2040	2041 to 2060	2061 to 2081	2081 to 2100
December to February	0.94	2.97	4.53	5.48
March to May	1.07	2.11	2.94	4.00
June to August	1.25	2.14	2.83	3.52
September to November	1.26	2.63	4.10	4.39
Annual	1.16	2.46	3.67	4.37

Table 14. Changes in Temperature using CMIP6 for SSP4-6.0 (50th percentile)-Celsius Degrees

The climate scenarios have been projected by climate modelers to 2100 but projected air temperature data is not available past 2100. There have been efforts to extend the models beyond 2100 but studies that focus on time horizons beyond 2100 have used reduced complexity because of the additional computational cost and not having available experiments to compare those results (Lyon et al. 2021, IPCC 2021). In this climate change assessment, both climate scenarios terminate at the end of 2100. It was assumed that the wind speed, snow depth, and solar radiation provided above are constant to 2100.

4.14.2.5 Results and Discussion

4.14.2.5.1 Calibration

Figure F-4 to F-7 (Appendix F) show the model results for BH40 between the months of September 2012 and May 2013. The general trend of modelled temperatures follows that of the measured values, which provide confidence in model results. The original permafrost layer prior to placement of the tailings was simulated in the model. The simulated top of permafrost is at El. 911.5 m, with an active layer thickness of 2.8 m with respect to the original ground surface. Both measured and model temperatures indicate that part of the tailings is below 0°C during this monitored period. Placement of the tailings raised the 0°C isotherm within the tailings during the monitoring period. No temperature readings are available after May 2013 at BH40. Extending the model to April 2023 indicates that the permafrost is still at or near its initial elevation prior to placement of tailings.

Figure F-8 (Appendix F) shows the snapshot model result at BH22-40B in April 2023. A frozen layer was identified at El. 911.2 m in the borehole log during the placement of the PVC pipe for the thermistor cable. This frozen layer is not reflected in the thermistor reading below the original ground surface. The model temperatures between El. 910 and 915 m are within a thermal difference of 0.5°C in reference to the measured temperatures. Measured temperatures below El. 910 m are slightly above 0°C, while the model temperatures are slightly below 0°C. The thermal difference between measured and model temperatures below 0°C are within 0.5°C. The model results follow the general trend of measured temperatures and therefore considered acceptable given that the actual placement of the tailings and corresponding temperatures during construction is not available.

The predicted thawing in Tetra Tech EBA (2011) is generally 0.0 m/yr between 2013 and 2015, and on average 0.15 m/yr between 2015 and 2035. The conditions simulated and calibrated in the current model is considered to supersede the previously modelled results in 2011. The model temperatures at the end of April 2023 for both boreholes are used as the initial thermal regime at the start of the climate change analysis.

4.14.2.5.2 Climate Change Projected Temperatures

The results of the climate change analysis for BH40 using SSP3-7.0 and SSP4-6.0 are shown in Figure F-9 and F-10 (Appendix F), respectively. The depth of the 0°C isotherm between 2030 and 2100 for both climate scenarios below the original ground surface are summarized in Table 15. On average, the depth of the 0°C isotherm and the thickness of the active layer with reference to the original ground surface between the two climate scenarios is generally the same. By 2040, the top of permafrost will be 4.3 m below original ground surface, which is equivalent to 1.6 m of degradation. Based on these climate scenarios, the permafrost will degrade by approximately 6.5 m by 2100 (i.e., 9.2 m from original ground surface), with the previous analysis in Tetra Tech EBA (2011) considered a cut-off temperature (e.g., -0.1°C) to delineate the permafrost for conservatism. Considering this cut-off temperature indicate that the permafrost will disappear between 2050 and 2070, consistent with the previous prediction noted in Section 4.14.1.

Timestep	SSP3-7.0 (m)	SSP4-6.0 (m)	Average (m)	Permafrost Thickness (m)	Average Permafrost Temperature (°C)
2030	3.31	3.34	3.3	> 20.0	-0.13
2040	4.28	4.37	4.3	19.7	-0.12
2050	5.29	5.28	5.3	18.0	-0.11
2070	6.80	6.85	6.8	15.8	-0.08
2100	9.21	9.17	9.2	12.9	-0.05

Table 15. Depth of Permafrost Thaw at BH40 from Original Ground Surface Elevation

The results of the climate change analysis for BH22-40B using SSP3-7.0 and SSP4-6.0 are shown in Figure F-11 and F-12 (Appendix F), respectively. The depth of the 0°C isotherm between 2030 and 2100 for both climate scenarios below the original ground surface are summarized in Table . On average, the depth of the 0°C isotherm and the thickness of the active layer with reference to the original ground surface between the two climate scenarios is generally the same. By 2040, the top of permafrost will be 3.3 m below original ground surface, which is equivalent to 0.8 m of degradation. Based on these climate scenarios, the permafrost will degrade by approximately 6.0 m by 2100 (i.e., 8.5 m from original ground surface), with the permafrost thickness reduced to 11.6 m. The average permafrost temperature in 2100 is -0.05°C.

Timestep	SSP3-7.0 (m)	SSP4-6.0 (m)	Average (m)	Permafrost Thickness (m)	Average Permafrost Temperature (°C)
2030	2.29	2.43	2.4	> 20.3	-0.13
2040	3.16	3.31	3.3	20.3	-0.11
2050	4.05	4.16	4.1	17.5	-0.10
2070	5.56	5.64	5.6	15.0	-0.08
2100	8.48	8.49	8.5	11.6	-0.05

Table 16. Depth of Permafrost Thaw at BH22-40B from Original Ground Surface Elevation

Continuous monitoring at BH22-40B will provide additional thermal data to track its thermal performance and the trend of climate change for the dry-stack tailings facility, in conjunction with climatic data for the region using available weather stations and thermistor readings throughout the site.

4.14.3 Phase II Thermal Analysis

4.14.3.1 General

Two thermistor cables were installed in February 2023 at BH22-08 and BH22-10 to monitor the ground temperatures at the two locations where the footprint of the dry-stack facility will be placed. Snapshot temperature readings with depth to date for BH22-08 are shown in Figures F-13 and F-14 (Appendix F), while temperature readings for BH22-10 are shown in Figures F-15 and F-16 (Appendix F, see also Section 4.14.3.5.1).

In the absence of a construction schedule and tailings placement, it was assumed that the tailings material is deposited at increments of 2 m per year until the design surface elevation is achieved. The total tailings placed in BH22-08 is 13 m, and 2.4 m in BH22-10. It was assumed that placement of tailings material will commence in May 2024.

The conceptual model for BH22-08 consists of 13 m of tailings, 0.5 m of drainage blanket, 0.9 m of sand and gravel fill, 0.25 m of peat layer overlying 7.95 m of silt, 0.6 m of sand and gravel, and 3.6 m of silt overlying 17.5 m of sand over bedrock. The conceptual model for BH22-10 consists of 2.4 m of tailings, 0.5 m of drainage blanket, 6.4 m of sand and gravel, 0.2 m of peat layer overlying 1.7 m of till, 0.9 m of massive ice, and 1.4 m of peat overlying 13.5 m of till over bedrock.

4.14.3.2 Material Properties

Material properties used in the thermal analyses for BH22-08 and BH22-10 are provided in Table 17 and Table 18, respectively using the most recent boreholes completed during the Phase II drilling program. The underlying stratigraphy was divided to several units to account for the change in water content with depth. These properties were determined indirectly from well-established correlations with soil index properties, gravimetric water content, grain size distribution, and bulk density (Farouki 1986, Johnston 1981). Uncertainties related to material properties and interpreted stratigraphy were reduced by comparing model results with measured temperature data from the ground temperature cables (see Section 4.14.3.5).

Material	Water Content	Bulk Density	Thermal Co (W/m	onductivity I-°C)	Specifi (kJ/k	c Heat g-°C)	Latent Heat
	(%)	(Mg/m³)	Frozen	Unfrozen	Frozen	Unfrozen	(MJ/m³)
Dry-stack Tailings	17	1.98	3.2	1.9	0.93	1.23	96
Sand and Gravel (Fill)	5	2.1	1.33	1.5	0.8	0.9	33
Bedrock	1	2.63	4	4	0.75	0.77	9
Silt No. 1	21.6	1.86	1.69	1.31	1.08	1.35	79
Silt No. 2	10.9	1.70	0.96	0.94	0.99	1.07	24
Silt No. 3	6.7	1.63	0.68	0.68	0.94	0.95	3
Sand and Gravel	10	1.90	1.44	1.34	0.86	1.05	58
Sand No. 1	22.2	1.99	2.18	1.51	1.04	1.36	102
Sand No. 2	8.3	1.77	0.97	1.12	0.91	1.00	27

Table 17. Material Properties at BH22-08

Table 18. Material Properties at BH22-10

Material	Water Bulk Material Content Density		Thermal Conductivity (W/m-°C)		Specific Heat (kJ/kg-°C)		Latent Heat
	(%)	(Mg/m³)	Frozen	Unfrozen	Frozen	Unfrozen	(MJ/m³)
Dry-stack Tailings	17	1.98	3.2	1.9	0.93	1.23	96
Sand and Gravel (Fill)	5	2.1	1.33	1.5	0.8	0.9	33
Bedrock	1	2.63	4	4	0.75	0.77	9
Till No. 1	19.8	2.56	2.39	1.87	1.02	1.30	106
Till No. 2	12.2	2.18	2.07	1.76	0.95	1.11	57
Till No. 3	26.1	2.45	2.39	1.87	1.07	1.45	147
Till No. 4	12.5	2.18	2.11	1.77	0.95	1.12	59
Sand and Gravel	5.5	2.21	1.57	1.75	0.84	0.91	25

4.14.3.3 Boundary Conditions

The boundary conditions described in Section 4.14.2.3 (i.e., climate data, geothermal heat flux) from Phase 1 are applied in the same manner for the calibration of BH22-08 and BH22-10 between January 2022 and April 2023. The tailings material was assumed to have a placement temperature of 10°C (i.e., activation temperature) at each year of placement.

4.14.3.4 Climate Change Projection

The climate scenarios SSP3-7.0 and SSP4-6.0 described in Section 4.14.2.4 are applied in the same manner for the climate change assessment of BH22-08 and BH22-10.

4.14.3.5 Results and Discussion

4.14.3.5.1 Calibration

The results of model calibration for BH22-08 are shown in Figures F-13 and F-14 (Appendix F) for the months of March and April 2023, respectively. The modelled temperatures for the two months shown generally follow the trend of observed temperatures in the field. The depth of active layer is approximately 4.2 m, with top of permafrost layer

at El. 922.3 m. The depth where temperatures are at or below 0°C extends to El. 907 m, with the permafrost having an approximate thickness of 15 m.

The results of model calibration for BH22-10 are shown in Figures F-15 and F-16 (Appendix F) for the months of March and April 2023, respectively. The modelled temperatures for the two months shown generally follow the trend of observed temperatures in the field but there were differences observed in the active layer, which is primarily attributed to the three-dimensional effect of the surrounding facilities influencing its thermal regime. The depth of active layer is approximately 6 m, with top of permafrost layer at El. 912.7 m. The depth where temperatures are at or below 0°C extends to El. 900.9 m, with the permafrost having an approximate thickness of 12 m.

For both boreholes, additional data throughout the year will support future calibration of the proposed dry stack facility at this location.

4.14.3.5.2 Climate Change Projected Temperatures

The results of the climate change analysis for BH22-08 using SSP3-7.0 and SSP4-6.0 are shown in Figure F-17 and F-18 (Appendix F), respectively. The depth of the 0°C isotherm between 2030 and 2100 for both climate scenarios below the original ground surface are summarized in Table 19. On average, the depth of the 0°C isotherm and the thickness of the active layer with reference to the original ground surface between the two climate scenarios is generally the same. By 2040, the top of permafrost will be 5.5 m below original ground surface, which is equivalent to 1.3 m of degradation. Based on these climate scenarios, the permafrost will degrade by approximately 11.7 m by 2100 (i.e., 15.7 m from original ground surface), with the permafrost thickness reduced to 3.3 m. The average permafrost temperature in 2100 is -0.01°C.

Timestep	SSP3-7.0 (m)	SSP4-6.0 (m)	Average (m)	Permafrost Thickness (m)	Average Permafrost Temperature (°C)
2030	4.72	1.34	3.1	> 14.0	-0.10
2040	6.13	4.78	5.5	14.0	-0.07
2050	7.38	6.33	6.9	12.6	-0.05
2070	13.29	11.28	12.3	6.7	-0.03
2100	15.89	15.45	15.7	3.3	-0.01

Table 19. Depth of Permafrost Thaw at BH22-08 from Original Ground Surface Elevation

The results of the climate change analysis for BH22-08 using SSP3-7.0 and SSP4-6.0 are shown in Figure F-17 and F-18 (Appendix F), respectively. The depth of the 0°C isotherm between 2030 and 2070 for both climate scenarios below the original ground surface are summarized in Table 20. The permafrost is degrading beyond to 2070 until 2075 when the 0°C isotherm reaches the top of bedrock. Once the 0°C isotherm is in contact with the bedrock, significant thermal flow occurs owing to the high thermal conductivity of the bedrock layer. The model results indicate that there will be no permafrost at the vicinity of BH22-10 by 2076. Ground temperatures by 2100 at the top of bedrock are projected to be approximately 3°C. Similar to BH22-08, on average, the depth of the 0°C isotherm and the thickness of the active layer with reference to the original ground surface between the two climate scenarios is generally the same. By 2040, the top of permafrost will be 11.0 m below original ground surface, which is equivalent to 5.0 m of degradation. Based on these climate scenarios, the permafrost will degrade by approximately 9.4 m by 2075 (i.e., 15.4 m from original ground surface), with the permafrost thickness reduced to 2.6 m. The average permafrost temperature in 2075 is -0.02°C.

Timestep	SSP3-7.0 (m)	SSP4-6.0 (m)	Average (m)	Permafrost Thickness (m)	Average Permafrost Temperature (°C)
2030	7.17	7.15	7.2	11.3	-0.06
2040	11.00	10.95	11.0	7.5	-0.05
2050	12.83	12.78	12.8	5.3	-0.03
2070	14.86	14.84	14.9	3.2	-0.02
2075	15.36	15.33	15.4	2.6	-0.02

Table 20. Depth of Permafrost Thaw at BH22-10 from Original Ground Surface Elevation

It should be noted that a lower albedo (i.e., higher absorptivity) during the summer months, reduced snow cover during the winter months, and warmer air temperatures will accelerate the thawing of the permafrost. Continuous monitoring at BH22-08 and BH22-10 before, during, and after tailings placement will provide additional thermal data to track its thermal performance and the trend of climate change applicable to the new facility, in conjunction with climatic data using available weather stations for the region and thermistor readings throughout the site.

4.15 Surface Water Management

4.15.1 General

The general surface water management structures for the DSTF consists of runoff collection ditches leading to a collection sump. As necessary, water collected in the sump is conveyed to the water collection pond southeast of the mill. Tetra Tech understands the pond has a capacity of approximately 3,500 m³, exceeding the volume expected to be generated by a 10-day freshet with a 1:200-year return period (Clearwater, 2009). Based on performance of the runoff collection ditches and collection sump to date in Phase I, this is considered reasonable for the addition of runoff collection from the Phase II expansion.

Based on the EMR Guidelines, the 1:200 year event is considered appropriate for operations. For closure, design should account for a 1:500 year event. At the present time, we understand mine plans are being developed. A final review and design for closure will be completed to ensure this design criteria is met.

4.15.2 Uphill Runoff Diversion Berm

The uphill runoff diversion berm is to be constructed in accordance with the Runoff Diversion Structures Specifications report issued in September 2010.

4.15.3 Toe Runoff Collection Ditch

Toe runoff collection ditches are to be constructed in accordance with the Runoff Diversion Structures Specifications report issued in September 2010.

4.15.4 Collection Sump and Conveyance

A sump will be required at the southwest corner of the facility to collect surface water from the Phase II expansion. This water is to be conveyed to the existing surface water collection pond using a 150 mm PVC or other appropriate conveyance system.

5.0 FOUNDATION PREPARATION AND CONSTRUCTION

5.1 DSTF Foundation

It is anticipated that construction of the Phase II will take place over several years. Tetra Tech recommends the entire foundation footprint be prepared prior to tailings placement, or at a minimum, all vegetation larger than 50 mm in diameter be removed. If a staged approach to foundation preparation is adopted, Hecla must ensure adequate drainage for control of surface runoff. This may necessitate temporary lined ditches and/or collection sumps.

Foundation preparation and construction shall consist of:

- Hand cutting and removal of all trees and vegetation larger than 50 mm in diameter with minimal disturbance to the organic surface;
- An as-built survey of the existing ground surface;
- Construction and placement of the foundation components comprising a 0.6 m thick granular drainage blanket, GCL, and geocomposite drain. To be installed as discussed in Section 4.6 and described in Runoff Diversion Structure Specs (EBA, 2010b);
- The liner materials should be installed on drainage blanket material at grades no steeper than 4H:1V, unless otherwise approved by the engineer; and
- An as-built survey of the surface of the foundation components.

As-built surveys and photographs taking during the various stages of foundation preparation and provide should be provided to Tetra Tech for review and approval prior to placement of tailings.

5.2 Buttress Construction

Buttress construction is to take place prior to placement of tailings. The upstream toe of the buttress may be required for runoff collection purposes prior to the final configuration of tailings placement. It is anticipated some field adjustments will be required at the north and south ends of the buttress.

The buttress should be constructed as follows:

- Height as shown in the drawings package;
- Minimum crest width of 5 m;
- Upstream slope of 2H:1V; and
- Downstream slope of 2.5H:1V.

Construction will require the excavation and cut/fill operations of the existing waste rock storage area, and placement and compaction along the alignment to the south and north.

Waste rock should be placed in maximum 500 mm lifts and compacted using a large vibratory drum compactor completing at least 8 full passes. Survey shall be completed prior to, during placement of each lift, and after buttress construction.

5.3 Interior Berm Construction

The interior berm should be constructed as follows:

- Minimum 3 m height at centerline;
- Minimum crest width of 2.5 m; and
- Upstream and downstream slopes of 1.5H:1V.

The berm will be constructed of waste rock placed in maximum 500 mm lifts and compacted using a large vibratory drum compactor completing at least 8 full passes. Survey shall be completed after berm construction.

6.0 OPERATION, MAINTENANCE, AND SURVEILLANCE

6.1 OMS Manual

Operations, Maintenance, and Surveillance (OMS) are to be completed in accordance with the active and most recent OMS manual.

At the time of this submission, Tetra Tech is updating the OMS under a separate cover.

It is expected that the OMS manual will be updated as required and reviewed for necessary updates at least annually.

6.2 Tailings Placement and Operation

Tailings placement can proceed once the foundation has been prepared, surveyed, and approved as discussed in the previous sections.

Tailings shall be placed and compacted within the DSTF as per the requirements in the OMS manual. This includes placement in maximum 300 mm lifts, and compaction using a vibratory roller to at least 95% Standard Proctor Maximum Dry Density (SPMDD). Tailings may require moisture conditioning (i.e., drying) prior to compaction. Any snow, ice, or other deleterious materials should be removed prior to placement. Tailings must be placed and compacted prior to freezing.

Hecla provided Tetra Tech with the tailings generation estimates shown in Table 21 below (B. Tang, pers. comm., May 21, 2023).

Month	Tonnes (T)	Volume (m³)	Month	Tonnes (T)	Volume (m³)
June 2023	5,929	2585	April 2024	11,160	4,866
July 2023	8,893	3,877	May 2024	11,160	4,866
August 2023	11,858	5,170	June 2024	11,160	4,866
September 2023	11,858	5,170	July 2024	11,160	4,866
October 2023	11,858	5,170	August 2024	11,160	4,866
November 2023	11,858	5,170	September 2024	11,160	4,866
December 2023	11,858	5,170	October 2024	11,160	4,866
January 2024	11,160	4,866	November 2024	11,160	4,866
February 2024	11,160	4,866	December 2024	11,160	4,866
March 2024	11,160	4,866			

Table 21: Expected Tailings Generation. Provided by Hecla

Based on discussions with Hecla, we understand that tentatively, beginning in 2025, a portion of generated tailings will be used as paste backfill for underground workings. Specifics on scheduling, volumes of paste backfill, etc., have not been provided, therefore the projected timeline to fill Phase II to capacity has not been estimated.

6.3 Instrumentation and Monitoring

Instrumentation and monitoring shall be completed as outlined in the OMS manual.

Visual inspections are expected to be completed weekly by Hecla / site staff. Annual inspections are to be completed by a geotechnical engineer.

Tailings placement record surveys shall be completed monthly during tailings placement operations.

Readings should be collected from ground temperature cables on at least a monthly basis, or as directed by Tetra Tech. Tetra Tech previously completed moisture and density testing on placed and compacted tailings using a nuclear densometer. This method was deemed not appropriate due to readings being impacted by the mineralogy of the tailings. Alternative methods of monitoring compaction including dynamic cone penetration testing (DCPT) are being reviewed and will be discussed further with Hecla.

Additional instrumentation will be required and is expected to include piezometers and slope indicators. Tetra Tech will recommend specifics for this instrumentation at a later date, and requirements will be adopted into the OMS manual.

7.0 DSTF CLOSURE PLAN

Closure planning for the Phase II expansion is consistent with that for Phase I. Once tailings placement for a portion of the DSTF is complete, a soil evapotranspirative cover of 0.5 m of loosely placed mixture of granular and organic materials will be placed over the surface of the compacted tailings to temporarily store runoff and allow it to evaporate or to be used by vegetation.

At this time, it is assumed that the water collection pond and diversion berms and ditches will be left in place and the berms will continue to divert runoff water away from the DSTF area. Tetra Tech understands that the entire footprint will be re-vegetated with plants to promote soil evapotranspiration.

The DSTF will require an annual geotechnical inspection for at least five years after closure. This requirement should be reviewed after five years.

8.0 CLOSURE

We trust this document meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

Prepared by: Ian MacIntyre, P.Eng. Geotechnical Engineer, Arctic Group Engineering Practice Direct Line: 867.668.9240 Ian.MacIntyre@tetratech.com

FILE: 704-ENG.WARC04307-01 FILE: 704-ENG.WARC04307-01 FILE: 704-ENG.WARC04307-01

Prepared by: Earl de Guzman, Ph.D. Geotechnical Engineer, Arctic Group Engineering Practice Direct Line: 587.223.4005 Earl.DeGuzman@tetratech.com

FILE: 704-ENG.WARC04307-01 FILE: 704-ENG.WARC04307-01 FILE: 704-ENG.WARC04307-01

Reviewed by Richard Trimble, M.SC. (Eng.), P.Eng., FEC Principal Consultant, Arctic Region Engineering Practice Direct Line: 867.668.9216 Richard.Trimble@tetratech.com

REFERENCES

- Clearwater, 2009. "Bellekeno Mine Project Freshet Runoff Assessment." Clearwater Consultants Ltd., August 20, 2009.
- CSA, 2010. Technical Guide Infrastructure in Permafrost: A Guideline for Climate Change Adaptation. Canadian Standard Association, 97p.
- EBA, 2010a. Preliminary Engineering Design and Management Plan Dry Stacked Tailings Facility. Bellekeno Mine Mill Site, Yukon. EBA File No. W14101178-003
- EBA, 2010b. Runoff Diversion Structure Specs Dry Stack Tailings Facility, Keno Hill District Mill, YT. EBA File No. W14101178.011
- EBA, A Tetra Tech Company, 2011. Phase I Design. Detailed Design Dry Stack Tailings Facility, Keno Hill District Mill Site, YT. Report Prepared for Alexco Resources Group, May 2011. EBA File No. W14101178
- EMR, 2023. Guidelines for Mine Waste Facilities, issued in February 2023.
- Environment and Climate Change Canada (ECCC), n.d. Multi-model ensemble scenarios. CMIP6 climate scenarios. Retrieved April 24, 2023, from https://climate-scenarios.canada.ca/?page=multimodel-ensembles
- Farouki, O.T., 1986. Thermal Properties of Soils. TransTech Publications, Germany, 136 p.
- Hausfather, Z. and Peters, G. P., 2020. Emissions the 'business as usual' story is misleading. Nature, 577, pp. 618-620.
- Hawley and Cunning, 2017. Guidelines for Mine Waste Dump and Stockpile Design, Mark Hawley and Josh Cunning, 2017.
- Hynes-Griffin and Franklin,1984. Rationalizing the Seismic Coefficient Method. Department of the Army Waterways Experiment Station, Vicksburg, Mississippi.
- Intergovernmental Panel on Climate Change (IPCC), 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.
- Johnston G.H., 1981. Permafrost Engineering Design and Construction. Hunter Rose Company Ltd., Toronto, Ontario, Canada. McCreath P.S., 2009.
- Koerner, Robert M. 2005. Designing with Geosynthetics. Pearson Prentice Hall.
- Lydick, Larry D. and Zagorski, George 1991. Interface Friction of Geonets: A Literature Survey. Geotextiles and Geomembranes 10 (1991) 549-558.
- Lyon, C. et al., 2021. Climate change research and action must look beyond 2100. Global Change Biology, 28, pp. 349–361.
- Piteau Associates Engineering Ltd. 1991. "Investigation and Design of Mine Dumps Interim Guidelines." Prepared for British Columbia Mine Waste Rock Pile Research Committee, May 1991.

- Riahi, K. et al., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change 42, pp. 153-168.
- Seequent, 2022. TEMP/W Manual: Heat and Mass Transfer Modelling with Geostudio.
- State of California, Department of Water Resources, Division of Engineering. 2006. Basic Tools for Review of Slope Stability Reports for Waste Containment Facilities.
- Tetra Tech EBA. 2011. Thermal Analysis of Dry Stacked Tailings Facility Area, Keno Hill Silver District YT. EBA File No. W14101178.011 dated March 28, 2011.
- Tetra Tech EBA 2015. Dry Stacked Tailings Facility Phase II Expansion Preliminary Design, Keno Hill Silver District, YT. EBA File No. W14103548-01 dated June 2, 2015
FIGURES

- Figure 1 Overall DSTF Final Construction Plan
- Figure 2 Phase II Final Construction Plan
- Figure 3 Cross-sections 1 of 3
- Figure 4 Cross-sections 2 of 3
- Figure 5 Cross-sections 3 of 3
- Figure 6 Typical Details
- Figure 7 Instrumentation Plan

- - EXISTING SURFACE RUNOFF DITCH

---- - PROPOSED SURFACE RUNOFF DITCH (SHOWN WHITE)

PERMIT

PROFESSIONAL SEAL

VGINEE

Ŧŧ

TETRA TECH

	VOLUME	TONNAGE *
ASE 1 (ORIGINAL DESIGN) **	125,000 m ³	286,000
ASE 1 (AS-BUILT)	100,000 m ³	229,090
ASE 2 (DESIGN)	237,000 m ³	542,730
E BUTTRESS (DESIGN)	6,700 m ³	N / A

PROJECT NO.	DWN	CKD	REV	
ENG.WARC04307-02	СВ	IM	0	F ! 4
OFFICE EBA-WHSE	DATE March 29	9, 2024		Figure 1

- - EXISTING SURFACE RUNOFF DITCH

----- - PROPOSED SURFACE RUNOFF DITCH (SHOWN WHITE)

PERMIT

PROFESSIONAL SEAL

VGINEE

TETRA TECH

TŁ

COMPONENTS	ESTIMATED QUANTITY									
TOE BUTTRESS	6700 m ³									
INTERIOR BERM	3000 m ³									
DRAINAGE BLANKET	18000 m ³									
GEOTEXTILE, GEONET & GCL	35000 m ²									

PROJECT NO.	DWN	CKD	REV	
ENG.WARC04307-01	CB	IM	0	
OFFICE	DATE			Figure 2
EBA-WHSE	March 26	6, 2024		

®	DRY-STACKE KENO I	D TAILIN HILL DIS	NGS FAC TRICT N	CILITY PH IILL SITE	HASE 2 DESIGN , YUKON
		CRO	SS-SEC (1 OF 3	TIONS 3)	
ETRA TECH	PROJECT NO. ENG.WARC04307-01	DWN CB	CKD IM	REV 0	Eiguro 2
	OFFICE EBA-WHSE	DATE March 26	6, 2024	1	rigure 5

®	DRY-STACKED TAILINGS FACILITY PHASE 2 DESIGN KENO HILL DISTRICT MILL SITE, YUKON												
		CRO	SS-SEC (2 OF 3	TIONS									
RA TECH	PROJECT NO. ENG.WARC04307-01 OFFICE	DWN CB DATE	CKD IM	REV O	Figure 4								
	EBA-WHSE	March 26	6, 2024										

* CABLES AND PROTECTIVE CASINGS TO BE PROTECTED AND RAISED AS NECESSARY DURING DSTF CONSTRUCTION

PERMIT

✤ - TETRATECH THERMISTOR CABLE LOCATION

Scale: 1:1,250 @ 11"x17"

▲ - BEADED STREAM CABLE AND LOGGER LOCATION

 PROJECT NO. ENG.WARC04307-02	DWN CB	CKD IM	REV O	Figure 7
OFFICE EBA-WHSE	DATE March 29	9, 2024		i igure i

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOTECHNICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this document, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to explore, address or consider and has not explored, addressed or considered any environmental or regulatory issues associated with development on the subject site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems, methods and standards employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historical environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional exploration and review may be necessary.

1.11 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

1.12 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

1.13 INFLUENCE OF CONSTRUCTION ACTIVITY

Construction activity can impact structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques, and construction sequence are known.

1.14 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, and the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

1.15 DRAINAGE SYSTEMS

Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function. Where temporary or permanent drainage systems are installed within or around a structure, these systems must protect the structure from loss of ground due to mechanisms such as internal erosion and must be designed so as to assure continued satisfactory performance of the drains. Specific design details regarding the geotechnical aspects of such systems (e.g. bedding material, surrounding soil, soil cover, geotextile type) should be reviewed by the geotechnical engineer to confirm the performance of the system is consistent with the conditions used in the geotechnical design.

1.16 DESIGN PARAMETERS

Bearing capacities for Limit States or Allowable Stress Design, strength/stiffness properties and similar geotechnical design parameters quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition used in this report. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions considered in this report in fact exist at the site.

1.17 SAMPLES

TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

1.18 APPLICABLE CODES, STANDARDS, GUIDELINES & BEST PRACTICE

This document has been prepared based on the applicable codes, standards, guidelines or best practice as identified in the report. Some mandated codes, standards and guidelines (such as ASTM, AASHTO Bridge Design/Construction Codes, Canadian Highway Bridge Design Code, National/Provincial Building Codes) are routinely updated and corrections made. TETRA TECH cannot predict nor be held liable for any such future changes, amendments, errors or omissions in these documents that may have a bearing on the assessment, design or analyses included in this report.

APPENDIX B

BOREHOLE LOGS AND LABORATORY TESTING RESULTS

			Borehole	۹N	10	E	3ŀ	12	22	-0	1							
			Project: DSTF Phase 2	Detai	ed De	sian					Project No: ENG,WARC04307-0	1						
		Hecla	Location: Keno Hill Min	e		- J					Ground Elev: 917.7 m							
		MINING COMPANY	Yukon	<u> </u>							LITM: 484024 9195 E: 7086634 494 N: 7 8							
						P	artic	le Siz	ze		0 110. 101021.0 100 E, 7000001.	10+11, 20						
o Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	Silt (%) Silt (%)	Clay (%) (% a u	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	ele ele	Elevation (m)					
E		SAND AND GRAVEL (PAD FILL) - some silt,	Unfrozen		CA11					20.4		• •						
2 1 2 1 2 1 2 1 1 2		grade to some dameter, wet, grey, (soo mini- thick) QRGANICS - (75 mm thick) SILT - some gravel, trace sand, wet, brown, organic inclusions, (225 mm thick) \$AND AND GRAVEL - silty, wet, brown SILT (TILL) - some gravel, trace to some sand, wet, brown	Frozen, Vs, Vr 10%		SA12					14.1	•		917– 916– 915–					
		 large boulder, SA13 has low moisture due to sample containing only rock 			SA13					1	•		914					
1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SILT AND SAND (TILL) - gravelly, gravel to 75 mm diameter, wet, brown	Vs		SA14 SA15					12.4 28.6	•		912					
					SA16					5.9	•		911-					
8	Sonic				SA17	29	35	3	6	7.4	•		910-					
9 10 10		SILT (TILL) - trace sand, grave gravel, wet, brown	Nbn		SA18					23.5	•		909-					
11		SAND AND GRAVEL - silty, gravel to 75 mm diameter, wet, brown	Unfrozen		SA19					5.9	•		907- 906-					
12 12 13		BEDROCK - dark grey, white streaks			SA20					0.4	•		905-					
14		- reddish grey			SA21					3.7	••••••		904 903					
15 16		END OF BOREHOLE (15.2 metres) 25 mm PVC installed to 15.2 metres Ground temperature cable installed inside PVC											902					
E 17		pipe to 14.30 metres Note: Target depth reached											901					
18 1													900-					
19													899-					
E 20													898-					
		·	Contractor: Boart Long	/ear	•						Completion Depth: 15.2 m	ſ						
			Equipment Type: Track	Mour	nted LS	5250	Min	i Son	ic		Start Date: 2022 September 27							
			Logged By: JS								Completion Date: 2022 September 27							
			Reviewed By: IM								Page 1 of 1							

			Borehole No: BH22-02													
			Project:	DSTF Phase 2 De	etailed Desi	gn				Pro	oject No:	ENG.WA	ARC04307-0	01		
			Location	: Keno Hill Mine						Gr	ound Ele	v: 915 . 6 I	m			
			Yukon								M: 4840	47.3037	E; 7086693.	.741 N; Z 8	3	
o Depth (m)	Method	Soil Description		Ground Descrip	d Ice otion	Sample Type	Sample Number	Gravel (%)	Sand (%)	e Size oution Silt Clay (%) the	Clay (%) 🛛 🛞 🕿 🖉 🦇 Moisture Content (%)	Plastic Limit 20	c Moisture Content 40 60	Liquid Limit 80	Elevation (m)	
		SAND AND GRAVEL (FILL) - silty, moist, grey		Unfrozen			0.4.00	F A	40		10.7				915-	
							SA22	54	40	6	12.7	•				
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ORGANICS - (100 mm thick) SILT (TILL) - some sand, some gravel, wet, brown, orgar inclusions - no visible organics	nic	Frozen, N/Nf			SA23				18.9	•			914	
Ē				Onnozen			67.24				10.7		· · ·		912-	
E 4				Frozen Nf			SA24				17.4			· · · · · (· · · · · · · · · · · · · ·		
5		GRAVEL - sandy, silty, gravel to 50 mm diameter, very w greyish brown	<i>v</i> et,	Unfrozen		F	SA26				10.1	•			911	
6							SA27				6.2	•			910-	
E				Frozen, Nbe/Nbn			SA28				23.8	•			909-	
E 7		SILI (IILL) - some sand to sandy, some gravel, wet, bro	wn													
8		- trace gravel, trace sand		Nbn			SA29	0	6	 94 	26				908-	
E 9															907-	
10	onic						SA30				21.8	•			906-	
E E E 11	ŭ	- some gravel to gravelly		Nbn/Nf			0.021				15 4				905-	
12							5A31				15.4				904-	
				Unfrozen			5432				0.3				903-	
							0.02				0.0				902-	
14		- trace to some gravel, moist to wet, dense					SA33				12.2			· · · · · · · · · · · · · · · · · · ·	001	
15							0/100				12.2					
16		- sandy, trace cobbles, moist					SA34	8	33	59 59	10.3	•			900	
L L L 17															899-	
							SA35				11.2	•			898-	
L 18		- gravelly seam					6426				12 0				897-	
L 19		- large cobble					0430				13.9				896-	
= 20			Contract	or: Boart Longvea	ar	1	L			Co	mpletion	Depth: 3	0.5 m			
		TETRATECH	Equipme	ent Type: Track M	lounted LS2	50 N	1ini So	nic		Sta	Start Date: 2022 September 28					
	U		Logged By: JS						Co	Completion Date: 2022 September 28						
			Reviewe	ed By: IM	Pa	Page 1 of 2										

			Borehole No: BH22-02															
			Project:	DSTF Phase 2 D	etailed Des	ign				P	rojec	t No: I	ENG.WAF	RC04307-	01			
			Location	: Keno Hill Mine		-				G	Groun	d Elev	/: 915 . 6 m	1				
		MINING COMPANY	Yukon							U	TM:	48404	7.3037 E	; 7086693	.741 N; Z 8	3		
			·			/pe	nber	P C	articl Distril	e Siz butio Sil	ze n It &	ent (%)				c		
Depth (m)	Methor	Soil Description		Groun Descrip	d Ice otion	Sample T	Sample Nu	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Moisture Cont	Plastic Limit ₽ 20	Moisture Content	Liquid Limit	Elevatic (m)		
20		SAND AND GRAVEL - silty, fine to coarse grained sand subrounded to subangular gravel to 75 mm diameter, damp, light brown	l, , dry to				SA37					1.1	•			895-		
22		SILT (TILL) - gravelly, some sand, subrounded to suban gravel to 100 mm diameter, dry to damp, loose, light grey	gular brownish				SA38					1.5	•			894		
23		condu					SA39					5.5	•			892		
24	. <u>o</u>	- gravelly layer, trace sand					SA40					8.5	•			891		
26	Son	- large cobble GRAVEL - sandy, silty, fine to coarse grained sand, larg	e cobble.													890-		
27		subrounded to subangular gravel to 100 mm diamete brown	er, moist,				SA41					3.7	•			889		
28		- some silt - gravel to 75 mm diameter					SA42	58	30	1	2	3.6	•			888		
29		- damp, brown grey					SA43					1.6	•			887-		
30 1		END OF BOREHOLE (30.5 metres)														885		
31		Note: Target depth reached														884-		
1 32																883-		
34																882		
35																881-		
1 36																880		
37																879		
38 1																877-		
10 39																876		
- 40			Contract	tor: Boart Longye	ar		I	L	I	c	omp	etion	ı Depth: 30	.5 m				
		TETRA TECH	Equipme	ent Type: Track N	lounted LS2	250 N	1ini So	nic		S	tart D	Date: 2	2022 Sept	ember 28				
			Logged By: JS						С	Completion Date: 2022 September 28								
	_		Reviewed By: IM								Page 2 of 2							

			Bo	rehole	No:	B	Hź	22	-()3							
			Project:	DSTF Phase 2 D	etailed Desi	gn				Pr	oject	No: E	NG W	ARC04	4307 - 0′	1	
			Location	n: Keno Hill Mine						Gr	round	Elev	919.6	m			
			Yukon							U1	UTM: 484066.38 E; 7086745.73 N; Z 8						
o Depth (m)	Method	Soil Description		Groun Descrip	d Ice otion	Sample Type	Sample Number	Gravel (%)	Sand (%)	e Siz oution Silt Clay (%) tils	Clay (%) (%) % ⁻ a	Moisture Content (%)	Plasti Limi 20	ic Mo t Co J 40	bisture ontent 60	Liquid Limit - 1 80	Elevation (m)
		SAND (FILL) - gravelly, silty, subangular to angular grav mm diameter, moist, grey	el to 30	Unfrozen													010
							SA44					13.2	•			- 	919
							SA45					4	•				917-
1-3 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		GRAVEL (FILL) - sandy, silty, very wet, dark grey, wood metal inclusions	land				SA46					12.3	•				916
																	915-
5		SILT (TILL) - trace gravel, trace sand, wet, dark brown, inclusions	organic	Frozen, Nbn/Nf			SA47					70.8				•	914
6 1 1 1 1 1 1 1 1 1 1		- sandy, some gravel		Vr 40%			SA48					58.6			•		913-
				Vx, Vr 30%			SA49 SA50					30.8 14.3	•	•			912-
	. <u>U</u>	- trace sand, trace gravel					SA51					21.5	•	•			911
	Son	- gravel to 25 mm diameter		Nb/Nf			SA52					13.3	•		-		910-
		- sandy														· · · · · · · · · · · · · · · · · · ·	909
		,					SA53	19	37	44	1	12.7	•				908-
13				Nbn			SA54					27.4		•			907-
		- some sand to sandy, some gravel, some cobbles, m	oist	Unfrozen													906-
							SA55					9.8	•				905-
		- some sand to sandy					SA56					10.8	•				904
																· · · · · · · · · · · · · · · · · · ·	903-
							SA57					9.7	•				902
		END OF BOREHOLE (18.3 metres) Note: Stopped due to refusal									+						901
E 19 E 20		Core barrel fell off															900
			Contrac	tor: Boart Longye	ar					Co	omple	etion [Depth:	18 <u>.</u> 3 m	I		
	٢.	TETRA TECH	Equipm	ent Type: Track M	lounted LS2	250 N	lini So	nic		Sta	art D	ate: 2	022 Se	eptemb	er 28		
			Logged	Logged By: JS							Completion Date: 2022 September 29						
			Reviewe	ea By: IM						Pa	age 1	ot 1					

			Bo	rehole	No:	В	H	22	?-()4							
			Project:	DSTF Phase 2 De	etailed Des	ign				P	roject	No: E	ENG.WA	RC04307-0)1		
			Location	: Keno Hill Mine		-				G	round	Elev	r: 930.8 r	n			
			Yukon							U	UTM: 484165.2557 E; 7086670.469 N; Z 8						
Depth (m)	Method	Soil Description		Ground Descrip	d Ice otion	Sample Type	Sample Number	Gravel (%)	artici <u>Sand (%)</u>	e Siz outio Clay (%) 1	Clay (%) (%) a	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit 80	Elevation (m)	
Ē		SAND AND GRAVEL (PAD FILL) - silty, moist, grey		Unfrozen												-	
Ē 1		SILT - sandy, trace gravel, moist, brown, organic inclusion	ons, (250				SA58					5.1	•			930-	
		mm thick) SILT - sandy, some gravel, wet, grevish brown	/														
2		SAND - gravelly, some silt, fine to coarse grained sand,	/				SA59					10.2				929-	
E		brown, organic inclusions	ποιει,													928-	
E 3		- silty, some gravel, finer grained sand, wet - trace gravel														-	
4		- gravelly, some silt, well graded, damp to moist					SA60					2.7	•			927-	
E s		- trace gravel														926-	
		- gravelly					SA61					7.9				-	
6		200 mm thick aroust seem														925-	
		- solo min trick gravel seam - silty, some gravel														924	
E 7		- gravelly, some silt					SA62	58	33	9)	2.4	•			524	
																923-	
Ē							SA63					4	•				
E 9																922-	
Ē	U	SILT - sandy, some gravel, wet, greyish brown					SA64					10.5	•			001	
E 10	Soni	SAND - gravelly, some silt, fine to coarse grained sand, subrounded to subangular gravel to 50 mm diameter.	damp.													921	
		brown	p,													920-	
Ē''							SA65					2.2	•				
E 12															· · · · · · · · · · · · · · · · · · ·	919-	
		- silty, some gravel, gravel to 100 mm diameter, moist	, brown														
E 13							2766					76				918-	
E.		- gravelly, some silt, damp					3400					7.0				917-	
E 14		- no visible gravel					SA67					7.6	•				
15		- some silt to silty														916-	
		- silty, trace to some gravel					0.4.00					40.0					
16		- gravelly, some silt					SA68					10.9	•			915	
E 17		- silty, trace to some gravel														914	
							SA69					11.8	•				
E 18																913-	
		- gravelly, some silt, subangular to angular gravel, wet														912	
Ē		- silty, trace gravel, grey					SA70					15.3	•				
E 20																911-	
C		ר	Contrac	tor: Boart Longyea	ar Iarunta il L Oʻ						omple	etion	Depth: 2	0.4 m			
					ounted LS2	∠0U IV	iini 50	IIIC			Completion Date: 2022 September 29						
			wed By: IM								Page 1 of 2						

Project: DSTF Phase 2 Detailed Design Project No: ENG.WARCO Location: Keno Hill Mine Ground Elev: 930.8 m Yukon UTM: 484165.2557 E; 70 Soil Particle Size Distribution Silt & Clay (%) Plastic Milling 20 END OF BOREHOLE (20.4 metres) Unfrozen SA/1 4.1 Hoteler 21 END OF BOREHOLE (20.4 metres) Note: Stopped due to refusal on suspected bedrock Unfrozen SA/1 4.1 Hoteler	307-01 6670.469 N; Z 8
Location: Keno Hill Mine Ground Elev: 930.8 m Yukon UTM: 484165.2557 E; 70 Particle Size Distribution Silt & Under Company Soil Description Ground Ice Unfrozen SA71 END OF BOREHOLE (20.4 metres) Unfrozen Note: Stopped due to refusal on suspected bedrock	6670.469 N; Z 8
Yukon UTM: 484165.2557 E; 70 Yukon UTM: 484165.2557 E; 70 Ground Ice Particle Size Distribution Silt & Description Ground Ice Yukon Particle Size Output Silt & Utm: 484165.2557 E; 70 Output Soil Description Particle Size Yukon Particle Size Output Silt & Output Silt & Uninit Clay (%) Yukon Uninit Yukon Uninit Yukon Yukon Yukon Particle Size Distribution Silt & Yukon Yukon Yukon Particle Size Yukon Yukon Yukon	6670.469 N; Z 8
Image: state of the state o	_
Loc Unfrozen SA/1 4.1 End END OF BOREHOLE (20.4 metres) Note: Stopped due to refusal on suspected bedrock Image: Stopped due to refusal on suspected bedrock Image: Stopped due to refusal on suspected bedrock	isture Liquid ntent Limit €0 80
E AD OF BOREHOLE (20.4 metres) Note: Stopped due to refusal on suspected bedrock	-
	910-
	909-
	908-
	907-
	906-
	905-
	904-
	903-
	902-
	901-
	900-
	899-
	-898
	897-
	896-
	895-
	894-
	893-
	892-
	891-
Contractor: Boart Longyear Completion Depth: 20.4 n	
Equipment Type: Track Mounted LS250 Mini Sonic Start Date: 2022 Septembre Logged Durits Completing Date: 000000000000000000000000000000000000	er 29 ntombor 20
Logged by, JS Completion Date: 2022 S Reviewed By: IM Page 2 of 2	

			Borehole	۹N	10	E	3ŀ	12	22	-0	5				
			Project: DSTF Phase 2	2 Detai	ed De	sign					Project N	lo: ENG.V	VARC0430	7-01	
		Hecla	Location: Keno Hill Min	e		0					Ground	Elev: 931.	7 m		
		MINING COMPANY	Yukon								UTM: 48	4206.640	7 E: 708678	84.693 N	: 7 8
						P	artic	e Si	ze			12001010	,		, _ 0
 Depth (m) 	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	outio Silt (%) Silt (%)	Clay (%) 1 %	Moisture Content (%)	Plastic Limit 20	Moisture Conten 40 6	e Liquid t Limit ──■ 0 80	GTC	Elevation
-		SAND AND GRAVEL (FILL) - silty, moist, grey,	Unfrozen		SA72					290.2			:		*
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		QRGANICS - (100 mm thick) SILT AND ORGANICS - some sand, dark brown SAND (TILL) - silty, some gravel, greyish brown	Frozen, Vx 25%		SA73					13.9	•				931 930
3		- gravelly	Vx, N, frozen intermittently												929
L L L L L		- some silt_trace gravel			SA74					14 <u>.</u> 1	•				928
1 1 1 1 5					SA75	10	76	1	4	17.5	•				927
11116 1111		- some gravel, moist													926 •
					SA76					7.7	•				• • •
		- gravelly, coarse grained sand seams throughout			SA77					8.1	•				924
10 11 11	Sonic	- some gravel	Nb		SA78 SA79					22.1 11.3	•				922
12		- gravelly													920 • • • • • 919
13 E					SA80					9.7	•		· · · · · · · · · · · · · · · · · · ·		
14 14		GRAVEL AND SAND - some silt, wet, brown	Unfrozen		SA81	49	37	1	4 	12.6	•				918 •• •• •• •• 917
15 16															916
17		- damp		_	SA82					5.6	•				915
18 19		- some silt to silty			SA83					6.5	•				913
<u>= 20</u>										L					912
			Contractor: Boart Long	year							Complet	ion Depth	: 26 . 8 m		
	٢	TETRA TECH	Equipment Type: Track	(Mour	nted LS	5250	Min	i Son	iC		Start Dat	e: 2022 S	September 3	30	
		•]	Logged By: JS								Complet	ion Date:	2022 Septe	mber 30	
			Reviewed By: IM								Page 1 c	of 2			

			Borehole	N	10	: E	3ł	12	22	-0	5			
			Project: DSTF Phase 2 [Detai	ed De	sign					Project No: ENG WARC0430	7-01		
		lecia	Location: Keno Hill Mine								Ground Elev: 931.7 m			
		MINING COMPANY	Yukon								UTM: 484206.6407 E: 708678	34.693	3 N: Z 8	
						P	artic	le Si	ze					
00 Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	ibutio Silt (%) VIS	Clay (%) (%) a	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	GTC	PVC	Elevation (m)
		GRAVEL - sandy, silty, medium to coarse grained sand, subangular to subrounded gravel, damp, brown												911
E- 21		DIOWI			SA84					5.1	•			
22		SAND AND GRAVEL - silty, medium to coarse grained sand, subrounded to subangular gravel, damp, brown			SA85					4.7	•			910-
	Sonic	SAND - gravelly, slity, fine to coarse grained sand, subrounded to subangular gravel to 75 mm diameter, moist, brown			SA86					4.5	•			908
24		GRAVEL - trace sand, trace silt, subangular to			CA07					0.0				907-
25 E		Subbunded graver, damp, greyish brown			5407					0.9				906-
26														905-
27		END OF BOREHOLE (26.8 metres) 25 mm PVC installed to 26.8 metres												
28		pipe to 25.20 metres Note: Stopped due to refusal on suspected												904
29		Beads 1-5 are coiled up outside of the monument and will be installed accordingly												903-
30		throughout the construction process												902-
1 1 1 1 31														901-
1 1 1 32														900-
E 33														899-
														898-
														897-
L- 35														896
1 36														
37														895-
38														894
1 39														893
40														892-
			Contractor: Boart Longy	ear		0055					Completion Depth: 26.8 m			
	R.	TETRA TECH	Equipment Type: Track	viour	nted LS	5250	Min	II Sor	NC		Start Date: 2022 September 3	50	00	
			Logged By: JS								Completion Date: 2022 Septe	mper	30	
			Reviewed By: IM								Page 2 of 2			

			Borehole) (10	E	3ŀ	12	2	-0	6					
			Project: DSTF Phase 2	Detai	ed De	sian					Project No:	ENG.WA	RC04307	7-01		
		lecia	Location: Keno Hill Mine	<u>د</u>							Ground Fle	ev: 933 m				
		MINING COMPANY	Yukon								UTM: 4842	91 6924 F	· 708671	8 5 1 4	V 7 8	3
						P	artic	e Siz	ze				, , , , , , , , , , , , , , , , , , , ,		<u>, _ </u>	
o Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	Silt (%) Silt (%)	Clay (%) (%) a	Moisture Content (%)	Plastic I Limit 20	Moisture Content 40 60	Liquid Limit -¶ 80	GTC	Π	Elevation (m)
Ē		SAND AND GRAVEL (FILL) - silty, moist, grey,		7									:			933 -
1 1 1 2		QRGANICS - (50 mm thick) QRGANICS - (50 mm thick) SAND (FILL) - silty, trace gravel, fine to coarse grained sand, wet, brown - organic inclusions	Prozen, Vx, Vs 45%		SA88					37.6		•				932
1 1 1 3		chunks			5409					102.9				T		930
L L L L 4		SAND (TILL) - silty, trace gravel, moist, greyish brown - gravelly			SA90					11.8	•			4		929-
5		SILI (TILL) - sandy, trace to some gravel, moist, greyish brown SAND (TILL) - gravelly, some silt, medium to														928
		coarse grained sand, wet - damp			SA91					3.6	•			4		
6		SILT (TILL) - sandy, gravelly, fine to coarse grained sand, wet, brown			SA92	45	30	2	5	17 <u>.</u> 7	•					927-
		- sand and gravel seam												4		926
8		 large gravel and cobbles pieces to 100 mm diameter, moist 			SA93					8.8	•					925
9		GRAVEL - silty, some sand, subrounded to subangular gravel to 50 mm diameter, wet SILT (TILL) - sandy, gravelly, wet, brown									· · · · · · · · · · · · · · · · · · ·			4		924-
10	Sonic	SAND (TILL) come silt medium to coorse argined	Vx		SA94					21.7	•					923-
11		sand - 300 mm thick cobble			SA95					7.3	•			4		922
12		 silty, gravelly, fine to coarse grained sand, moist, brown 														921-
13		- damp			SA96					2.4	•					920-
14		GRAVEL - subrounded to angular gravel to 75 mm diameter			SA97					1	•					919
15		SAND (TILL) with according around find around	Nbn-Nf											4		918
16		sand, brown			SA98					24.1	•			•		917-
17		- gravelly, some silt, fine to coarse grained sand, wet	Unfrozen		SA99	34	46	2	0	8.6	•					916-
E 18		modium to coorse aminod as-4														915
19		- trace gravel			SA100					8.8	•			4		914
E 20																
			Contractor: Boart Longy	'ear	•	•					Completion	Depth: 30).5 m		<u>, 1</u>	913
			Equipment Type: Track	Mour	nted LS	5250	Min	i Son	ic		Start Date:	2022 Sept	tember 3	0		
	U		Logged By: JS								Completion	Date: 202	2 Septe	mber 3	0	
			Reviewed By: IM								Page 1 of 2	2				

			Borehole	٩	10:	E	3ŀ	12	22	-0	6				
			Project: DSTF Phase 2	Detai	ed De	sign					Project No	: ENG.WARC0430	07-01		
		Hecla	Location: Keno Hill Mine	;		Ū					Ground E	ev: 933 m			
		MINING COMPANY	Yukon								UTM: 484	291.6924 E; 70867	18.514	N; Z 8	;
Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Cartic Distri (%) pues	e Siz butio Clay (%) til Sil	Clay (%) (% a a	Moisture Content (%)	Plastic Limit 20	Moisture Liquid Content Limit	GTC	PVC	Elevation (m)
<u>20</u> E		- some silt, fine grained sand, damp			SA101					51	20	+0 00 00			913
21		- trace silt, fine to medium grained sand, wet			SATUT					5.4	• •••••		Ī		912-
23		- damp			SA102 SA103	8				16.1 5.2	•				910
24	<u>.</u> 0	- silty, some gravel, moist - gravelly, some silt													909
26	Son	- occasional gravel			SA104	L				4.4	•				907
27					SA105	5				19.5	•		╎┃		906
28		- damp			6A106/	4				5.5	•				905-
29		- silty, wet, dark brown			6A107/	4				23.8	•				904
E 30		- some silt, moist, light brown													903-
31 31 32		END OF BOREHOLE (30.5 metres) 25 mm PVC installed to 30.5 metres Ground temperature cable installed inside PVC pipe to 29.33 metres Note: Target depth reached Beads 1 and 2 are colled up outside of the													902 901
33		monument and will be installed accordingly throughout the construction process													900-
34 1															899
35															898
30															896
1 1 1 38															895
11 11 39															894
E ₄∩															
			Contractor: Boart Longy	ear							Completic	n Depth: 30.5 m	<u>.</u>		- 893
		TETRA TECH	Equipment Type: Track	Mour	nted LS	S250	Min	i Son	ic		Start Date	: 2022 September	30		
	U		Logged By: JS								Completic	n Date: 2022 Sept	ember (30	
			Reviewed By: IM								Page 2 of	2			

			Borehole	e N		E	3ł	12	22	-0	7				
			Project: DSTF Phase 2	Deta	iled De	sign					Project I	No: ENG.WARC0430	7-01		
		Hecla	Location: Keno Hill Mine	е		<u> </u>					Ground	Elev: 924.4 m			
		MINING COMPANY	Yukon	-							UTM: 48	34130.6059 E: 70867	77.122	N: Z 8	3
	Τ					P	artic	e Si	ze			,	T	,	
o Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	Silt (%) Silt (%)	n t & (%) (%) (%)	Moisture Content (%)	Plastic Limit 20	Moisture Liquid Content Limit 40 60 80	GTC	-	Elevation (m)
		SAND AND GRAVEL (PAD FILL) - silty, moist, grey	Unfrozen							00.4					924
		QRGANICS - (50 mm thick) ORGANICS AND SILT - trace sand, trace gravel, wet, brown, organics inclusions	Frozen, Nbn		5A1061	3				20,1	•				923
		SILT (TILL) - sandy, some gravel, wet, brown	Vx 25%		SA107I	₿				12.5	•				922-
1 3 1 1			Nbe, Nbn		SA108	3				15.2	•	· · · · · · · · · · · · · · · · · · ·			921-
4															920
5 11		SAND (TILL) - Yraveiry, silly			SA109	38	36	2	 26 	24.6	•				919
6		- trace gravel			SA110)				19.8	•				918-
7															017
8		- some gravel	Nbn		SA111					18.4					
ш 9		- gravelly													916
10	Sonic	 silty, some gravel, suspected cobble, gravel to 100 mm diameter, moist, brown 			SA112	2				7.8	•				915
11		- gravelly, some silt, wet			SA113	8 45	35	2	20	9.2	•				913
12		- wet													912
13 11 12				-	SA114	ŀ				6.7	•				911
L 14		- 150 mm thick gravel layer - coarse grained sand			SA115	5				18.8	•				910
15		GRAVEL - sandy, silty, subrounded to subangular			SA117	7				9.4					909
16		gravel to 75 mm diameter, medium to coarse grained sand, very wet, brown		-	SA116	ò				23.3	•				908-
17		SAND - silty, no visible gravel, wet, brown													907
E 18		- fine to coarse grained sand - trace gravel, fine to medium grained sand	Nhn-Nif												
19 19		- some gravel, fine to coarse grained sand			SA118	3				13.7	•				906-
E 20		 trace gravel, medium to coarse grained sand, weak foliated flat rock throughout 	Nbn		SA119)				24.2					905-
			Contractor: Boart Longy	year							Comple	tion Depth: 27.4 m			
		TETRA TECH	Equipment Type: Track	Mou	nted LS	S250	Min	i Sor	ic		Start Da	te: 2022 October 2			
		-]	Logged By: JS								Complet	tion Date: 2022 Octol	per 2		
			Reviewed By: IM								Page 1	of 2			

			Borehole	• N	10	E	3ŀ	12	2	-0	7			
			Project: DSTF Phase 2	Detai	led De	sign					Project No: ENG WARC0430	7-01		
			Location: Keno Hill Mine	;							Ground Elev: 924.4 m			
		MINING COMPANY	Yukon								UTM: 484130.6059 E; 708677	7.122	N; Z 8	
00 Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	artic <u>Distri</u> (%) pues	le Siz butio Sil Clay (%) 1 !S	Clay (%) 🔅 😤 🖥 📅	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	GTC	DVC	Elevation (m)
		- fine to medium grained sand, no visible foliated			SA120					19.5	•			904
21		SILT - sandy, no visible gravel, brown, grey laminations throughout - sandy seam			SA121					22.7	•			903
Ē		SAND - some silt, no visible gravel, fine to medium grained sand, brown												902-
E 23	<u>i</u>	- some silt, wet	Unfrozen		SA122					23.4	•			901-
E 24	Sor													900-
25		- fine grained sand, damp		-	SA123	5				11.3	•			
26		- silty, wet												899-
E 27					SA124					15.6	•			898-
		- suspected bedrock		_								-		897-
28		slough - 14.5 metres at completion PVC installed to 14.5 metres Ground temperature cable installed inside PVC pipe to 13.42 metres												896-
		Note: Stopped due to refusal on suspected bedrock Beads 1-10 are coiled up outside of the												895-
		monument and will be installed accordingly throughout the construction process												894-
1- 31														893-
														892-
33														891-
- 34														
35														890-
1 1 36														889
37														888-
1 1 1 38														887
39														886-
														885
			Contractor: Boart Longy	ear	·			, 			Completion Depth: 27.4 m			
		TETRA TECH	Equipment Type: Track	Mour	nted LS	5250	Min	i Son	ic		Start Date: 2022 October 2			
	U		Logged By: JS								Completion Date: 2022 Octob	er 2		
			Reviewed By: M								Page 2 of 2			

			Borehole) (10	E	3ŀ	12	22	-0	8				
			Project: DSTF Phase 2	Deta	led De	sign					Project N	No: ENG.WARC04	307-01		
		Hecla	Location: Keno Hill Mine								Ground	Elev: 926.5 m			
		MINING COMPANY	Yukon								LITM: 48	4162 3135 E. 7086	750 62	N· 7 8	
						P	artic	e Siz	ze				100.02		
o Depth (m)	Method	Soil Description	Ground Ice Description	Sample Tvpe	Sample Number	Gravel (%)	Sand (%)	Silt (%) Sill (%)	Clay (%) (% a t	Moisture Content (%)	Plastic Limit 20	Moisture Liquic Content Limit 40 60 80	GTC	PVC	Elevation (m)
		SAND AND GRAVEL (PAD FILL) - silty, wet, grey	Unfrozen												926-
		ORGANICS - (125 mm thick)	Frozen, Vx 10%	_	SA125					32.7		•			
Ē		SILT AND ORGANICS - dark brown	Vx, Nb										1		925
2		SILI - trace sand, trace gravel, brown, organic inclusions			SA126					21.1	· · · · •				
Ē		- sandy, some gravel											1		924-
E 3		- coarse grained sand layers throughout	Nbn-Nf												
Ē					SA127	1	45	5	4	22 <u>.</u> 1	•		1		923-
<u></u> 4												····· (····· (···· 1 1 1			
Ē		- some sand. moist	Nbn										1		922-
5					SA128					11.4	•				
Ē													1		921-
6		- grev													
Ē		9.09											1		920-
E 7					SA129					10.6					
Ē					SA120					10.6					919-
8					-3A130					10.0		· · · · · · · · · · · · · · · · · · ·			
Ē		gravel to 50 mm diameter, wet, brown											1		918-
E 9		SILT - gravelly, some sand, gravel to 50 mm	Frozen intermittedly												
Ē	<u>io</u>	diameter, wet, brown			SA131					8.5	•				917-
E 10	Sor	SAND AND GRAVEL - silty, fine to coarse grained sand moist brown			SA132					4.8					
Ē													T		916-
E- 11 E												· · · · · · · · · · · · · · · · · · ·			
Ē															915-
E 12															
Ē													1		914-
E 13			NIF		SA133					23,2	•				
Ē		SAND - some silt, no visible gravel, fine to coarse grained sand	Nb-Nf												913-
14		g			SA134					22.1	•				012
15													T		912
		- coarser grained sand													911-
16					0 4 4 9 5					00.0					
					5A135					20.8					910-
E 17															
Ē					SA136	i				21.1	•				909
E 18															
Ê		- 14.													908
E 19		- Sily			SA137	0	53	4	.7	23.5	•				
Ē															907-
E 20															
			Contractor: Boart Longy	/ear							Complet	ion Depth: 30.5 m			
	L.	TETRA TECH	Equipment Type: Track	Mou	nted LS	5250	Min	i Son	ic		Start Dat	te: 2022 October 2			
11		•]	Logged By: JS								Complet	ion Date: 2022 Oct	ober 2		
			Reviewed By: IM								Page 1 c	of 2			

			Borehole	• N	10:	E	3ŀ	12	2	-0	8			
			Project: DSTF Phase 2 I	Detai	led De	sign					Project No: ENG WARC04307	7-01		
			Location: Keno Hill Mine	;							Ground Elev: 926.5 m			
		MINING COMPANY	Yukon								UTM: 484162.3135 E; 708675	0.62 N;	Z 8	
05 Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	artic Distrii (%) Sand (%)	e Siz butio Clay (%) til Sil	Clay (%) 🔅 😤 🖥 🛱	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	GTC	PVC	Elevation (m)
		- trace gravel, damp	Unfrozen											906-
21		- silty, fine grained sand			ISA138 ISA139					2.9 13.3	•			905
E ⁻²³		- 300 mm thick fine to coarse grained sand layer												002
24		- trace gravel, moist, dense, greyish brown			SA140					10.5	•			902
25	Sonic	- silty, some gravel, moist, grey			SA141					10.9	•			901
26										10.0				900-
E 27					SA142					9.7	•			-
28		- some silt, medium to coarse grained sand												899-
29		- silty, fine to coarse grained sand			SA143	Ì				2.6	•			898-
30					SA144					8.4	•			897-
31		END OF BOREHOLE (30.5 metres) 25 mm PVC installed to 22.9 metres Ground temperature cable installed inside PVC												896
32		pipe to 22.4/ metres Note: Target depth reached Beads 1-13 are coiled up outside of the monument and will be installed accordingly												894
33		throughout the construction process												893-
34														892-
35														891-
36														890-
37														889-
38														888
1 39														887-
E 40														507
		רר	Contractor: Boart Longy	ear		0000					Completion Depth: 30.5 m			
	5	TETRA TECH	Equipment Type: Track	Nour	nted LS	5250	Mini	Son	IC		Start Date: 2022 October 2	or 0		
			Logged By: JS								Dompletion Date: 2022 Octob			
			Reviewed By: IM								Page 2 of 2			

			Borehole	N	10	E	3ŀ	12	22	-0	9	
			Project: DSTE Phase 2 [Detai	led De	sian					Project No: ENG WARC04307-01	
		Hecla	Legetien: Kong Hill Ming	Jota		Jight					Cround Elou: 024.1 m	
		MINING COMPANY										
	-		Yukon	_			ortic	la Si	70		UTM: 484129.5937 E; 7086715.272 N; Z 8	
o Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	Silt (%) Silt (%)	Clay (%) (% a a	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80	(m)
E		SAND AND GRAVEL (PAD FILL) - silty, wet, grey,	Unfrozen	1								24-
		QRGANICS - (50 mm thick) SILT - sandy, gravelly, fine to coarse grained sand	Vx 30%		SA145	5				24.9	9	23
2			Nf		SA146	5				10.2	9	22-
		- trace gravel, moist	Nb-Nf		SA147	7	31	6	 52 	14.9		21-
1 1 1 1 5					SA148	6				11	• • • • • • • • • • • • • • • • • • •	19-
6 1			Intermittently frozen, Nbn		SA149					24.3	, ●	18-
E 7		- gravelly, coarse grained sand									9	17-
8		SAND - gravelly, silty, fine to coarse grained sand, wet, brown	Nf		SA150					10.9) • • • • • • • • • • • • • • • • • • •	16-
<u> </u>		- trace gravel										
	onic	- some gravel, wet			SA151					7.9		15-
L L L L L L L L L L L L L L L L L L L	S		Intermittently frozen									13-
12		- trace gravel, fine grained grained	Nbn		SA152					32.8	, • • • • • • • • • • • • • • • • • • •	12-
13		subangular gravel to 50 mm diameter, moist, greyish brown			SA153	5				11.4	• • • • • • • • • • • • • • • • • • •	11-
		- trace clay, dark grey	Unfrozen		SA154	+				11	• 9	10-
15 11 16		- trace sand			QA155	19	30		3	٥		09
17		- cobbles for 600 mm				. 10	0.9			J		07
18		- dense - some sand, fine to coarse grained sand			SA156					8.7	• • • • • • • • • • • • • • • • • • •	06
= 19 = 20												05-
	_		Contractor: Boart Longye	ear							Completion Depth: 28.3 m	
		TETRA TECH	Equipment Type: Track M	Mour	nted LS	5250	Mini	Son	ic		Start Date: 2022 October 3	
	l		Logged By: JS								Completion Date: 2022 October 3	
			Reviewed By: IM								Page 1 of 2	
	RN 70	NE8 GP. I EBA GDT 23-6-15										

			Borehole) (10:	E	3ł	12	22	-0	9					
			Project: DSTF Phase 2	Detai	led De	sign					Project N	lo: ENG.WA	RC0430	7-01		
		leela	Location: Keno Hill Mine	9							Ground E	ev: 924.1 i	n			
		MINING COMPANY	Yukon								UTM: 484	4129.5937	=; 70867 [.]	15.272	2 N; Z 8	3
Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Partic Distri (%) pues	le Sii butio Sil Clay (%) 1 IIS	Clay (%) 3 a a	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit - 1 80	GTC	PVC	Elevation (m)
-		- damp														904-
21 22					SA157 SA158	8				7.7 7.2	•					903 902
23 24	Sonic				SA159)				9.1	•					901- 900-
25					SA160)				8.3	•					899-
26					SA161					6.9	•		· · · · · · · · · · · · · · · · · · ·			898
28																897-
29		END OF BOREHOLE (28.3 metres) 25 mm PVC to 28.3 metres Ground temperature cable installed inside PVC nine to 27 63 metres														895-
30		Note: Stopped due to refusal Beads 1-8 are coiled up outside of the monument and will be installed accordingly														894
31		throughout the construction process														893-
32																892-
33																891-
35																889-
36																888
37																887-
E 38																886-
- 																885
			Contractor: Boart Longy	'ear	•		<u>, </u>				Completi	on Depth: 2	8.3 m		- I	
		TETRATECH	Equipment Type: Track	Mour	nted LS	5250	Min	i Son	ic		Start Dat	e: 2022 Oct	ober 3			
	U		Logged By: JS								Completi	on Date: 20	22 Octob	oer 3		
			Reviewed By: IM								Page 2 o	f 2			-	

				Borehole	• N	10:	E	3ł	12	22	-1	0
				Project: DSTF Phase 2 I	Detai	led De	sign					Project No: ENG.WARC04307-01
				Location: Keno Hill Mine)		-					Ground Elev: 918.7 m
		MINING COMPANY		Yukon								UTM: 484054.54 E; 7086731.18 N; Z 8
							P	artic	e Si	ze		
o Depth (m)	Method	Soil Description		Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	Silt (%) Silt (%)	n t & (%) Clay (%)	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit 20 40 60 80
		SAND AND GRAVEL (FILL) - silty, angular to subangular fine grained gravel moist grey	Un	frozen		CA162					51	
1 1 2 3 4 5 6 7 8		- no recovery to 6.1 metres QRGANICS - (50 mm thick) SILT AND ORGANICS - (150 mm thick) SILT (TILL) - sandy, some gravel, brown	Frc V,	ozen, Nbn 10-40% ice		SA162 SA163 SA164 SA165	; 62	28	1	0	5.1 5.8 18.9 20.6	918- 917- 916- 915- 914- 914- 913- 913- 912- 911-
9 10 11 11	Sonic	- 150 mm thick organic layer - wood pieces - gravelly, cobbles, wet	10-	-20% ice		SA166 SA167 SA168	35	33	3	2	45.3 14.2 10.2	910- 909- 909- 908-
12		- some gravel	Nb	n								906-
14 14 15		- some sand, trace gravel - clean sand layers throughout	Vx Nb	5%, small ice inclusion n		SA169)				31.7 20.4	905- 904- 903-
17 17 18		- sandy, some gravel, moist	Int	ermittently frozen		SA171					9.7	• 902- • 901- • 900-
19 E						SA170					26.1	
E_20			Nb	n		-04172					20.1	899-
				Contractor: Boart Longy	ear							Completion Depth: 23.2 m
				Equipment Type: Track	Mour	nted LS	5250	Min	i Sor	ic		Start Date: 2022 October 4
	U			Logged By: JS								Completion Date: 2022 October 4
	_			Reviewed By: IM								Page 1 of 2

	Borehole No: BH22-10													
			Project: DSTF Phase 2	Detai	ed De	sian					Project No: ENG.WARC0430	7-01		
		Hecla	Location: Keno Hill Mine	;		5					Ground Elev: 918.7 m			
		MINING COMPANY	Yukon	Yukon						UTM: 484054.54 E; 7086731.18 N; Z 8				
Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%) Sand	le Si: butio Clay (%) 1	ze n t & (%) / (%) kej	Moisture Content (%)	Plastic Moisture Liquid Limit Content Limit	GTC	PVC	Elevation (m)
20								S			20 40 60 80			
20 21 21 22 23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 37	Sonic	- gravelly, coarse grained sand - trace gravel, fine to medium grained sand - coarse grained angular gravel END OF BOREHOLE (23.2 metres) 25 mm PVC installed to 22.6 metres Ground temperature cable installed inside PVC pipe to 20.04 metres Note: Stopped due to refusal Beads 1 and 2 are coiled up outside of the monument and will be installed accordingly throughout the construction process	Unfrozen		SA173					0.6				898 897 896 897 896 895 894 893 892 891 890 889 888 887 888 887 886 887 886 887 886 887 886 887 886 887 886 887 888 887 888 887 888 887 888 887 888 887 888 887 888 887 888 887 888 887 888 888 887 888 887 888 887 888 887 888 888 887 888 888 887 888 8
38 11 39														880
<u>= 40</u>												<u> </u>		0/9-
			Contractor: Boart Longy	ear Mour	nted I 9	3250	Min	i Sor	nic		Completion Depth: 23.2 m			
	5	TEIRATECH	Logged Rv JS	woul	ilou Lu	5200	141111	. 001			Completion Date: 2022 October 4	er 4		
			Reviewed By: IM Page 2 of 2											

			Borehole No: BH22-40B												
			Project: DSTF Phase 2 Detail	ed De	sign				F	Project No: ENG.WARC04307-01					
		lecla	ocation: Keno Hill Mine		<u>.</u>				(Ground Elev: 919.84 m					
		MINING COMPANY								LITM: 483978 2 E: 7086940 N: 7 8					
				Particle Siz				ze	- 1 0 1 W. 4000 0.2 L, 7000040 W, 2 0						
o Depth (m)	Method	Soil Description	Ground Ice Description	Sample Type	Sample Number	Gravel (%)	Sand (%)	Silf Clay (%) IIS	Clay (%) 🚿 🛱 u	Moisture Content (%)	Plastic Limit 20	Moisture Content 40 60	Liquid Limit 80	PVC	Elevation (m)
		ORGANICS - (100 mm thick)	Unfrozen												
1 1 2		SAND AND SILT (TAILINGS) - Moisi, giey			SA01					11.4	•				919- 918-
u 1 1 1 3					SAU2					12,4	•				917-
E E E E E E E E E E E E E E E E E E E					3403					12,4	•				916
5		- more compact to dense			SA04					16.9	•				915-
6 11	nic														914-
E 7	S				SA05					13.1	• • •		· · · · · · · · · · · · · · · · · · ·		913
		SILT - trace sand, trace gravel, organics, gravel to 50 mm diameter, wet, brown, liner pieces			SA06					12.5	•				912-
Ē		- 600 mm thick organic layer													911
		 trace to some gravel, trace to some sand, gravel to 10 mm diameter 50 mm thick drive layer 	Frozen, Nbn		5407					56					910
										5.0	•				909-
Ē					SA08					11.8	•				
12		BEDROCK	_		SA09					0.4 ●			· · · · · · · · · · · · · · · · · · ·		908-
E 13					SA10					06					907-
14		END OF BOREHOLE (13.4 metres) 25 mm PVC installed to 13.4 metres Note: Target depth reached									r				906-
15															905-
16 11															904
17 11															903
18															902
19 11 20															900
			Contractor: Boart Longyear			•	•			Comp	etion De	pth: 13.4 m			
		TETRA TECH	Equipment Type: Track Mour	nted LS	6250 N	1ini S	Sonic		5	Start D	Date: 202	2 Septemb	er 26		
	J		Logged By: JS							Comp	etion Da	te: 2022 Se	ptember	26	
	_		Reviewed By: IM						F	Page	1 of 1				

		MO	ISTURE CONTENT TEST RESULTS
			ASTM D2216
Project:	AKHM D	STF Phase 2	Detailed Design Sample No.: Various
Project Numb	er: ENG.WA	ARC04307-01	Date Tested: November 9, 2022
Client:	Hecla		Tested By: BW
Project Manag	ger: Ian Macl	ntyre	Page: 1 of 8
B.H. Number	Sample Number	Moisture Content (%)	Visual Description of Soil
BH22-04B	SA01	11.4	
	SA02	12.4	
	SA03	12.4	
	SA04	16.9	
	SA05	13.1	
	SA06	12.5	
	SA07	5.6	
	SA08	11.8	
	SA09	0.4	
	SA10	0.6	
BH22-01	SA11	20.1	
	SA12	14.1	
	SA13	1.0	
	SA14	12.4	
	SA15	28.6	
	SA16	5.9	
	SA17	7.4	SILT and SAND - gravelly
	SA18	23.5	
	SA19	5.9	
	SA20	0.4	
	SA21	3.7	
BH22-02	SA22	12.7	GRAVEL and SAND - trace silt
	SA23	18.9	
	SA24	10.7	
	SA25	17.4	<i>p</i>
			Reviewed By:P.Eng.

		MO	ISTURE CONTENT TEST RESULTS						
ASTM D2216									
Project:	AKHM D	STF Phase 2	Detailed Design Sample No.: Various						
Project Numb	er: ENG.WA	ARC04307-01	Date Tested: November 9, 2022						
Client:	Hecla		Tested By: BW						
Project Mana	ger: Ian Macl	ntyre	Page: 2 of 8						
B.H. Number	Sample Number	Moisture Content (%)	Visual Description of Soil						
BH22-02	SA26	10.1							
	SA27	6.2							
	SA28	23.8							
	SA29	26.0	SILT - trace sand						
	SA30	21.8							
	SA31	15.4							
	SA32	9.3							
	SA33	12.2							
	SA34	10.3	SILT - sandy, trace gravel						
	SA35	11.2							
	SA36	13.9							
	SA37	1.1							
	SA38	1.5							
	SA39	5.5							
	SA40	8.5							
	SA41	3.7							
	SA42	3.6	GRAVEL - sandy, some silt						
	SA43	1.6							
BH22-03	SA44	13.2							
	SA45	4.0							
	SA46	12.3							
	SA47	70.8							
	SA48	58.6							
	SA49	30.8							
	SA50	14.3	7 -						
			Reviewed By:P.Eng.						

		MO	ISTURE CONTENT TEST RESULTS							
	ASTM D2216									
Project:	AKHM D	STF Phase 2	Detailed Design Sample No.: Various							
Project Numb	ber: ENG.WA	ARC04307-01	Date Tested: November 10, 2022							
Client:	Hecla		Tested By: BW							
Project Mana	ger: Ian Macl	ntyre	Page: 3 of 8							
B.H. Number	Sample Number	Moisture Content (%)	Visual Description of Soil							
BH22-03	SA51	21.5								
	SA52	13.3								
	SA53	12.7	SILT and SAND - some gravel							
	SA54	27.4								
	SA55	9.8								
	SA56	10.8								
	SA57	9.7								
BH22-04	SA58	5.1								
	SA59	10.2								
	SA60	2.7								
	SA61	7.9								
	SA62	2.4	GRAVEL - sandy, trace silt							
	SA63	4.0								
	SA64	10.5								
	SA65	2.2								
	SA66	7.6								
	SA67	7.6								
	SA68	10.9								
	SA69	11.8								
	SA70	15.3								
	SA71	4.1								
BH22-05	SA72	290.2								
	SA73	13.9								
	SA74	14.1								
	SA75	17.5	SAND - some silt, trace gravel							
			Reviewed By:P.Eng.							

		MOI	STURE CONTENT TES	T RESULTS	
			ASTM D2216		
Project:	AKHM D	STF Phase 2	Detailed Design	Sample No.:	Various
Project Numb	er: ENG.WA	ARC04307-01		Date Tested:	November 11, 2022
Client:	Hecla		Tested By:	BW	
Project Mana	Project Manager: Ian MacIntyre				4 of 8
B.H. Number	Sample Number	Moisture Content (%)		Visual Description	of Soil
BH22-05	SA76	7.7			
	SA77	8.1			
	SA78	22.1			
	SA79	11.3			
	SA80	9.7			
	SA81	12.6	GRAVEL and SAND -	some silt	
	SA82	5.6			
	SA83	6.5			
	SA84	5.1			
	SA85	4.7			
	SA86	4.5			
	SA87	0.9			
BH22-06	SA88	37.6			
	SA89	182.9			
	SA90	11.8			
	SA91	3.6			
	SA92	17.7	GRAVEL - sandy silty		
	SA93	8.8			
	SA94	21.7			
	SA95	7.3			
	SA96	2.4			
	SA97	1.0			
	SA98	24.1			
	SA99	8.6	SAND - gravelly, som	e silt	
	SA100	8.8			2
			Review	wed By:	P.Eng.

		MOI	STURE CONTENT TEST	RESULTS	
			ASTM D2216		
Project:	AKHM D	STF Phase 2	Detailed Design	Sample No.:	Various
Project Numb	ber: ENG.WA	ARC04307-01		Date Tested:	November 15, 2022
Client:	Hecla			Tested By:	BW
Project Mana	ger: Ian Macl	ntyre		Page:	5 of 8
B.H. Number	Sample Number	Moisture Content (%)	V	isual Description	of Soil
BH22-06	SA101	5.4			
	SA102	16.1			
	SA103	5.2			
	SA104	4.4			
	SA105	19.5			
	SA106A	5.5			
	SA107A	23.8			
BH22-07	SA106B	20.1			
	SA107B	12.5			
	SA108	15.2			
	SA109	24.6	GRAVEL and SAND - s	ilty	
	SA110	19.8			
	SA111	18.4			
	SA112	7.8			
	SA113	9.2	GRAVEL - sandy, some	e silt	
	SA114	6.7			
	SA115	18.8			
	SA116	9.4			
	SA117	23.3			
	SA118	13.7			
	SA119	24.2			
	SA120	19.5			
	SA121	22.7			
	SA122	23.4			
	SA123	11.3			2
			Reviewe	d By:	P.Eng.

		MOI	STURE CONTENT TEST	RESULTS	
			ASTM D2216		
Project:	AKHM D	STF Phase 2	Sample No.:	Various	
Project Numb	ber: ENG.WA	ARC04307-01		Date Tested:	November 16, 2022
Client:	Hecla			Tested By:	BW
Project Mana	ger: Ian Macl	ntyre		Page:	6 of 8
B.H. Number	Sample Number	Moisture Content (%)	Vi	sual Description	of Soil
BH22-07	SA124	15.6			
BH22-08	SA125	32.7			
	SA126	20.1			
	SA127	22.1	SILT and SAND - trace g	gravel	
	SA128	11.4			
	SA129	10.6			
	SA130	10.6			
	SA131	8.5			
	SA132	4.8			
	SA133	23.2			
	SA134	22.1			
	SA135	20.8			
	SA136	21.1			
	SA137	23.5	SAND and SILT		
	SA138	2.9			
	SA139	13.3			
	SA140	10.5			
	SA141	10.9			
	SA142	9.7			
	SA143	2.6			
	SA144	8.4			
BH22-09	SA145	24.9			
	SA146	10.2			
	SA147	14.9	SILT - sandy, trace grave	el	
	SA148	11.0			2
			Reviewed	d By:	P.Eng.

		MOI	STURE CONTENT TEST	RESULTS	
			ASTM D2216		
Project:	AKHM D	STF Phase 2	Sample No.:	Various	
Project Numb	er: ENG.WA	ARC04307-01		Date Tested:	November 17, 2022
Client:	Hecla			Tested By:	BW
Project Mana	ger: Ian Macl	ntyre		Page:	7 of 8
B.H. Number	Sample Number	Moisture Content (%)	V	isual Description	of Soil
BH22-09	SA149	24.3			
	SA150	10.9			
	SA151	7.9			
	SA152	32.8			
	SA153	11.4			
	SA154	11.0			
	SA155	9.0	SILT and SAND - some	gravel	
	SA156	8.7			
	SA157	7.7			
	SA158	7.2			
	SA159	9.1			
	SA160	8.3			
	SA161	6.9			
BH22-10	SA162	5.1			
	SA163	5.8	GRAVEL - sandy, trace	silt	
	SA164	18.9			
	SA165	20.6			
	SA166	45.3			
	SA167	14.2			
	SA168	10.2	GRAVEL - sandy, silty		
	SA169	31.7			
	SA170	20.4			
	SA171	9.7			
	SA172	26.1			
	SA173	13.7			2
			Reviewe	d By:	P.Eng.

		MOI	STURE CONTENT TE	ST RESULTS								
Project:		STF Phase 2 [Sample No ·	Various								
Project Numb	per ENG WA	RC04307-01	Date Tested	November 17 2022								
Client [.]	Hecla		Tested By:	BW/								
Project Mana	neer: Jan Macl	ntvre	Page:	8 of 8								
			1 age.									
B.H. Number	Sample Number	Moisture Content (%)		Visual Description of Soil								
BH22-10	SA174	0.6										
L	1	I I		//	1///							
			Revie	wed By:	P.Eng.							
				6								
ata presented hereon is t	for the sole use of the sti	pulated client. Tetra Tech	is not responsible, nor can be held liab	le, for use made of this report								

				ŀ	PAR	TICLE	E SI	ZE AN		EF	PORT								
Proiect:		AKHN	/ DST	F Phas	se 2	Detai	led	Desian	Sam	Sample No.:				SA29					
, Project N	lo.:	ENG.	ENG.WARC04307-01								al Type:		Taili	ngs					
Site:		Alexc	o Ken	o Hill N	line				Sam	ple	e Loc.:		BH2	2-02					
Client:		Hecla							Sam	' Iple	e Depth:		7.9 r	n					
Client Re	ep.:	Peter	Johns	son					Sam	' ipli	ng Method:		Grab)					
Date Tes	ted:	Nove	mber	14. 202	2	Bv:	KI	C	Date	s S	ampled:		-						
Soil Des	cription ² :	SILT	- trace	sand		,			Sam	əlaı	ed Bv:		JS						
									USC	; c	, lassificatior	า:	ML		Cu:	#N//	A		
Moisture	Content	2	6.0%												Cc:	#N//	A		
Particle	Percent					Sar	nd		1		Gr	avel							
Size (mm)	Passing			Fine			Med	ium	Coarse		Fine		Coa	irse	(Cobble			
300					0-														
200		100	200	100	60	40	30 2	20 16	10 8	4	3/8" 1/2"	3/4"	1" 1	.5" 2"	3" 4"	6" 8	12"		
150		- 90								t									
100																			
75		80)				_		_	╞							-		
50		70)	_	_	_									_	_	_		
38		<u></u>																	
25		SSIN	,																
19)	_			_			┢		-		_		_	-		
12.5			,																
10	100	ERC															-		
5	100	- 30)							t	Soil Desc	ripti	ion F	ropor	tions ((%):	_		
2	100	20)		_					-	Clay ¹ &	94	Ļ	Grave	el	0			
0.85	99										Silt			~	. 3				
0.425	99	- "	, I							Γ	Sand	6		Cobb		0			
0.25	98	(0.075	0.15	0.25	0.425	C	.85	2	4.75	5 9.5 12.5	19	25 3	7.5 50	75	150	300		
0.15	97	_						P/	ARTICLE SI	ZE	(mm)								
0.075	94.3																		
Notes:	¹ The up	per cla	y size	of 2 ur	n, pe	er the	Ca	nadian	Foundatio	on	Engineerin	g M	lanua	al					
	² The de	scriptic	on is v	isually	base	ed & s	ubje	ect to T	t WM440	0 d	lescription p	prot	ocol	S					
	° lf cobbl	es are	prese	nt, san	npling	g pro	ced	ure ma	y not mee	t A	STM C702	8 [D75						
Specifica	ation:																		
Remarks	S:																		
										_		1		2					
											_//	ç		2					
								Re	viewed B	y:	Ulan /	//	K	/		P.6	Eng.		
											0			9					

any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

				P	ART		STM D7928		REP	ORT					
Proiect:		AKHN	1 DSTF	- Phase	e 2 D	, etailed	d Desian	Sam	ple	No.:	SA	127			
Project N	lo.:	ENG.	WARC	04307-	01			Mate	eria	I Type:	Та	ilinas			
Site:		Alexc	o Keno	Hill Mi	ne			Sam	nple	Loc.:	BH	122-08			
Client:		Hecla						Sam	nple	Depth:	3.7	7 m			
Client Re	ep.:	Peter	Johnso	on				Sam	nolir	na Method	: Gr	ab			
Date Tes	sted:	Nover	mber 1	7. 2022)	Bv:	BW	Date	e Sa	ampled:	_				
Soil Des	cription ² :	SILT	and SA	ND - tr	ace (aravel		Sam	ple	d Bv:	JS				
	•					5		USC	CI	assificatio	n: Ml	_ (Cu:	#N//	4
Moisture	Content	2	2.1%										Cc:	#N/A	1
Particle	Percent					Sand		T		Gr	avel				
Size (mm)	Passing			Fine		Me	edium	Coarse		Fine	c	oarse		obble	
300			L					1			-		-1		
200		100	200	100	50	40 30	20 16	10 8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3" 4"	6" 8"	12"
150		90	,						t						
100															
75		80)						1					_	1
50		70)						╞					_	_
38		<u>ъ</u>													
25		SSI													
19		- 4 50)						+				-	_	-
12.5	100)	_					_				_	_	_
10	100	PER										<u> </u>		0().	1
5	99	- 30	,								ription	Propor	tions (%):	-
2	97	20)						┢		54	Grave	el	1	
0.85	94	10)							Sand	45	Cobbl	ے ³	٥	
0.425	88														1
0.20	01 70	- 0	0.075	0.15 ().25	0.425	0.85	2	4.75	9.5 12.5	19 25	37.5 50	75	150	300
0.15	53.6	-					P	ARTICLE SI	ZE ((mm)					
Neter	¹ Tho up	l nor da			n	tha C	anadian	Foundatio		Engineerin	a Mar				
notes:	² The de	scrintio	y size (in is vis	un z un	, per aser	U B U	biect to T		л п 0 Л	escription	y wan	ols			
	³ If cobbl	es are	preser	nt, sam	oling	proce	dure ma	y not mee	et A	STM C702	2 & D7	5			
Specifica	ation:														
Remark	s:														
											1	1			
										//	Q.	/			
							Re	viewed B	y: _	Ula /	K			P.E	ing.
ata procontod ba	reon is for the s	olo uso of th		Loliont Totr	a Toch i	s not rosp	nsible nor car	ha hald liabla f	orus	made of this room	ort by				

				P/	ARTI	CLE S		ALYSIS R & C136	REP	ORT							
Project:		AKHN	1 DSTF	Phase	e 2 D	etailed	Desian	Sam	ple	No.:	SA	SA137					
, Project N	lo.:	ENG.	ENG.WARC04307-01							I Type:	Ta	Tailings					
Site:		Alexc	o Keno	Hill Mi	ne			Sam	ple	Loc.:	Bł	422-08					
Client:		Hecla						Sam	ıple	Depth:	18	3.9 m					
Client Re	ep.:	Peter	Johnso	n				Sam	Iplir	ng Method	: Gi	rab					
Date Tes	sted:	Nover	mber 18	, 2022	: E	By: E	SW	Date	e Sa	ampled:	-						
Soil Des	cription ² :	SANE) and SI	LT				Sam	ple	d By:	JS	6					
								USC	CI	assificatio	n: SN	M-ML	Cu:	#N/A	۱.		
Moisture	Content	: 2	3.5%										Cc:	#N/A	٩		
Particle	Percent					Sand				Gi	avel						
(mm)	Passing			Fine		Mee	dium	Coarse		Fine		Coarse		cobble			
300		1		400	L	40	00 10	40.0		0/07 1/57	0/41 - 15	4 55 55					
200		100)	6		40 30	∠∪ 16	10 8	4	3/8" 1/2"	3/4" 1"	1.5" 2"	3" 4"	6" 8"	12"		
150		90	,												\square		
100																	
75		- 80)	/					1						1		
50		70) _ /					-	+					_	+		
38		9 60															
25		ASSI															
19) /						1					-	+		
12.5	100)						-					_	-		
10	100	– ä	,										tions (<u> </u>			
5	100	-								Clov ¹ 8	πριιοι	ΓΓΙΟΡΟΙ		70).			
2	99	20)							Silt	47	Grave	el	0			
0.03	99	10)							Sand	53	Cobb	le ³	0	\square		
0.420	91	-													1		
0.15	76	- `	0.075	0.15 0	.25 0	0.425	0.85	2	4.75	9.5 12.5	19 25	37.5 50	75	150	300		
0.075	46.6						PA	RTICLE SI	ZE ((mm)							
Notes:	¹ The un	per cla	v size o	f2.um	per	the Ca	anadian	Foundatio	on F	Engineerin	a Mar	านอโ					
110100.	² The de	scriptio	n is visi	ually ba	ased	& sub	ject to T	t WM440	0 de	escription	protoc	ols					
	³ If cobbl	les are	present	, samp	oling	proced	lure may	/ not mee	t A	STM C702	2 & D7	'5					
Specifica	ation:																
Remarks	s:																
											1	0					
										//	Q						
							Re	viewed B	y: _	Um ,	K			P.E	ng.		
to procented be	roon is for the s	olo uso of th		liont Totr	a Taah is	not roopor	aible nor con	ha hald liabla f	orugo	mada of this ran	orthy						

any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

APPENDIX C

GROUND TEMPERATURE CABLE DATA

Ground Temperature Readings

Instrument ID: BH22-01 Cable ID: 2819

Instrument ID: BH22-06 Cable ID: 2821

Instrument ID: BH22-07 Cable ID: 2822

Ground Temperature Readings

Instrument ID: BH22-09 Cable ID: 2823

Instrument ID:BH22-08Cable ID:4473Logger ID:D6050215

Instrument ID:BH22-10Cable ID:4474Logger ID:D6050221

Cable ID: 2824

APPENDIX D

TAILINGS AND INTERFACE DIRECT SHEAR LABORATORY TEST DATA

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailin	gs			
Project No.:	ENG.WARC04181-01				
Site:	Alexco Keno Mine				
Client:	Alexco Keno Hill Mining Corp.				
Client Rep.:	Peter Johncon				
Date Tested:	March 22, 2022	By:	BW		
Soil Description ² :	SILT - some sand, some clay				

••			
Sample No.:	SA01		
Material Type:	Tailings		
Sample Loc.:	-		
Sample Depth:	-		
Sampling Method:	Grab		
Date Sampled:	Decemb	er 1, 20	21
Sampled By:	Client		
USC Classification:	ML	Cu:	#N/A
		Cc:	#N/A

Moisture Content: 20.5%

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailin	gs			
Project No.:	ENG.WARC04181-01				
Site:	Alexco Keno Mine				
Client:	Alexco Keno Hill Mining Corp.				
Client Rep.:	Peter Johncon				
Date Tested:	March 22, 2022	By:	BW		
Soil Description ² :	SILT - sandy, some clay				

Sample No.:	SA02		
Material Type:	Tailings		
Sample Loc.:	-		
Sample Depth:	-		
Sampling Method:	Grab		
Date Sampled:	Decemb	er 1, 20	21
Sampled By:	Client		
USC Classification:	ML	Cu:	#N/A
		Cc:	#N/A

Moisture Content: 18.6%

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailing	s			
Project No.:	ENG.WARC04181-01				
Site:	Alexco Keno Mine				
Client:	Alexco Keno Hill Mining Corp.				
Client Rep.:	Peter Johncon				
Date Tested:	March 22, 2022 E	By:	BW		
Soil Description ² :	SILT - sandy, some clay				

Sample No.:	SA03				
Material Type:	Tailings				
Sample Loc.:	-				
Sample Depth:	-				
Sampling Method:	Grab				
Date Sampled:	Decemb	er 1, 20	21		
Sampled By:	Client				
USC Classification:	ML	Cu:	#N/A		
		Cc:	#N/A		

Moisture Content: 20.9%

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailir	ngs		Sample No.:	SA04	
Project No.:	ENG.WARC04181-01			Material Type:	Tailings	
Site:	Alexco Keno Mine			Sample Loc.:	-	
Client:	Alexco Keno Hill Mining	g Corp).	Sample Depth:	-	
Client Rep.:	Peter Johncon			Sampling Method:	Grab	
Date Tested:	April 5, 2022	By:	BW	Date Sampled:	March 29, 2022	2
Soil Description ² :	SILT - sandy, trace clay	/		Sampled By:	Client	
				USC Classification:	ML Cu:	

Moisture Content: 17.5%

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

16.5

1.7

Cc:

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailin	igs		Sample No.:	SA13		
Project No.:	ENG.WARC04181-01			Material Type:	F and M	Sludge	
Site:	Alexco Keno Mine			Sample Loc.:	-		
Client:	Alexco Keno Hill Mining	g Corp		Sample Depth:	-		
Client Rep.:	Peter Johnson			Sampling Method:	Grab		
Date Tested:	June 13, 2022	By:	CP	Date Sampled:	-		
Soil Description ² :	SILT and SAND - some	e clay		Sampled By:	Client		
				USC Classification:	ML	Cu:	#N/A
Moisture Content:	124.2%					Cc:	#N/A

Particle Percent Sand Grave Size Clay Silt Cobble Passing Fine Medium Coarse Fine Coarse (mm) 300 100 60 40 30 20 16 10 8 400 200 4 3/8" 1/2" 3/4" 1" 1 5" 2" 3" 4" 6" 8" 12" 200 100 150 100 90 75 50 80 38 25 70 19 12.5 PERCENT PASSING 60 10 5 50 100 2 0.85 40 0.425 0.25 30 0.15 Soil Description Proportions (%): 0.075 Clay¹ Gravel 20 21 0 100.0 0.0269 Silt 79 0.0174 95.0 10 0.0108 81.2 0 Sand 0.0082 61.4 0 0.0062 41.6 0.037 0.075 0.15 0.25 0.425 0.85 4.75 9.512.5 1925 37.550 75 0.0005 0.001 0.002 0.005 0.01 2 150 300 0.0032 27.7 PARTICLE SIZE (mm) 0.0014 17.8 ¹ The upper clay size of 2 um, per the Canadian Foundation Engineering Manual ² The description is visually Notes: based & subject to Tetra Tech description protocols³ If cobbles are present, sampling procedure may not meet ASTM C702 & D75 Specification: **Remarks:** Reviewed By: P.Eng.

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailings		Sample No.:	SA14		
Project No.:	ENG.WARC04181-01		Material Type:	Tailings		
Site:	Alexco Keno Mine		Sample Loc.:	-		
Client:	Alexco Keno Hill Mining Co	orp.	Sample Depth:	-		
Client Rep.:	Peter Johnson		Sampling Method:	Grab		
Date Tested:	June 13, 2022 By	: CP	Date Sampled:	May 25,	2022	
Soil Description ² :	SILT and SAND - some cla	ау	Sampled By:	Client		
			USC Classification:	ML	Cu:	48.0

Moisture Content: 12.1%

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

Cc:

2.7

ASTM D7928 & C136

Project:	2022 Keno DSTF Tailings		Sample No.:	SA15		
Project No.:	ENG.WARC04181-01			Material Type:	Tailings	
Site:	Alexco Keno Mine		Sample Loc.:	-		
Client:	Alexco Keno Hill Mining	g Corp		Sample Depth:	-	
Client Rep.:	Peter Johnson			Sampling Method:	Grab	
Date Tested:	June 13, 2022	By:	СР	Date Sampled:	May 31,	2022
Soil Description ² :	SILT and SAND - some	e clay		Sampled By:	Client	
				USC Classification:	ML	Cu:

Moisture Content:

15.6%

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

#N/A

#N/A

Cc:

PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

ASTM D7928 †

Project:	2022 Keno DSTF Tailings Characterization	Sample No.:	1948
Client:	Alexco Keno Hill Mining Corp.	BH Location:	
Project No.:	ENG.WARC04181-01	Depth:	
Location:	Dry Stack Tailings Facility	Date Tested	April 13, 2022
Description **:	SILT, sandy, trace clay, grey	Tested By:	00

Remarks: † Unless expressly stated, this test was performed by the Air Dry Method * The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

** The description is behaviour based & subject to Tetra Tech description protocols.

Reviewed By:

P.Eng.

PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

ASTM D7928 †

Project:	2022 Keno DSTF Tailings Characterization	Sample No.:	1950
Client:	Alexco Keno Hill Mining Corp.	BH Location:	
Project No.:	ENG.WARC04181-01	Depth:	
Location:	Dry Stack Tailings Facility	Date Tested	April 14, 2022
Description **:	SILT, some clay, trace sand, grey	Tested By:	00

* The upper clay size of 2 um, per the Canadian Foundation Engineering Manual

** The description is behaviour based & subject to Tetra Tech description protocols.

Reviewed By:

P.Eng.

ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr. Ian MacIntyre Tetra Tech			¥5			Date: Report:	February 14, 2024 6710-001S-1A-en	
IDENTIFICATION:	Interface test # Project: 704-EN	#1: Tailings Vs (V.WARC 04415-	GTX Non-v 09	voven				
	Tailings receive Received: Janua	d on January 03, 2 ary 9, 2024	024					
STANDARD:						_		
TEST:	Shear Strength	of Soil-Geosynthe	tic and Geos	ynthetic-Geo	synthetic	ASTM D	5321/D5321M-21	
	Interfaces by Di	irect Shear						
TEST CONDITIONS:	Shear surface 3	04 x 304 mm;						
	Data acquisitior	n period (seconds):	6.00					
	Flat surfaces gri	ips fixed with 4 bo	lts + rasp su	rface in lowe	er box and upper box 🕫			
	Normal load: M	licro-Stepper Moto	x . O					
	Rate of horizon	tal displacement(n	1m/min); 0.2					
	lested in machi	ne direction ;						
	Submerged inte	rtace;	102		TM D6100 (Nian annan	Contraction		
	Mass per unit a	asurements per sp	t par spacing	an according	to ASTM D5261 (Non-	Geolexille)	tavtila).	
	Testing configu	ration - Upper box	I ower boy	en accorung	yon-woven Geotextile	woven dec	nextre),	
	lesting configuration - Upper box / Lower box: Tailings / Non-woven Geotextile Date of test: between January 24 and February 6, 2024							
DECLIPTO.			Ind	ividual Data				
KESULIS:	4.5.	102.4	201.7					
Normal Compressive Pressure	(KPa):	102.4	201.7	400.4				
GEOTEXTILE PROPERTIES		1						
Mass per unit area of the geosy estimated basing on the weight spacimen (g/ml):	nthetic of the	302	293	279				
specifici (g/m).								
Specimen thickness (mils):		76	70	70				
PROPERTIES OF THE SOIL		6						
Water content of compaction (°	(o):	15.5	15.1	15.3				
Dry unit weight after compaction	on (kg/m³):	1860	1880	1870				
Duration of the consolidation (I	hours).	16	16	16				
TEST RESULTS		1						
Peak shear stress (kPa):		84.4	150 7	308 2				
Prepared by: Marlon E Technici	anlon Bu Bustos, M Eng. an	ustos	Aş	oproved by:	Omer Kamla, Eng. Project Leader	am la	Date: February 14, 2024	

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumeric code, the letter preceding "en" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and or information provided by the customer. The samples in relation to this report are retained for a period of 30 days following transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. The ISO IEC 17025 Scope of Accreditation of CTT Group is available at www.gettg.com. In this report, the tests which number is followed by the symbol are not covered by this accreditation. For customer's complete address, please refer to the email.

3000, avenue Boullé, Saint-Hyacinthe, QC, Canada, J2S 1H9 info@gcttg.com - T_(+1) 877 288-8378 - gcttg.com

ANALYSIS REPORT SCC Accreditation No.: 401

Mr. Ian MacIntyre Tetra Tech					Date: Report:	February 14, 2024	
IDENTIFICATION:	Interface test #1: Ta Project: 704-ENV WA	ilings Vs G RC 04415-0	TX Non-v 9	voven			
	Tailings received on Ja Received: January 9, 2	anuary 03, 20 2024)24				
STANDARD:							
TEST:	Shear Strength of Soil- Interfaces by Direct St	-Geosyntheti 1ear	c and Geos	ynthetic=Geosynthetic	ASTM D	5321/D5321M-21	
RESULTS (CONT):			Ind	ividual Data			
Shear stress at large displacement	nt (kPa):	64.1	108.7	241.2			
Estimated peak angle of friction	(°):	37					
Estimated peak adhesion (kPa):		3.4					
Estimated angle of friction at lar displacement (*):	цс	30					
Estimated adhesion at large disp (kPa):	lacement	0.0					

REMARKS:

-The thickness of the soil layer was reduced to 40 mm to facilitate consolidation and minimize experimental problems.

Consolidation:

- 100kPa: 1 hour at 10kPa, 1 hour at 50kPa, 16 hours at 100kPa.

- 200kPa: 1 hour at 10kPa, 1 hour at 50kPa, 1 hour at 100kPa, 16 hours at 200kPa

- 400kPa: I hour at 10kPa, I hour at 50kPa, I hour at 100kPa, I hour at 200kPa, 16 hours at 400kPa,

- See graphs and pictures in appendix.

Prepared by:

Marton Bustos Marton Bustos, M.Eng.

Technician

Approved by:

Omar Kamla, Eng.

Project Leader

Date: February 14, 2024

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumeric code, the letter preceding "-en" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and/or information provided by the customer. The samples in relation to this report are retained for a period of 30 days following transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. ‡ The ISO/IEC 17025 Scope of Accreditation of CTT Group is available at www.gettg.com. In this report, the tests which number is followed by the symbol D are not covered by this accreditation. For customer's complete address, please refer to the email.

3000, avenue Boullé, Saint-Hyacinthe, QC, Canada, J2S 1H9 info@gcttg.com - T.:(+1) 877 288-8378 - gcttg.com

APPENDIX Graphs

Shear Stress vs Normal Stress

Interface #1 - Test at 100kPa

Non-woven Geotextile after the test - Test at 100kPa

Interface #1 - Test at 200kPa

Non-woven Geotextile after the test - Test at 200kPa

Interface #1 - Test at 400kPa

Non-woven Geotextile after the test - Test at 400kPa

Groupe CTT Inc. 3000, avenue Boullé, St-Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr. Ian MacIntyre Tetra Tech						Date: Report:	February 14, 2024 6710-001S-2A-en	
IDENTIFICATION:	Interface test # Project: 704-EN Received: Janua	#2: GTX Non-wc IV.WARC 04415-0 ary 9, 2024	oven Vs Go 19	eonet Hydra	net 220 # GN00013	1		
STANDARD:								
TEST:	Shear Strength of Interfaces by Di	of Soil-Geosynthet irect Shear	ic and Geos	ynthetic-Geos	synthetic	ASTM D	5321/D5321M-21	22
TEST CONDITIONS:	Shear surface 30 Data acquisition Flat surfaces gri Normal load: M Rate of horizont Tested in machin Submerged inter Thickness: 5 me Mass per unit ar	04 x 304 mm; a period (seconds): ips fixed with 4 bol licro-Stepper Moto tal displacement(m ne direction ; rface ; easurements per sporea: 1 measurement	0.24 lts + rasp su r m/min); 5 ecimen acco t per specim	rface in lower ording to AST ten according	box and upper box , M D5199 (Non-wover to ASTM D5261 (Non	n Geotextile n-woven Geo	and Geonet), textile),	
	Testing configue Date of test: Jan	ration - Upper box nuary 19, 2024	/ Lower bo:	x: Non-wover	Geotextile / Geonet			
RESULTS:			Ind	ividual Data				
Normal Compressive Pressure (kPa):	101.9	198.9	397 6				
GEOTEXTILE PROPERTIES		:						
Mass per unit area of the geosyn estimated basing on the weight specimen (g/m ²).	nthetic of the	261	293	301				
Specimen thickness (mils):		71	73	74				
GEONET PROPERTIES								
Specimen thickness (mils):		197	196	195				
Duration of the consolidation (h	iours):	I	1	1				
TEST RESULTS		:						
Peak shear stress (kPa):		31.2	65 3	154.6				
Shear stress at large displaceme	nt (kPa):	23.5	49.8	92.1				

Prepared by: <u>Marlon Bustos, M. Eng.</u> Technician Approved by: <u>Omar Kamla, Eng.</u> <u>Omar Kamla, Eng.</u> Project Leader Date: February 14, 2024

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumeric code, the letter preceding "-en" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and or information provided by the customer. The samples in relation to this report are retained for a period of 30 days following transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. The ISO/IEC 17025 Scope of Accreditation of CTT Group is available at www.gettg.com. In this report, the tests which number is followed by the symbol \circ are not covered by this accreditation. For customer's complete address, please refer to the email.

ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr. Ian MacIntyre			Date: February 14, 2024		
Tetra Tech			Report: 6710-001S-2A-en		
IDENTIFICATION:	Interface test #	2: GTX Non-woven Vs Geonet Hydranet 220 # G	iN000131		
	Project 704-EN	V.WARC 04415-09			
	Received Januar	ry 9, 2024			
STANDARD;					
TEST:	Shear Strength o Interfaces by Dir	f Soil-Geosynthetic and Geosynthetic-Geosynthetic ect Shear	ASTM D5321/D5321M-21		
RESULTS (CONT):		Individual Data			
Estimated peak angle of frict	ion (*):	20			
Estimated peak adhesion (kPa	a)	0.0			
Estimated angle of friction at displacement (*)	large	12			
Estimated adhesion at large d (kPa)	lisplacement	1.8			
REMARKS: - S	ee graphs and picture	s in Appendix.			

Prepared by:

Marlon Bustos Marlon Bustos, M.Eng.

Technician

Approved by:

Omar Kamla Omar Kamla, Eng Project Leader

Date: February 14, 2024

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumeric code the letter preceding "-on" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and or information provided by the customer. The samples in relation to this report are retained for a period of 30 days fallowing transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. The ISO IEC 17025 Scope of Accreditation of CTT Group is available at www.getig.com. In this report, the tests which number is followed by the symbol \square are not covered by this accreditation. For customer's complete address, please refer to the email.

3000, avenue Boullé, Saint-Hyacinthe, QC, Canada, J2S 1H9 info@gcttg.com - T. (+1) 877 288-8378 - gcttg.com

Graphs

Groupe CTT Inc. 3000, avenue Boullé, St-Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

Non-woven Geotextile after the test - Test at 100kPa

Geonet after the test - Test at 100kPa

Non-woven Geotextile after the test - Test at 200kPa

Geonet after the test - Test at 200kPa

Non-woven Geotextile after the test - Test at 400kPa

Geonet after the test - Test at 400kPa

ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr. Ian MacIntyre Date: February 14, 2024 Tetra Tech 6710-001S-3A-en Report: **IDENTIFICATION:** Interface test #3: Geonet Hydranet 220 # GN000131 Vs GCL Bentomat ST #10 Project: 704-ENV.WARC 04415-09 Geonet received on January 09, 2024 Received: January 19, 2024 STANDARD: TEST: Internal and Interface Shear Resistance of Geosynthetic Clay Liner by ASTM D6243/D6243M-20 Proc. B the Direct Shear Method TEST CONDITIONS: Shear surface 304 x 304 mm; Data acquisition period (seconds): 1.20 Hydratation of the GCL: 24 hours under 10 kPa, prior to consolidation ; Flat surfaces grips fixed with 4 bolts + rasp surface in lower box and upper box ; Normal load: Micro-stepper motor Rate of horizontal displacement(mm/min): 1 Tested in machine direction ; Submerged interface ; Testing configuration - Upper box / Lower box Geonet Hydranet 220 / GCL Bentomat ST#10 (Non-woven side) Date of test: from February 7 to 13, 2024 **RESULTS:** Individual Data Avg. S.D. % CV Normal Compressive Pressure (kPa): 101.5 200,8 399.5 TESTS RESULTS Maximum Shear Stress (kPa): 41.9 77.0 180.5 Residual Shear Stress (kPa); 39.9 72.9 137.0 Estimated Maximum angle of friction (*): 23 Estimated Maximum adhesion (kPa). 0.0 Estimated Residual angle of friction (*) 18

REMARKS:

Estimated Residual adhesion (kPa):

- See graphs and pictures in Appendix

7.1

Prepared by:

Marlon Bustos, M.Eng. Technician Approved by:

Omar Kamla Omar Kamla, Eng.

Project Leader

Date: February 14, 2024

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumeric code, the letter preceding "-en" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and or information provided by the customer. The samples in relation to this report are retained for a period of 30 days following transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. ‡ The ISO IEC 17025 Scope of Accreditation of CTT Group is available at www.gettg.com. In this report, the tests which number is followed by the symbol \square are not covered by this accreditation. For eustomer's complete address, please refer to the email.

3000, avenue Boullé, Saint-Hyacinthe, QC, Canada, J2S 1H9 info@gcttg.com - T (+1) 877 288-8378 - gcttg.com

Shear Stress vs Normal Stress

Groupe CTT inc. 3000, avenue Boullé, St[.]Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

Geonet Hydranet 220 after the test - Test at 100kPa

GCL Bentomat ST#10 (non-woven side) after the test - Test at 100kPa

Geonet Hydranet 220 after the test - Test at 200kPa

GCL Bentomat ST#10 (non-woven side) after the test - Test at 200kPa

Geonet Hydranet 220 after the test - Test at 400kPa

GCL Bentomat ST#10 (non-woven side) after the test - Test at 400kPa

Groupe CTT Inc. 3000, avenue Boullé, St-Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr. Ian MacIntyre					Date: February 19, 2024
Tetra Tech					Report: 6710-001S-4A-en
IDENTIFICATION:	Interface test # Project: 704-EN	4: GCL Benton V.WARC 04415-	nat ST #10 09	Vs Drainage blanket ((Gravel, coarse soil "Dmax 16mm")
	Gravel received	on January 03, 20	24		
	Received: Janua	ry 19, 2024			
STANDARD:					2
TEST:	Internal and Inte	erface Shear Resis	tance of Geo	osynthetic Clay Liner by	ASTM D6243/D6243M-20 Proc. C
	the Direct Shear	Method			
TEST CONDITIONS:	Shear surface 30	14 x 304 mm;	1.20		
	Hydratation of th	he GCI = 24 hours	1.20 under 10 kl	Pa prior to consolidation	n ·
	Flat surfaces gri	ns fixed with 4 bo	lts + rasp su	rface in lower box and u	ipner box :
	Normal load: M	icro-Stepper Moto	or		
	Rate of horizont	al displacement(n	nm/min): 1		
	Tested in machin	ne direction ;			
	Submerged inter	face ;			
	Testing configur	ation - Upper box	/ Lower bo	x: Drainage Blanket (Gra	avel) / GCL Bentomat ST #10 (woven side)
	Date of test: from	n February 14 to	16, 2024		
RESULTS:			Ind	ividual Data	Avg. S.D. % CV
Normal Compressive Pressur	re (kPa);	102 5	203.7	402.3	
PROPERTIES OF THE SOII	L	:			
Water content of compaction	(%);	6.3	6.5	6.2	
Dry unit weight after compac	ction (kg/m3):	2050	2060	2050	
Duration of the consolidation	ı (hours):	4	4	4	
TESTS RESULTS					
Maximum Shear Stress (kPa)):	58.5	131.8	212.0	
Residual Shear Stress (kPa):		23.7	34.8	45.1	
Estimated Maximum angle o	f friction ("):	26			
Estimated Maximum adhesic	on (kPa):	16.7			
Estimated Residual angle of	friction (*):	3			
Estimated Residual adhesion	(kPa):	18,3			

Prepared by:

Warlon Bustos, Marlon Bustos, M.Eng.

Technician

Approved by Omer Kamla Omar Kamla, Eng.

Project Leader

Date: February 19, 2024

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumene code, the letter preceding "-en" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and or information provided by the customer. The samples in relation to this report are retained for a period of 30 days following transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. \ddagger The ISO/IEC 17025 Scope of Accreditation of CTT Group is available at www.gettg.com. In this report, the tests which number is followed by the symbol 9 are not covered by this accreditation. For eustomer's complete address, please refer to the email.

3000, avenue Boullé, Saint-Hyacinthe, QC, Canada, J2S 1H9 info@gcttg.com - T_(+1) 877 288-8378 - gcttg.com

ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr. Ian MacIntyre Tetra Tech

REMARKS:

Date: February 19, 2024 Report: 6710-001S-4A-en

- Consolidation

100 kPa 1 hour at 50 kPa, 4 hours at 100 kPa

- See graphs and pictures in Appendix.

200 kPa 1 hour at 50 kPa, 1 hour at 100 kPa, 4 hours at 200 kPa

400 kPa: I hour at 50 kPa, I hour at 100 kPa, I hour at 200 kPa, 4 hours at 400 kPa.

Prepared by

Marlon Bustos Marlon Bustos, MEng.

Technician

Approved by

Omar Kamla Omar Kamla, Eng.

Project Leader

Date: February 19, 2024

** Any question regarding this report or its authenticity? Please contact Omar Kamla **

The reports are identified by an alphanumeric code, the letter preceding "-on" refers to the revision number, emitted in ascending order. The electronic copy sent by CTT Group is the official report. The reported identification is based on what was observed on the received sample and or information provided by the customer. The samples in relation to this report are retained for a period of 30 days following transmission of the report. The above reported results refer exclusively to the samples submitted for evaluation. This analysis report cannot be partly used or reproduced, unless in whole, without CTT Group prior written consent. ‡ The ISO IEC 17025 Scope of Accreditation of CTT Group is available at www.gettg.com. In this report, the tests which number is followed by the symbol are not covered by this accreditation. For customer's complete address, please refer to the email.

3000, avenue Boullé, Saint-Hyacinthe, QC, Canada, J2S 1H9 info@gcttg.com - T..(+1) 877 288-8378 - gcttg.com

Shear Stress vs Horizontal Displacement

Shear Stress vs Normal Stress

Groupe CTT Inc. 3000, avenue Boullé, St-Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

Interface #4 - Test at 100kPa

GCL Bentomat ST#10 (woven side) after the test - Test at 100kPa

Groupe CTT Inc. 3000, avenue Boullé, St-Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

Interface #4 - Test at 200kPa

GCL Bentomat ST#10 (woven side) after the test - Test at 200kPa

Groupe CTT Inc. 3000, avenue Boullé, St-Hyacinthe, QC, Canada, J2S 1H9 T.:(+1) 877 288-8378

Interface #4 - Test at 400kPa

GCL Bentomat ST#10 (woven side) after the test - Test at 400kPa

STABILITY ANALYSIS RESULTS

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)			
			Foundation Materials	Mohr-Coulomb	20	0	16	0			
	Name: A01 - Fully Frozen - Static Shallow		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0			
	File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final.c	gsz	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0			
	Minimum Slip Surface Depth: 1 m		Tailings	Mohr-Coulomb	22.5	8	30	0			
	Horz Seismic Coef.:		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0			
	Scale. 1.1,251		Waste Rock	Mohr-Coulomb	24	0	40	0			
960											
950	FOS: 2.2										
940		\wedge	\land	\land \land \land							
930					N	\land	$\wedge \wedge$	\land	$\wedge \wedge $	\wedge	/
⊆ 02/			\sim		$\langle \rangle$	\square	$\left\{ \right\}$	\mathbb{K}	XY	\checkmark	
vatio		$/ \setminus$		$/ \setminus / \setminus$,	/ /	\land \land	$\langle \rangle$	$\langle - \rangle$	$\langle \ \rangle$		
бо Ш 910		\setminus /	\times \times \times	\overline{X}	$-\chi$	\rightarrow	$\leftarrow \downarrow$	\rightarrow	$\left\langle \right\rangle$		/
900		\rightarrow	\rightarrow	\times	$\left\langle \right\rangle$	$\angle \vee$	\bigvee	$/ \setminus$		\nearrow	\geq
			$/ \setminus / \setminus /$		$^{\prime}$	$ \ / \ $	$\wedge 7$	\setminus /	\sum / \sum	\times	
890	<u>`````````````````````````````````````</u>	$\overline{)}$		\times		\times \times	$\overline{}$	\times	\rightarrow		\geq
88		\rightarrow	\rightarrow	\times	$\langle - \rangle$	<u> </u>	$\langle \rangle$		$\langle \rangle$	\square	\geq
		7 🔪				\langle / \rangle				\bigwedge	
870	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	160	170 180 190	200 210	220 23	30 240	250 260	270	280	290	300
	Distance										

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
	Name: A02 - Fully Frozen - Static Deep		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final.	gs <mark>z</mark>	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Minimum Slip Surface Depth: 5 m		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Horz Seismic Coef.:		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
	Scale: 1:1,231		Waste Rock	Mohr-Coulomb	24	0	40	0	
96									
95	• FOS: 1.9								
94				$\wedge \wedge /$					
93						\land	$\wedge \wedge$		
C 92		$\overline{}$			$\langle \rangle$	\square	\mathbf{X}	Ť×	\times
vatio		/	$/ \setminus / \setminus$	$/ \setminus / \setminus /$	$/ \setminus /$	\land	$\langle \rangle$	$\langle \rangle$	
910 910		\setminus /			$-\chi$	\rightarrow	$\leftarrow \times$	\rightarrow	$\times \times$
90		-X	- <u>XX</u>	\times	$\hspace{-0.5ex}\hspace$		\setminus		
		$/ \setminus$	$/ \setminus / \setminus /$	$/ \setminus / \setminus /$	$\langle \ \rangle / \langle \ \rangle$	\backslash / \backslash	/ /	\setminus /	$\backslash / > <$
89		$\langle \rangle$		$\Lambda \Lambda$	\wedge	\land		\mathbf{X}	\rightarrow
88		\rightarrow	$- \times - \times -$	$X \rightarrow X \rightarrow$	$\leftarrow \times$	<u>X</u>	$\left \right\rangle \rightarrow$	$\langle - \rangle$	$\langle \rangle$
97		/				\bigvee			
67	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	160	170 180 190	200 210	220 23	30 240	250 260) 270	280 290 300
	Distance								

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
	Name: A03 - Fully Frozen - Pseudostatic Shallow		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final. Method: Morgenstern-Price	gsz	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Minimum Slip Surface Depth: 1 m		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Horz Seismic Coef.: 0.139		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
			Waste Rock	Mohr-Coulomb	24	0	40	0	
96									
95) — FOS: 1.5								
94		$ \land $	\wedge	$\wedge \wedge /$					
93					N		$\land \land$	\bigwedge	
5 92					$\langle \rangle$		\checkmark	ĬX	XXX
evatio		$/ \setminus$		$/ \setminus / \setminus$		\land	\bigwedge	$\langle \rangle$	
и 91		\setminus /	\land		\mathbf{X}	\times	$\leftarrow \times$	\rightarrow	$\times \times$
90		-X	- <u>XX</u>	\times	$\hspace{-0.1cm} \hspace{-0.1cm} -0$	$\leftarrow \downarrow$	\bigvee	\checkmark	
		$/ \setminus$	$/ \setminus / \setminus /$	$/ \setminus / \setminus /$	$\langle \ \rangle / \rangle$	\backslash / \backslash	$/ \setminus /$	\setminus /	\backslash / \rightarrow
89	`\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\langle \rangle$			\wedge	\times		\mathbf{X}	
88		\rightarrow	$ \rightarrow $	X - X - X	$\leftarrow \times$	<u></u>	$\left. \right\rangle \rightarrow$	$\langle - \rangle$	\leftarrow
07		/ _				\bigvee			
6/	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	160	170 180 190	200 210	220 23	30 240	250 260) 270	280 290 300
	Distance								

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
	Name: A04 - Fully Frozen - Pseudostatic Deep		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final. Method: Morgenstern-Price	gs <mark>z</mark>	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Minimum Slip Surface Depth: 5 m		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Horz Seismic Coef.: 0.139 Scale: 1:1.231		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
			Waste Rock	Mohr-Coulomb	24	0	40	0	
960									
95(• FOS: 1.3								
94(_				
			\wedge	A = A = I					
93(\bigwedge					\bigwedge	\bigwedge	
93(920								\mathcal{H}	XX
Blevation 920 910									
Elevation 126 006									
930 920 910 900									
¹²⁶ Elevation 116 Elevation 100 800	2) 2) 2) 2) 2) 2) 2) 2) 2) 2)								
116 Elevation 119 119 119 119 119									
.59 921 910 910 900 880 880									

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)			
			Foundation Materials	Mohr-Coulomb	20	0	16	0			
	Name: A05 - Fully Thawed - Static Shallow		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0			
	File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final. Method: Morgenstern-Price	gs <mark>z</mark>	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0			
	Minimum Slip Surface Depth: 1 m		Tailings	Mohr-Coulomb	22.5	8	30	0			
	Horz Seismic Coef.:		Till - Thawed	Mohr-Coulomb	19.1	0	30	0			
			Waste Rock	Mohr-Coulomb	24	0	40	0			
960	Г										
950	• FOS: 2.1										
940				$\bigwedge \bigwedge /$							
930							\bigtriangleup	\bigwedge	\sim	$ \land $	/
920 gtion		\bigwedge	\land	\land	$\overline{\left\langle \cdot \right\rangle}$	$\not\leftarrow$	\rightarrow		\square		\geq
910										\times	
900											
890											
880											
870		160	170 180 190	200 210	220 2'	30 240	250 260) 270	280	290	300
	Distance			200 210	220 20	240	200 200	210	200	200	000

	Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
		Foundation Materials	Mohr-Coulomb	20	0	16	0	
Name: A06 - Fully Thawed - Static Deep		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final. Method: Morgenstern-Price	gsz	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
Minimum Slip Surface Depth: 5 m		Tailings	Mohr-Coulomb	22.5	8	30	0	
Horz Seismic Coef.:		Till - Thawed	Mohr-Coulomb	19.1	0	30	0	
Scale. 1.1,231		Waste Rock	Mohr-Coulomb	24	0	40	0	
30								
50 — FOS: 2.1								
	\sum		\sim					
	$\langle \rangle$				\mathbb{N}			

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)			
			Foundation Materials	Mohr-Coulomb	20	0	16	0			
	Name: A07 - Fully Thawed - Pseudostatic Shallow		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0			
	File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final. Method: Morgenstern-Price	gs <mark>z</mark>	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0			
	Minimum Slip Surface Depth: 1 m		Tailings	Mohr-Coulomb	22.5	8	30	0			
	Horz Seismic Coef.: 0.139		Till - Thawed	Mohr-Coulomb	19.1	0	30	0			
	Stale. 1.1,231		Waste Rock	Mohr-Coulomb	24	0	40	0			
960	Г										
950	FOS: 1.4										
940 930									$\langle \rangle$		
920 910 900 890 880											
670	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	160	170 180 190	200 210	220 23	0 240	250 260	270	280	290	300
	Distance										

	Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
		Foundation Materials	Mohr-Coulomb	20	0	16	0	
Name: A08 - Fully Thawed - Pseudostatic Deep		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
File Name: WARC04307-02_Section A_3.25-1Tails_Interior Berm_SG4-1-final. Method: Morgenstern-Price	gs <mark>z</mark>	Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
Minimum Slip Surface Depth: 5 m		Tailings	Mohr-Coulomb	22.5	8	30	0	
Horz Seismic Coef.: 0.139		Till - Thawed	Mohr-Coulomb	19.1	0	30	0	
Scale: 1.1,231		Waste Rock	Mohr-Coulomb	24	0	40	0	
940 -	\bigwedge	\mathbb{A}						
930 -					\searrow	$\land \land$	/ /	
				Ň				

Name: B01 - Fully Frozen - Static Shallow: Tektow: Morgonstern-Price Minimum Silp Surface Depth: 1m. Horz Seismic Coel: 			Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
Ame: B01 - Fully Frozen - Static Shallow File Name: WARC04307-02 Section B_3.25-1Tails_Interior Berm_SG4.1gs Minimum Silp Surface Depth: 1 m Horz Seismic Coef:				Bedrock	Bedrock (Impenetrable)					
Name: B01 - Fully Frozen - Static Shallow File Name: WARCO4307-02_Section B_3.25-1Tails_Interior Berm_SG4.1gz Minimum Slip Surface Depth: 1 m. Horz Seismic Coef:				Foundation Materials	Mohr-Coulomb	20	0	16	0	
Method: Morgenstem-Price Minimum Slip Surface Depth: 1 m Horz Seismic Coef: FOS: 2.2 FOS: 2.2 FOS: 2.2 FOS: 2.2 FOS: 2.2 FOS: 2.2 FOS: 2.2 FOS: 2.2		Name: B01 - Fully Frozen - Static Shallow File Name: WARC04307-02 Section B 3.25-1Tails Interior Berm SG4-1.gsz		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
Horz Seismic Coef.:		Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
FOS: 2.2 FOS: 2		Horz Seismic Coef.:		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
FOS: 2. FOS: 2. FOS	960			Waste Rock		24	0	40	0	
FOS: 2.2	950									
u d d d d d d d d d d d d d d d d d d d		FOS: 2.2 \bullet								
u de la construcción de la const	940		\bigwedge	$\wedge \wedge$				0		
p p p p p p p p p p p p p p p p p p p	930				$\wedge \wedge$	\sim	\searrow	$\langle \rangle \rangle$	\bigvee	$ \land \land \land / $
u d d d d d d d d d d d d d d d d d d d	920		\wedge			$\langle \rangle$	$\langle \rangle$	$\bigvee \setminus$	\bigwedge	XXX
B B	vation ⁰⁰⁶			\times	$\left\langle \right\rangle \left\langle \right\rangle$	$\left \right\rangle$	X	\bigwedge	X	XXX
$S_{interview}^{interview}$	<u>Ф</u> Ш 890		$\langle \rangle$	$\langle \rangle \langle \rangle$		$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\langle \rangle$	X	
$\begin{array}{c} 860 \\ 850 \\ 840 \\ 0 \end{array} \\ 20 \end{array} \\ 20 \end{array} \\ 40 \end{array} \\ 60 \end{array} \\ 80 \end{array} \\ 80 \end{array} \\ 100 \end{array} \\ 120 \end{array} \\ 140 \end{array} \\ 160 \end{array} \\ 180 \end{array} \\ 200 \end{array} \\ 20 \end{array} \\ 240 \end{array} \\ 260 \end{array} \\ 280 \end{array} \\ 300 \end{array}$	880					$\langle \rangle$			Ŕ	
840 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 Distance	860 850		\mathbf{X}					$\left\{ \right\}$	\mathbf{X}	
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300	840			\bigvee		\bigvee	\bigvee \setminus	$/$ \vee		
		0 20 40 60 80 100 120 140 160	180	200	220	240	26	0	280	300 3

									Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
										Bedrock	Bedrock (Impenetrable)					
										Foundation Materials	Mohr-Coulomb	20	0	16	0	
		Name: B02 - F File Name: WA	ully Frozen - RC04307-02	Static Dee 2 Section E	р 3 3.25-1Та	ils Interior	Berm SC	64-1.gsz		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
		Method: Morge	nstern-Price		_	_	_	0		Tailings	Mohr-Coulomb	22.5	8	30	0	
		Minimum Slip S	Surface Dept	h: 5 m						Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
	000		001							Waste Rock	Mohr-Coulomb	24	0	40	0	
	900															
	950 —		FOS: 2.0													
	940 —								Á	ÁÀ						
	930 —										$\wedge \wedge$	\bigwedge	\mathbf{n}	\square	\bigwedge	$ \land \land \land \land \land$
	920 —								\backslash			$\langle \rangle$	\sim	\bigvee	\bigwedge	XXX
c	910				$\land \mathrel{>}$	$\leftarrow \times$	K		\times	X-X-	\rightarrow	\rightarrow	\checkmark	\bigtriangleup	\backslash	$\langle \land \land \rangle$
/atio	900	\times	\times	$\langle \rangle$	\nearrow			\times	\rightarrow	$\rightarrow \rightarrow$	$\langle \cdot \rangle \langle \cdot \rangle$	/ /	/ /		\bigwedge	\times
Ele		V K K	K	$\langle \rangle$	K	\wedge /	$\backslash \times$	\checkmark	\checkmark	\checkmark	\bigvee	\bigvee	///	\bigwedge	$\overline{\mathbf{X}}$	\rightarrow
	890	$\land \land \land \land$	X	\rightarrow		$+ \times$	-X-X			$\langle \ \rangle / \rangle / \rangle$	$/ \setminus / \setminus /$	$\overline{\langle}$	$ \land \land $	$\overline{\mathbf{X}}$	\times	
	880	\times	XX/	\bigvee		$ \backslash / $	\checkmark	\times / \setminus	\mathbf{X}	\bigwedge	\rightarrow X	\rightarrow	$\prec \rightarrow$	$\leftarrow \times$	\prec	
	870	$\langle \rangle \rangle$		$\land \triangleright$	\times	X	$\wedge \star$	\overline{X}	\longrightarrow		X - X	$\langle - \rangle$	$- \times$	\rightarrow	$\langle - \rangle$	$\langle \times$
		\land	XT	\mathbb{X}		$ \rightarrow $	<u> </u>	\bigvee	\bigvee `	\bigvee		\backslash	\setminus / \setminus	$/ \setminus /$	\searrow	\rightarrow \mid >
	860			\times	\land / \setminus	\times		$\wedge \wedge$	\bigwedge	$\land \land$	$\land \land$	\wedge	\land /	$ \land \land $		$// \times$
	850	$\times \wedge \times$	\times	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	$\leftarrow \times$	- X - X	$- \times \times$	\rightarrow	$\rightarrow \rightarrow$	$\langle - X \rangle$	$\leftarrow \times$	<u> </u>	-X	Х—	\times
	840		/ / /	$/$ $/$ $^{}$	\bigvee			\bigvee \bigvee		\checkmark		$\mathbf{\nabla}$	$\bigtriangledown \setminus$	$/$ \backslash		
	0	20 40	60	80	100	120	140	160	180	200	220	240	260	D	280	300 32
								Distance								

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Bedrock	Bedrock (Impenetrable)					
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
	Name: B03 - Fully Frozen - Pseudostatic Shallow File Name: WARC04307-02 Section B 3.25-1Tails Interior Berm SG4-1.gsz		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Minimum Slip Surface Depth: 1 m Horz Seismic Coef : 0 139		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
96(Waste Rock	Mohr-Coulomb	24	0	40	0	
500									
950	FOS: 1.4								
940		Á							
930				$\wedge \wedge$	\bigwedge		\square	\bigwedge	$\land \land \land \land$
920					$\langle \rangle$	\bigwedge	\bigvee	\bigwedge	XXX
_ 910		\longleftarrow	$\times \times$	\rightarrow	λ	\bigvee	$/ \setminus /$	\backslash	$\langle \land \land \rangle$
atior		\searrow	\rightarrow	/ / /	/ /	/ / /	\square	\bigwedge	\times \times \times
			$\langle / \rangle /$	$\backslash / \backslash /$	\backslash	\bigwedge	XX	\rightarrow	
ш 890			$\langle \rangle$	X X	\times	X - X	\rightarrow	\swarrow	
880		\times	X - X	$- \times \times$	$-\chi$	\rightarrow	$\leftarrow \!$	\rightarrow	
07($ \longrightarrow $		\checkmark			$\langle \rangle$	\searrow	
8/(\langle / \rangle	$\sqrt{2}$	$ \ / \ /$		$\backslash \land$	\bigwedge	\frown	
860		\times	XX	$\times \times$	\times	\times	$\left\{ \begin{array}{c} X \end{array} \right\}$		
850		\rightarrow	\rightarrow	$\langle \cdot \rangle$	$ \longrightarrow $	<u> </u>		\bigvee	\times
		\langle / \rangle		$\backslash / \backslash /$	\sum	\backslash / \backslash	$/ \setminus /$		
840	0 20 40 60 80 100 120 140 160	180	200	220	240	260	J	280	300 32
	Distance								

				Material Model	(kN/m ³)	(kPa)	Angle (°)	(°)	
			Bedrock	Bedrock (Impenetrable)					
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
	Name: B04 - Fully Frozen - Pseudostatic Deep File Name: WARC04307-02_Section B_3.25-1Tails_Interior Berm_SG4-1.gsz		Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Minimum Slip Surface Depth: 5 m Horz Seismic Coef : 0 139		Till - Ice Rich	Mohr-Coulomb	11.8	0	30	0	
96			Waste Rock	Mohr-Coulomb	24	0	40	0	
90									
95	• FOS: 1.4								
94		Á							
93				$\wedge \wedge$	\bigtriangleup	\mathbb{N}	\land	$\langle \wedge \rangle$	$\land \land \land \land$
92		\nearrow			\bigwedge	\bigwedge	\bigvee	\wedge	XXX
_ 91		\longleftarrow	$\times \times$	\rightarrow	\sum	\bigvee	$ \land /$		
ation		\searrow			$/ \setminus$ /	$ \land \land$	\mathbf{X}	\times	X + X + X
00 90			$\backslash / \backslash /$	$\backslash \land \land$	$\overline{\mathbf{A}}$		X - X	\rightarrow	$\langle \rangle \rangle \times$
Ш 89		$\langle /$	\times	X X	\times	X - X	\rightarrow	\swarrow	
88		+	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	-		$\leftarrow \lor$		\bigwedge
				\checkmark	$\angle \setminus$	$/ \setminus /$	\backslash / \rangle	\searrow	
87		$ \land \land$	$\backslash / /$	$\land \land \land$	$\backslash /$	$\backslash \land$	\bigwedge	$\swarrow/$	
86			$X \to$	\times \times	\times	\times			
85		\rightarrow	$\rightarrow \rightarrow$	$\langle - \rangle \rangle$	$ \longrightarrow $	<u> </u>		\searrow	\times \vee \vee
		$\langle \rangle$	$\langle / \langle \rangle /$	$\setminus / \setminus /$	\sum	\backslash / \backslash	$/ \setminus /$		
84	0 20 40 60 80 100 120 140 160	180	200	220	240	26	0	280	300
	Distance								

Color Name

Slope Stability Unit

Effective Effective Phi-B

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Bedrock	Bedrock (Impenetrable)					
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
			Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	Name: B05 - Fully Thawed - Static Shallow File Name: WARC04307-02_Section B_3.25-1Tails_Interior Berm_SG4-1.gsz		Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Minimum Slip Surface Depth: 1 m		Till - Thawed	Mohr-Coulomb	19.1	0	30	0	
060			Waste Rock	Mohr-Coulomb	24	0	40	0	
900									
950	FOS: 2.1								
940		\wedge							
930		$ \land $						\wedge	
920								X	
⁹¹⁰		×	\land	XX	\times	\times	\rightarrow	$\left\langle \right\rangle$	\times
⁰⁰⁰ Ele va		\bigwedge	\bigwedge	\mathbf{X}	\checkmark	\sum	\times	\times	\mathbf{X}
880		\checkmark	\rightarrow			\sum	Δ	\sum	
070					$/ \setminus$		\bigvee	\square	
870		\langle / \rangle	$\overline{ / / / }$	$\setminus \land \land$	$\backslash \land$	$\backslash \land$	\wedge 7	\diagdown	
860		X	XX	$\times \times$	$\overline{\mathbf{X}}$	XX		\wedge	
850		\rightarrow	$\rightarrow \rightarrow \rightarrow$		\longrightarrow	\rightarrow	\rightarrow	$\left\langle - \right\rangle$	\leftarrow
040			\bigvee		\bigvee	$\sqrt{}$			
040	D 20 40 60 80 100 120 140 160	180	200	220	240	260		280	300 320
	Distance								

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Bedrock	Bedrock (Impenetrable)					
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
			Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	Name: B06 - Fully Thawed - Static Deep File Name: WARC04307-02 Section B 3.25-1Tails Interior Berm SG4-1.gsz		Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Minimum Slip Surface Depth: 5 m Horz Seismic Coef		Till - Thawed	Mohr-Coulomb	19.1	0	30	0	
060			Waste Rock	Mohr-Coulomb	24	0	40	0	
900									
950	FOS: 2.1								
940		\wedge							
930		\bigwedge						\wedge	$\land \land \land \land$
920								X	\times
⊆ ⁹¹⁰		\times	$\times \times$	X - X	\times	$\times \times$		\bigvee	$\$
006 Vatic		\rightarrow	$\rightarrow \rightarrow \rightarrow$	$ \rightarrow $	-	\rightarrow	\swarrow	\bigwedge	\times \land \triangleright
ш 890		$\langle - \rangle$	\times	\times	$\left\langle \cdot \right\rangle$	$\langle - \rangle$	\rightarrow	\langle	\times
880		\times	$- \times - \times$	\rightarrow	$-\chi$	\times	$\langle - \rangle$	\searrow	
870		\longrightarrow		$\langle \rangle \rangle$		/ /	\searrow	\square	
010		\langle / \rangle	$\backslash / \backslash /$	/ / / /	\backslash / \backslash		$/ \setminus /$	\mathbf{n}	\rightarrow
860		\times	XX	\times \times	\mathbf{X}	\times \times	$\overline{\mathbf{X}}$	\wedge	\wedge
850		\rightarrow	$- \times - \times$	<u> </u>	-	\rightarrow	\rightarrow	$\langle - \rangle$	\leftarrow
040			\bigvee		\bigvee	\bigvee		\sim	
040	0 20 40 60 80 100 120 140 160	180	200	220	240	260		280	300 32
	Distance								

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Bedrock	Bedrock (Impenetrable)					
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
			Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	Name: B07 - Fully Thawed - Pseudostatic Shallow File Name: WARC04307-02_Section B_3.25-1Tails_Interior Berm_SG4-1.gsz		Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Minimum Slip Surface Depth: 1 m Horz Seismic Coef : 0 139		Till - Thawed	Mohr-Coulomb	19.1	0	30	0	
960			Waste Rock	Mohr-Coulomb	24	0	40	0	
500									
950	FOS: 1.4								
940		\wedge					-		
940 930		\bigwedge						\wedge	
940 930 920								\bigwedge	
940 930 920									
940 930 920 6									
940 930 920 910 900									
940 930 920 900 900									
940 930 920 910 900 890									
940 930 920 910 900 890 880									
940 930 920 910 900 890 880 870									
940 930 920 910 900 890 880 870									
940 930 920 910 900 890 880 870 860									
940 930 920 900 890 880 880 860 850									
940 930 920 910 900 890 880 870 860 850 840									

		Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	
			Bedrock	Bedrock (Impenetrable)					
			Foundation Materials	Mohr-Coulomb	20	0	16	0	
			Gravel Drainage Blanket	Mohr-Coulomb	24	0	35	0	
	Name: B08 - Fully Thawed - Pseudostatic Deep File Name: WARC04307-02_Section B_3.25-1Tails_Interior Berm_SG4-1.gsz		Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0	
	Method: Morgenstern-Price		Tailings	Mohr-Coulomb	22.5	8	30	0	
	Minimum Slip Surface Depth: 5 m Horz Seismic Coef : 0 139		Till - Thawed	Mohr-Coulomb	19.1	0	30	0	
960 r			Waste Rock	Mohr-Coulomb	24	0	40	0	
050									
950 -	FOS: 1.4								
950 - 940 -	- FOS: 1.4	\wedge							
950 - 940 - 930 -	- FOS: 1.4								
950 - 940 - 930 - 920 -									
950 - 940 - 930 - 920 -									
950 - 940 - 930 - 920 - 910 -	FOS: 1.4								
950 - 940 - 930 - 920 - 910 - 900 - 890 -	FOS: 1.4								
950 - 940 - 930 - 920 - 920 - 900 - 800 - 880 -	FOS: 1.4								
950 - 940 - 930 - 920 - 910 - 900 - 880 - 880 -	FOS: 1.4								
950 - 940 - 930 - 920 - 920 - 920 - 900 - 880 - 880 - 880 -	FOS: 1.4								
950 - 940 - 930 - 920 - 920 - 920 - 920 - 920 - 880 - 880 - 880 - 870 -	FOS: 1.4								
950 - 940 - 930 - 920 - 920 - 920 - 920 - 920 - 800 - 880 - 880 - 860 - 860 - 850 -	FOS: 1.4								
950 - 940 - 930 - 920 - 920 - 920 - 920 - 920 - 940 - 880 - 880 - 860 - 850 -	FOS: 1.4								

									Distance									
	840 🗖	20	40	60	80	100	120	140	160	180	200	220	240	260		280	300	320
	850	\star	\times	\mathbf{X}	$\times \times$			\bigwedge		$\langle \rangle$	XX	$\overline{\mathbf{X}}$			λ		\mathbf{X}	\times
	860	$\times/$		\times	$\langle \rangle$	$\left< / \right>$	\times	\backslash / \backslash	$\land \land$	\bigwedge	\land \land	$\land \land$	\bigwedge	\land		\square		$\left\{ \right\}$
	8/0			XX	\mathbb{X}								$\backslash \land$		\bigwedge	\bigvee	\searrow	$\left \right>$
	~	\bigwedge	\bigwedge	$\langle \times \rangle$	XK		\times	\times	$\langle \rangle$	$\langle \rangle$		/ /	$/ \setminus$	///	$\bigvee \land$	\land	\land	
	880		\mathbf{M}	\times	\rightarrow	KD	\star	$\langle \rangle$	$\langle \rangle \times$	\sim	\rightarrow			\bigvee	\bigtriangleup	\searrow	$\langle \rangle$	$\left \right $
Шe	890			\mathbf{X}	$\langle \rangle$	k			\times	$\left \right\rangle$	$\overline{-}$	\times	$\left\langle \right\rangle$	\square	\sum	\mathbf{X}	${\times}$	\sum
vatic	900	$X \times [$	XX	Δ		\land	$\langle \rangle$	\times	$X \rightarrow $	\longrightarrow	$\rightarrow \rightarrow \rightarrow$	$ \rightarrow $	\longrightarrow	\rightarrow	\bigwedge	\bigwedge	$\times \wedge$	\sum
Ē	910 _		1		\mathbf{X}		$\leftarrow \times$	\mathcal{T}	$\langle \rangle$	\times	\times \times	$\times \times$	\times	$\times \times$	\sim	\bigvee^{\wedge}		
	920 –							\bigtriangledown		$\langle \rangle$	$\langle \rangle$	$\langle \times \rangle$	$\leftarrow \times$	\rightarrow	\times			\mathbf{X}
	930 —							\bigwedge		1		$ \land \land \land \land$	\rightarrow	\searrow	\bigtriangleup	\bigwedge	\mathbf{M}	$\backslash \land$
	940 —										$\wedge \wedge$					0		
	950 —		FO	S: 1.6	•													
	960																	
		Horz Seis	smic Coef.	:							Tailings	Mohr-Coulomb	22.5	8	30	0		
		Method: Minimum	Morgenste Slip Surfa	rn-Price ice Depth	n: 10 m						Loose Gravel Cover	Mohr-Coulomb	21.1	0	30	0		
		File Nam	e: WARCO	4307-02	_Section E	ас Deep 3_3.25-1Та	ils_Interio	r Berm_S	G4-1.gsz		Foundation Materials	Mohr-Coulomb	20	0	16	0		
		Nome, D	00 Found	lation An	alvaia Cta	tia Daan					Bedrock	Bedrock (Impenetrable)						

Slope Stability Material Model

Color

Name

Unit Weight (kN/m³) Effective

Cohesion

(kPa)

Effective Phi-B

Friction (°)

Angle (°)

		Distance									
	840 0	20 40 60 80 100 120 140 160	180	200	220	240	260		280	300	320
	850 4		$\overline{\mathbf{X}}$	X	$\langle \rangle \rangle$			$\overline{\mathbf{A}}$	$\mathbf{X}_{\mathbf{Z}}$	\times	\swarrow
	860 4	$\times/\times\times\times\times\times\wedge\wedge\wedge\times$	$\overline{\mathbf{X}}$	XX	\times \times		X				\langle
	870		\backslash	\backslash	\square		$\overline{\mathbf{A}}$	\bigwedge			
	880			\square	$ \land \land $	\bigwedge	\bigwedge		\mathbb{X}	\nearrow	>
	090		\bigvee					$\overline{\boldsymbol{\lambda}}$	$\langle \rangle$		\langle
Ele	890		\times	\times				$ \land \land$	\mathbf{X}		$\langle \rangle$
/atio	900		\rightarrow	$\rightarrow \rightarrow \rightarrow$	$ \longrightarrow $	\bigtriangleup		\bigwedge	\bigwedge	$\times \times$	\nearrow
c	910		\times	X-X-	$\times \times$	λ	\times		\backslash	XX	\nearrow
	920		$\left[\right]$	\rightarrow	$\langle \times \rangle$	$\langle \cdot \rangle$	\sim	$\bigvee \land$	\square	\times	\times
	930			KK	$\nabla \nabla X$	\searrow	\searrow	\bigtriangleup	\bigwedge	$ \land \land$	$ \land $
	940 -			$\wedge \wedge$							
	950 -	FOS: 1.0									
	960	-			1	-			1	1	
		Minimum Slip Surface Depth: 10 m Horz Seismic Coef.: 0.139		Cover Tailings	Mohr-Coulomb	22.5	8	30	0		
		Method: Morgenstern-Price		Materials Loose Gravel	Mohr-Coulomb	21.1	0	30	0		
		Name: B10 - Foundation Analysis - Pseudostatic Deep File Name: WARC04307-02, Section B, 3 25-1Tails, Interior Berm, SG4-1 asz		Foundation	(Impenetrable) Mohr-Coulomb	20	0	16	0		
				Bedrock	Bedrock						

Slope Stability Material Model

Color

Name

Unit Weight (kN/m³) Effective

Cohesion

(kPa)

Effective Phi-B

Friction (°)

Angle (°)

Distance

APPENDIX F

GEOTHERMAL MODEL FIGURES

Source: Riahi et al, 2016

