WELL HISTORY REPORT

for

SOCONY MOBIL WESTERN MINERALS

BIRCH YT B-34 3.74 Latitude 66° 03° 3.44" N Longitude 136° 51° 17.51" W

Socony Mobil Oil of Canada, Ltd.
Dawson Creek District

G. A. Atkinson DISTRICT GEOLOGIST

INDEX

SECTION I - Summary of Well Data (a) Well Name and Number Page 1 (b) Permittee 1 (c) Operator 1 (d) Location (f) Permit 1 (g) Drilling Contractor 1 (h) Drilling Authority 1 (i) Classification 1 (j) Elevations 1 (k) Spudded 1 (m) Total Depth (n) Well Status (o) Rig Released 2 (p) Hole Size 2 (q) Casing 2 SECTION II - Geological Summary (a) Formation Tops 3 (b) Cored Intervals 3 (c) Core Descriptions 4 (d) Sample Description 13 SECTION III - Engineering Summary (a) Report of Drill Stem Tests 21 (b) Casing Record 21

	for _		
(e)	Bit Record	Page	22
(d)	Mud Report	88	26
(e)	Deviation Record	12	27
(1)	Abandonment Plugs	12	28
(g)	Lost Circulation	88	28
(h)	Report of Blowouts	19	28
SECTION	IV - Logs	12	29
SECTION	V - Analysis		
(a)	Core Analysis	60	30
(b)	Water Analysis	88	30
(c)	Gas Analysis	92	30
(d)	Oil Analysis	23	30
SECTION	VI - Completion Summary	17	31
APPENDIC	CES		

LAB REPORT E 25609-1 (Water Analysis) LAB REPORT E 25609-2 (Water Analysis) LAB REPORT E 25609-3 (Water Analysis) LAB REPORT E 25609-4 (Water Analysis) LAB REPORT E 25584 (Gas Analysis) LAB REPORT E 25585 (Gas Analysis)

ATTACHMENTS

Schlumberger Logs (ML-C, BHCS-GR-C, IES, CDM, SRS) D.S.T. Technical Reports (1-9) LAB REPORT F 2323 (Core Analysis) LAB REPORT F 2323 (Core Analysis)

WELL HISTORY REPORT

SECTION I - Summary of Well Data

(a) Well Name and Number: Socony Mobil Western Minerals

Birch YT B-34

(b) Permittee: Western Minerals Ltd.

(c) Operator: Socony Mobil Oil of Canada, Ltd.

(d) Location: Unit B Section 34

Grid N 66° 10'; W 136° 45'

Iatitude 66° 031 3.44" N

Longitude 136° 51 17.51" W

(f) Permit: 3366

(g) Drilling Contractor: Parker Drilling Co. of Canada Ltd.

Rotary Rig #10

(h) Drilling Authority: 156; April 7, 1965

(i) Classification: New Field Wildcat

(j) Elevations: Ground 2177 feet

K.B. 2190 feet

(k) Spudded: April 8, 1965

(1) Completed Drilling: June 2, 1965

(m) Total Depth: Driller 5413 feet

(n) Well Status:

Exyxexement Gas Well protectively plugged and fitted with Wellhead

(o) Rig Released:

June 8, 1965

(p) Hole Size:

12 1/4" to 600 feet

8 5/8" to 5413 feet

(q) Casing:

9 5/8", 36#, J=55 to 599 K.B.

SECTION II - Geological Summary

(a)	Formation Tops		Sample Depth E	Tops Llevation	E-log Tops Depth Elevation
	Cretaceous:				
	New formation	n	Surface	<i>f</i> 2177	
	Permo-Pennsylva	nian:			
	Alder format	ion	950	∤1240	952 #1238
	Mississippian				
	Parkin Creek		5318	-3128	5302 -3112
(b)	Cored Intervals	i			
	Core Number	From	To	Rec.	Formation
	1	944	964	201	New formation-Alder formation
	2	1289	1309	18*	Alder formation
	3	2161	2171	9.4	Alder formation
	4	2320	2330	9.7*	Alder formation
	5	3594	3604	9.7	Alder formation
	6	4622	4631	8.7	Alder formation
	7	4893	48987	2.91	Alder formation
	8	5047	5052	5.0*	Alder formation

(c) Core Descriptions

Diamond Core #1

Lower Cretaceous & Permo-Pennsylvanian

944 - 964 Recovered 20'

Coring times:

52, 40, 30, 21, 28, 21, 28, 30, 28, 30, 23, 5, 5,

10, 6, 14, 19, 11, 14, 15 minutes per foot.

944 - 949.5

5.5

Shale, black to dark grey, slightly silty, micro-

micaceous, pyritic, with some bentonite?, plant

fragments, polished parting surfaces.

949.5 - 950.8

1.3

Sandstone, light grey, very fine to fine grained,

subangular, subrounded, medium sorting, slight

trace porous.

950.8 - 954.7

3.91

Shale, black to dark grey, slightly silty, micro-

micaceous, pyritic, plant fragments, polished

parting surfaces, occasional sand grains.

954.7 - 955.3

0.6

Dolomite, light buff grey to buff white, clear

quartz grains and grey, blue, milky and white

chert pebbles.

955.3 - 956.4

1.1

Conglomerate, dark grey, very fine to coarse, sub-

rounded to rounded, poor sorting, clear quartz

and pebbles and grains of grey, blue, milky and white chert and slightly calcareous in parts, bottom mainly bitumen cement. Parts show 5% porosity and have fair hydrocarbon cut, no petroliferous odour.

956.4 - 964

7.6

Sandstone, light grey, medium to coarse, subangular to subrounded, medium sorting, clear
quartz with some coloured chert, siliceous
cement and slightly calcareous in parts, maximum porosity 15%, no petroliferous odour, good
hydrocarbon cut.

Thin conglomerate bands occur in this sandstone at 957 - 957.5', 959.3 - 960.3', 960.7 - 961.0' and 961.6 - 961.9. Chert pebbles are scattered throughout the sandstone.

Diamond Core #2

Permo-Pennsylvanian

1289 - 13091 Recovered 181

Coring times:

17, 23, 13, 15, 16, 18, 19, 14, 17, 17, 18, 25, 29, 28, 28, 33, 24, 15, 21, 25 minutes per foot.

1289 - 1289.6

0.6

Conglomeratic sandstone, light grey, very fine to coarse grained, subrounded, to rounded, poor sorting, slightly silty, clear and white quartz grains,

coloured chert, minor pyrite and glauconite, oil stain and hydrocarbon cut, 5% maximum porosity.

1289.6 - 1291.5

1.9

Sandstone, light buff grey, very fine to coarse grained but mainly fair to medium, subangular, subrounded, medium sorting, clear and white quartz grains, coloured chert, minor pyrite and glauconite, one large mud pebble at 1290.5 and large chert pebbles at 1291.5, some siliceous cement, oil stain and good hydrocarbon cut, 5% maximum porosity.

1291.5 - 1294

2.51

Sandstone, as above but very fine to fine grained, conglomeratic band 1291.7 - 1291.9 varicoloured chert pebbles, trace porosity.

1294 - 1294.6

0.6

Sandstone, dark buff brown, very fine to coarse grained, slightly silty, subrounded, rounded, medium sorting, quartz and chert grains with minor pyrite and glauconite, fairly friable when broken, bitumen cement, oil stain and extremely good hydrocarbon cut.

1294.6 - 1295.1

0.5

Conglomerate, as above with pebbles up to 2.5 cm, extremely good hydrocarbon cut, exudes bitumen cement when heated.

1295.1 - 1295.4

0.3*

Sandstone, light grey, very fine to fine grained, subangular, good sorting, quartz grains with occasional chert grains, minor pyrite and glauco-nite, trace porosity.

1295.4 - 1295.7

0.3*

Same as sandstone, 1294.6 - 1295.1.

1295.7 - 1296.61

Sandstone, light grey, very fine to fine grained, subengular, good sorting, quartz grains, some chert, slightly glauconitic, silty, coarse chert grains in basal 0.5 feet.

1296.6 - 1297.5

0.91

Sandstone, medium buff brown, very fine to coarse grained, subangular to rounded, poor sorting, quartz and chert grains, silty matrix, good oil stain and good hydrocarbon cut.

1297.5 - 1303.0

6.41

Shale, medium to dark grey, silty, pyrite throughout, carbonaceous streaks, plant fragments.

1303.9 - 1305.2

1.3

As above but grading into sandstone, same as 1296.6 -

1305-2 - 1305-7

0.5

Sandstone, buff brown to brown, very fine to coarse grained, conglomeratic, subrounded to rounded, poor

sorting, bitumen cement, good oil stain, excellent oil cut, porosity up to 10%, extremely friable and core is all broken from this point to the base.

1305.7 - 1307.0

1.3

Sandstone, buff brown, very fine to fine grained, subangular, good sorting, bitumen cement exudes when heated,
good oil stain and oil cut, trace porosity, two coarse
grained sandstone bands at 1306.1 - 1306.2 and basal
0.15 feet of core. Fractured and broken up.

Diamond Core #3

Permo-Pennsylvanian Alder

2161 - 2171 Recovered 9.4

Coring times:

30, 32, 30, 31, 34, 30, 34, 35, 38, 36 minutes per foot.

2161.0 - 2170.4

9.4

Shale, dark grey to black, slightly calcareous or dolomitic?, slightly silty, micromicaceous, pyritic.

2164.8 - 2165.1 very calcareous band, light grey, similar thin calcareous bands near bottom of interval.

Diamond Core #4

Permo-Pennsylvanian Alder

2320 - 2330 Recovered 9.7

Coring times:

28, 46, 32, 31, 34, 35, 32, 32, 29, 33 minutes per foot.

2320.0 - 2321.9

1.9

Sandstone, light grey, salt and pepper, quartz, chert, pyrite and occasional glauconite, medium to coarse grained, subrounded, well sorted, calcite matrix and cement, tight, in part current bedded.

2321.9 - 2323.6

1.7

Shale, dark grey to black, slightly silty, micromicaceous, pyritic, plant fragments.

2323.6 - 2324.0

0.4

Siltstone, light grey, white and clear quartz grains, calcite cement, slightly pyritic.

2324.0 - 2329.71

5.71

Shale, dark grey to black, slightly silty, micromicaceous, pyritic, carbonaceous streaks, plant fragments, occasional brachiopods along partings.

Diamond Core #5

Permo-Pennsylvanian

3594 - 3604 Recovered 9.7

Coring times:

57, 46, 43, 44, 43, 45, 42, 44, 42, 42 minutes per foot.

3594 - 3603.71

9.71

Shale, black to medium grey to light grey to dark brownish grey. Thin laminations of the above coloured shales up to 0.25" thick.

Calcareous material occurs in all shales but grades from very little (5%) in the black shales to a maximum of 30% in the dark brownish grey shales. Pyritic and slightly silty throughout. Parts of the dark brownish grey shales are very silty.

Shell bands occur at 3597.5 - 3598.8 and 3599.4 - 3600.2 . Shell remains have been replaced by calcite and are scattered throughout the shale. Crinoids can be seen. Ironstone concretions occur at:

3594.35 - 3594.4, 3595.65 - 3595.8, 3602.0 - 3602.2, 3603.5 - 3603.6, fractures in the last concretion are infilled with calcite.

Diamond Core #6

Alder

4622 - 4631 Recovered 8.8

Coring times:

65, 45, 47, 46, 48, 63, 64, 85, 66 minutes per foot.

4622 - 4626.51

4.50

Shale dark brown grey, very calcareous fissile. Scattered brachiopod fragments. Bedding planes dip from $10 \sim 20^{\circ}$.

4626.5 - 4629.01

2.51

Shale as above, with vertical fracturing, blocky in parts. Calcite infilling occurs along some vertical and dip partings. At 4629 two vertical fractures occur at 35° to each other. Slight petroliferous odour.

4629.0 - 4630.51

1.5

Shale as above with silty to sandy bands, some black chert pebbles also and crinoid and shell fragments, slumped.

One vertical fracture is lined with white calcite along both walls with minor druses with bitumen infill.

4630.5 - 4630.8

0.31

Shale as above, fissile with slickensiding and some very thin carbonaceous partings.

Diamond Core #7

Alder

4893 - 4897 Recovered 2.91

Coring times:

Core Jammed - not true times.

4893 - 4893.91

0.91

Sandstone, tan to grey, fine to coarse grained, subangular to round, calcite infill, tight. Composed mainly of grey, light to dark, chert grains. Some shaly laminae.

4893.9 - 4893.95

0.051

Shale, black fissile. About 100 dip.

4893.95 - 4894.251

0.3

Sandstone, as above.

4894.25 - 4894.28

0.03

Shale, black fissile.

4894.28 - 4895.911

1.63

Sandstone, as above, fine grain at top with very thin shale partings with increase in coarser fractions down-

wards. One thin vertical fracture, calcite infilled. Horizontal cracks in bottom 0.5°. Strong gassy odour.

Diamond Core #8

Permo-Pennsylvanian Alder

5047 - 5052' Recovered 5.0'

Coring times:

58, 66, 77, 71, 72 minutes per foot.

5047.0 - 5047.7

0.7

Shale, black, slightly calcareous, fissile, thin vertical fracture infilled with calcite.

5047.7 - 5049.0

1.3

Sandstone, grey, salt and pepper, fine to medium grained, calcareous matrix, thin bedded, interbedded with shale, sandy, dark brown. Thin black shale bands in bottom 0.5' with white calcite veins, micro-faulting.

5049.0 - 5049.81

0.8

Shale, dark brown, calcareous, arenaceous, irregular patches and stringers of sandstone, calcareous, as above, fragments of black shale; contorted, slump features.

5049.8 - 5051.5

1.7

Thinly interbedded shale, black, calcareous; sandstone, shale, dark brown, arenaceous and calcareous, as above.

5051.5 - 5052.0

0.5

Sandstone, grey, salt and pepper, fine to medium grained, calcite matrix; shalier toward base of interval.

(d) Sample Descriptions

0 = 20 No samples.

20 - 70° Sandstone, light brownish grey, very fine to coarse grained, subangular to rounded, clear quartz and black chert, black carbonaceous material; minor silt-stone.

70 - 120 Siltstone, brownish grey, with interbedded sandstone, very fine to fine grained, as above, and shale.

120 - 290 Shale, medium grey, pyritic, interbedded with siltstone, occasional chert pebbles.

290 - 310 Shale and siltstone, as above, with minor very fine grained, glauconitic, salt and pepper sandstone.

Shale, medium grey to brownish grey, pyritic and glauconitic in part, interbedded with siltstone, light to medium grey, occasional chert pebbles; ironstone concretions at 500°.

630 - 840' Siltstone, grey, pyritic, minor limestone stringers, minor bentonite.

840 - 950' Shale, dark grey to medium grey, interbedded with siltstone, as above, pyritic, glauconitic in part.

cut.

950 - 1410' Sandstone, dark to light grey, very fine to coarse grained, subangular to rounded, poor sorting, conglomeratic, minor calcite cement, poor to good porosity, minor bitumen cement, good hydrocarbon

1410 = 1580' Sandstone, as above, tight, calcite cemented, interbedded with siltstone, light to dark grey and shale dark grey, pyritic, glauconitic.

1580 - 1620' Shale, medium to dark grey, carbonaceous streaks, interbedded with siltstone and trace sandstone, very fine to fine grained.

1620 - 1650' Sandstone, very fine to rare fine grained, subangular, well sorted, calcite cemented, trace porosity.

1650 - 1680 Sandstone, light grey, salt and pepper, very fine to coarse grained, rounded to subrounded, medium sorted, calcite cement, pyritic and glauconitic.

1680 - 1710' Shale, medium to dark grey, slightly calcareous, pyritic and glauconitic.

1710 - 1760' Limestone, light grey to dark grey to brown, fossil fragments, grading to sandstone and siltstone, very limy.

1760 - 1820	Shale, medium to dark grey, grading to siltston
	medium to dark grey, slightly calcareous, pyritic,
	glauconitic.
1820 - 1860*	Limestone, grey to buff, grading to siltstone and
	minor sandstone, very limy, silicified in part.
1860 - 2040*	Siltstone and shale, dark grey, occasional glauconite
	grains, slightly dolomitic, trace sandstone, very fine
	grained, carbonaceous streaks.
2040 - 2310	Shale, brownish grey, slightly dolomitic, pyritic,
	rare shell fragments.
2310 - 23201	Sandstone, light grey, very fine to coarse grained,
•	subangular to rounded, medium sorted, calcite cemented
•	in part, poor to fair intergranular porosity, poor
	hydrocarbon cut.
2320 - 24701	Shale, medium to dark grey, slightly calcareous,
	pyritic, occasional coral fragments.
2470 - 2540	Shale, as above, interbedded with siltstone and minor
	limestone stringers, tan to grey, ironstone concretions.

Shale, as above, interbedded with minor siltstone,

light to dark grey, ironstone concretions, minor

shell fragments.

2540 - 2660

2660 - 2680*	Limestone, tan to grey, grading to siltstone very
	limy, fossil fragments in part.
2680 = 2900*	Shale and siltstone interbedded, light to dark grey,
	rare limestone stringers, minor shell fragments,
	pyritic, minor ironstone concretions.
2900 - 3808*	Siltstone and shale, medium to dark grey, calcareous
	in part, minor limestone stringers, crinoidal in part
3808 = 382h*	Limestone, dark grey, cherty.
3824 - 3969*	Limestone, dark brown to grey, silty, cherty, inter-
	bedded with siltstone, limy.
3969 - 3980*	Limestone, dark brown, silty, cherty.
3980 - 3990*	Sandstone, light grey, salt and pepper.
3990 - 4020*	Limestone, light grey to tan.
4020 - 4100	Limestone, light grey to tan.
4100 - 41301	Limestone, light grey.
4130 - 4170*	Siltstone, dark grey to black, calcareous.
4170 - 4211*	Limestone and limy siltstone.
4211 - 4253*	Limestone, light to dark grey, sandy, interbedded
	with siltstone, calcareous, dark grey to brown.

4253 - 4340*	Limestone and siltstone, as above.
4340 - 4426*	Limestone and siltstone interbedded.
4426 - 4443*	Siltstone and limestone interbedded.
4443 - 4458*	Shale, black, petroliferous odour.
4458 - 4478*	Sandstone, varicoloured rounded chert grains - pebbles, calcite cement. Occasional intergranular porosity plugged with bitumen.
4478 - 4511	Sandstone with interbedded siltstone to limestone.
4511 - 4568*	Sandstone with minor interbedded siltstone - lime- stone.
4568 ~ 4590*	Sandstone, as above, calcareous, with abundant lime- stone, microcrystalline, silty.
4590 - 4610*	Limestone, sandy, microcrystalline with calcareous sandstone as above.
4610 - 46201	Sandstone, calcareous, quartz and chert grains and pebbles, rounded.
4620 - 4631	Shale, very dark grey brown, very calcareous, slight petroliferous odour.
4631 - 4640*	Limestone, micro to cryptocrystalline with stringers of

shale.

sandstone, calcareous, salt and pepper. Some calcareous

4640 - 4660	Limestone, medium crystalline, argillaceous and
	calcareous shale, minor cherty sandstone stringers.
4660 - 4682*	Limestone, as above, marly in part, tan, with minor
	cherty sandstone stringers.
4682 = 46901	Limestone, as above, with shale, grey to black, non-
	calcareous.
4690 - 4699*	Limestone and shale with minor sandstone stringers.
4699 - 4709*	Shale, dark brown, minor limestone and sandstone.
4709 - 4810*	Shale, black, minor limestone.
4810 - 4850*	Shale, as above with sandstone and siltstone stringers
4850 - 4867	Shale, black,
4867 - 4893"	Sandstone, fine to coarse grained, silty, cherty.
4893 - 4898*	Sandstone, grey, as above, subangular to rounded chert
	grains, calcareous infill, tight, thin shale bands.
4898 - 4950*	Shale, black.
4950 - 5010*	Shale, black, stringers of limestone and siltstone.
5010 - 5047*	Sandstone, fine to coarse grained, tight.
5047 - 5052°	Shale, black, overlying sandstone, fine to medium
	grained, shaly in part, interbedded, black, dark
,	brown, sandy shale.

5052 - 5080*	Shale, grey to black, with sandstone stringers, minor fine to medium grained chert pebbles, crinoid fragments.
5080 - 5109°	Shale, black, with sandstone stringers.
5109 - 5120*	Shale, brown to black, with stringers limestone, pyritic, and sandstone; crinoid fragments.
5120 - 5160*	Shale, brown, sandy, pebbly in part with bands sandstone, salt and pepper, fine grained.
5160 - 5170*	Shale, brown, calcareous, in part sandy, with sandstone, salt and pepper.
5170 - 5190*	Mainly sandstone, salt and pepper, brown, argillaceous, in part calcareous, with limestone bands, in part sandy, with shale, grey, brown to black.
5190 - 5230*	Sandstone and shale, as above.
5230 - 5240*	Mainly shale, as above.
5240 - 5250°	Sandstone and shale as above.
5250 - 5276*	Sandstone and shale, limestone stringers, calcite veins.
5276 - 5300*	Sandstone, shale, with limestone, as above, possible bedded chert.
5300 - 5365*	Shale, brown to black, with limestone, micro to crypto-

crystalline, brown, occasional bands of chert and

sandstone.

5365 - 5413

Shale, brown to black, with limestone bands, brown, micro to cryptocrystalline.

SECTION III - Engineering Summary

(a) Report of Drill Stem Tests (See Attachments)

No.	Date	From	To	Formation
1	4-14-65	950	964	Alder
2	4-15-65	964	1163	Alder
3	4-17-65	1163	1329	Alder
14	4-19-65	1600	1673	Alder
5	4-23-65	2300	2320	Alder
6	5-26-65	4430	4501	Alder
7	5-27-65	1488	1525MR	Alder
8	5-27-65	1505	1520MR	Alder
9	6- 4-65	5195	5413	Alder-Parkin Creek

(b) Casing Record

Casing Size (inches)	Weight	Amount	Set At	Cement
9 5/8"	36#	20 jnts.	599 K.B.	235 sax # 3% CaCl ₂

SOCONY MOBIL OIL OF CANADA, LTD.

BIT RECORD

Well	BIRCH	YTB-34	Date Spudded_ 4/8/65	3:30 AM.

PLAN Area EAGLE **Date Completed** ACCUMU ACCUMU LATED LATED DRILLING REAMING DEPTH BIT BIT JET FOOT TIME TYPE SERIAL No. CONDITION REMARKS DATE AGE HRS. SIZE No. SIZE FROM TO TIME TIME 607 7/2 7/2 72 72 0 71752 3 2 I HTC 75/8 Rt 8/2 O. 72 272 150 TII E04132 635 413 878 YHWG 1414 30/4 E34536 222 TIL 13 431/4 13 472 2 T I 24 FILET 0

(d) Mud Record

	Mud Volumes
Magaogel	729 bags
Peltex	148 bags
Soltex	80 bags
Carbonox	100 bags
Caustic	75 bags
Q-Broxin	17 bags
Lignox	22 bags
C.M.C. Reg	46 bags
Cellex Hi Vis	38 bags
Dextrid	17 bags
Soda Ash	7 bags
Quick Vis	l gallon
Jelflake	36 bags
Pluggit	35 bags
Mica	40 bags
Fibertex	15 bags
Sawdust	50 bags

(e) Deviation Record

DEPTH	DEGREE	DEPTH	DEGREE
35	1/80	1530	10
71	00	1604	10
100	1/8°	1673	1 1/40
130	00	1824	1 1/20
156	1/80	2040	20
184	3/8°	2320	50
212	1/20	2656	50
240	1/80	2964	1 7/80
269	1/80	3445	1 1/20
299	1/80	3714	1 3/40
327	1/8°	3813	1 3/40
359	1/40	3929	1 7/80
390	00	4012	1 3/40
452	1/80	4166	1 1/20
515	1/40	4261	1 1/20
578	1/80	4373	1 1/20
608	1/80	4568	7/8°
723	1/80	4812	1/20
1075	3/40	4936	1/20
1285	1 1/80	5230	8
1410	7/8°		

(f) Cementing Record

Plug No.	From	To	Remarks				
#1	4510	5413	375 sax	cement			
#2	4260	4510	90 sax	cement			
#3	550	650	40 sax	cement,	not	in	position
#14	557	650	55 sax	cement			

(g) Lost Circulation Zones

May 13, 1965 From 4473 to 5413 at various intervals with mud dropping in the annulus. Controlled by completely saturating mud system with Sawdust, Fibertex, Mica, Pluggit and Gel Flake.

(h) Report of Blowouts

None

SECTION IV - Logs (See Attachments)

Run No.	Type of Log	From	To
1	ML-C	600	5038
2	ML-C	4800	5404
1	BHCS-GR-C	600	5033
2	BHCS-GR-C	4800	5403
1	IES	600	5039
2	IES	4800	5404
3	CDM	600	5028
1	SRS	5403	600

SECTION V - Analysis

(a) Core Analysis (See Attachments)

Lab No.	From	To	Source	Remarks
F 2323	944	964	Core #1	Full Dismeter Core Study
F 2323	1289	1309	Core #2	Full Diameter Core Study

(b) Water Analysis (See Appendix)

Lab No.	Sample	From	To	Source	Remarks
E 25609-1	Water	950	964	D.S.T. #1	Mud Filtrate
E 25609~2	Water	2300	2320	D.S.T. #5	4280 ppm Cl
E 25609-3	Water	4430	4501	D.S.T. #6	Mud Filtrate
E 25609-4	Water	1505	1520	D.S.T. #8	Mud Filtrate

(c) Gas Analysis (See Appendix)

Lab No.	Sample	From	To	Source
E 25584	Gas	4430	4501	D.S.T. #6
E 25585	Gas	5195	5413	D.S.T. #9

(d) Oil Analysis

None.

SECTION VI - Completion Summary

None.

Edmonton - Fort St. John - Calgary

WATER AN	ALYSIS REPO	DRT: Lab.	No. E256	09-1	Received:	June 18	,1965 Re	ported: Ju	ne 22, 19	165
Well: Soc	. Mob. W. N	dins. S.	Birch Y.	r. B-34	Operator:	Socony	Mobil Oi	1 Of Can	ada Limit	:ed
Field or Are	ea: Eagle Pl	lain,	Locat	ion: 136°	51' 17.5	1" Elev.:	К.В	Grd	•	
ev	Yukor ormation: Per	n mo-Penns	vlvanian	Alder	Sample	W.	. 95	0' - 964	g .	
Method of I	roduction:	D.S.T.	9F1V	Vell Produc	ction or Re	covery at	Sampling	Time:		
	·									
Sampled fro	m: 20' abo	ove packe	r s	Sampled by	y:		Date	April 1	5, 1965	
	TINENT DAT									
							(Signed)			
Sodium mysonium cocinta systematicam			Milligram	s Per Lite	ľ					
Na &	K CA	Mg		504	CL	СОз	НСОз	ОН		
1309	48	4		1662	285	84	870			
				Milligram	Equivalent	S				1
56.9	5 2.40	0.33		34.57	8.04	2.80	14.27			
Iron_Pres	ent	Hydrogen S	ulfideN	11						
	in Milligrams			-	cal Propert				,	
	ion7,74						nm meters	@ 68°F.		
After ignition	on3,7	90		Obser	ved pH	9.1				
Calculated	3,8	21		Speci	fic Gravity	1.005			,	
Remarks or	nd Conclusion	. The tot	al solid	s contai	ned a ver	ry large	amount o	of organi	lc matter	•
Kemarks ar	id Concrasion		ple has	the char	acteristi	lcs of a	filtrate	e water.		
8 8	LOG	ARITHMIC «MEQ PER	PATTERN	00 00	8	· · · · · · · · · · · · · · · · · · ·				
9 4	0)			¥ -						
Na					CL.					
Ca					нс	Оз				
' 46					50.	4				
					co					
FE										
8 888888	8888888888888	8 604045 - 54	V 400 5 28 868	8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000					

Edmonton — Fort St. John — Calgary

WÀT	ER ANAL	YSIS REPO	RT: Lab.	No. E2560	9-2	Received:	June 18	, 1965Re	ported: Ju	ne 22, 1965
Well	Soc. Mo	b. W. Mi	ns. S. B	irch Y.T.	B-34	Operator:	Socony	Mobil Oi	1 Of Can	ada Limited
					In to 0	5 d v 5 5 d Abr / s	* * 17.1			l
Zone	and Form	Yukon ation: Pe	rmo-Penn	sylvanian	Alder	w Sample_	· Interval:	2300' -	2320	
Mern	od of Proc	iuction:		v	ven rioda	crion or ite	covery at	Jumpung		
		1001 -	h	l.on					April 2	6. 1965
Samj	oled from:.	100° a	bove pac	KerS	iampled b	y:		Date	•	6, 1965
HTC	ER PERTIN	NENT DAT	Α							
								(Signed)		
proces algorithm										
		T	T	Milligram	s Per Lite		60-	HCO ₃	ОН	
	Na & K	CA	Mg		504	CL	CO ₃		On	
	3841	42	18		13	4280		3030		
				1	Milligram	Equivalent	S	1	1	
	167.08	2.10	1.48		0.27	120.70		49.69		
Iron	Nil		lydrogen S	ulfideN	il			-1	-	
	l Solids in				Physi	ical Properi			-	
Ву е	vaporation	10,1	.92		Resis	tivity0.7	736ol	nm meters	@ 68°F.	
	r ignition _	0 0	808		Obser	rved pH	1 000	-		
Calc	ulated	9,6	186	-	Speci	fic Gravity	1,009			
Don	arks and	Conclusion	. Nothi	ng on fi	le from	this area	with w	hich to	correlate	e the
	analysis.		J							******************
0000	000	LOG	ARITHMIC MEQ PER	PATTERN UNIT ₂	8 8	000° CI				
Na					W. I.	CL.				
CA						нс	Оз			
MG						so	4			
Fe						co	3			
							,			
8	\$88888888	8858 885882	8 004045 - 54	2 400 S E8 858	3 5 3 8 8 9 8 8 8	0000000				

Edmonton - Fort St. John - Calgary

WATER ANALYSIS REPORT: Lab. No. E25609	~ 3	Received:	June 18	, 1965 _{Rep}	ported: Jun	e 22, 1965
Well: Soc. Mob. W. Mins. S. Birch Y.T.	в-34	Operator:	Socony	Mobil Oi	1 Of Cana	da Limited
Field or Area: Eagle Plain, Location	66° 0 n: 136°	3' 03.44' 51' 17.5	" N. <u>1</u> " Elev.: I	(.B	Grd.	
Zone and Formation: Permo-Pennsylvanian A	lder	Sample	Interval:	4430	- 4501	
Method of Production: D.S.T. #6 We	ell Produc	tion or Re	covery at	Sampling	Time:	
Sampled from: 300' above packer Sa	mpled by	/:		Date	May 26,	1965
OTHER PERTINENT DATA						
				(Signed)		
Milligrams	Per Lite				,	
Na & K Ca Mg	SO ₄	CL.	СОз	HCO₃	ОН	
3396 184 53	1486	2680	24	3290		
M	illigram	Equivalents	5	1		
147.71 9.18 4.36	30.91	75.58	0.80	53.96		
Iron Present Hydrogen Sulfide Nil						
Total Solids in Milligrams Per Liter:	-	cal Propert			`	
By evaporation17,630		ivity0.8		m meters	@ 68°F.	
After ignition 8,770	Obser	ved pH fic Gravity	1,009			
Culculated						
Remarks and Conclusions: The total solid	s conta	ined a ve	ery large	e amount	of organ	ic matter.
The sample has	the char	racterist	ics of	a filtra	te water.	
LOGARITHMIC PATTERN MEQ PER UNIT	8 8	8				
		CL				
NA						
CA		НС	Оз			
Mo		504	,			
Mo						
Fε		co:	3			
0 C888888888888888888888888888888888888	0 30 0000 0	000000000000000000000000000000000000000				

Edmonton - Fort St. John - Calgary

WAT	TER ANAL	YSIS REPO	RT: Lab.	NoE2560	09-4	Received:	June 1	3, 1965 _{Re}	ported: Ju	ne 22, 1	965
Well	Soc. Mol	. W. Mir	s. S. Bi	rch Y.T.	B-34	Operator:	Socony 1	Mobil Oil	l Of Cana	da Limit	ed
Field	or Area:	Eagle Pl	ain,	Locat	66° 03	3' 03.44'' 51' 17.5	N. 1"Elev.:	К.В	Grd		
Zone	e and Form	Yukor ation:Pe	i ermo-Penn	sylvania	n Alder	V Sample	V. e Interval:	1505°	- 1520°		
	nod of Prod										
Men	104 01 1104			v		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	pg			
Sam	pled from:	690	above p	ecker_s	ampled by	v:		Date	May 28,	1965	
	ER PERTIN										
OIH	EK PEKIIN	CENT DAT									
		,						(Signed)			
jamonia masa				Milligram	s Per Lite	·					
	Na & K	CA	Mg		504	CL	СОз	НСОз	ОН]
	1105	26	7		761	210	167	1380			
7				1	Milligram	Equivalent	S				_
	48.06	1.30	0.58		15.83	5.92	5.56	22.63			
Iron	Present	H	lydrogen S	ulfideNi	.1			-1			_
Tota	l Solids in	Milligrams	Per Liter:			cal Propert	ies:				
Вуе	evaporation	6,05	0			tivity2.		nm meters	@ 68°F.		
Afte	er ignition _	2,78	0		Obser	ved pH	9.3				
Calc	ulated	2,95	6		Speci	fic Gravity	1.004				
D 0 100	arks and (Conclusion	The t	otal sol:	lds conta	ined a v	ery lar	ge amount	of orga	nic matt	er.
Ken	idiks dila (2011CTUSTOTTS	The s	ample has	s the cha	racteria	tics of	a filtra	ite water	•	
000 0	80	LOGA	ARITHMIC MEQ PER	PATTERN UNIT.	0 00	000					
9			¥	×	*						
Na						CL					
CA						нс	 O ₃				
Mg						504					
Fe						co:	3				
A LOCAL DE SER LA SER L								,			
0000		8888888	8 004045 - 5W	2 440 5 28 8588	5 35 55 5 8	000000000000000000000000000000000000000					

Edmonton — Fort St. John — Calgary

GAS ANALYSIS REPORT: Lab. No. E25584		Received: June 18,1	965 Report	ed: June	25,1965
Well: Soc. Mob. W. Mins. S. Birch Y.T. B.		Operator: Socony	Mobil Oil	Of Canad	la Limited
Field or Area. Magae Lauth Mades Location.		03.44" N. Elev.	: K.B	Grd	
Yukon Territory. 136 Zone and Formation: Permo-Pennsylvanian Sa Alder		17.51" W. terval: 4430" -	4501		
Well production at sampling time: Oil	bpd;	Gas	MCFD; Wa	ter	bpd
Sampled from:	Samp	led by:		Date: _^	iay 26,
				1	1905
Pressure: (a) at point of sampling	psig	(b) Gas Bomb	pressure		bsig
Temperature: (a) at point of sampling	°F	(b) Separator_			_°F
Pressures: ReservoirTubing		Casing	Separe	ator	
OTHER PERTINENT DATA D.S.T. #	6.				
· · ·					
HYDROGEN SULFIDE		COMPOSITIO	N	% by	G.P.M. in
(by Tutwiler Method)		COMPOSITIO		Volume	Imp. Gal. @ 60°F. & 14.65 PSIA
rains of hydrogen sulfide per 100 cu. ft.		Helium			
of gas at 60°F. and 14.65 p.s.i.a	11	Oxygen			
		Nitrogen		0.83	
GROSS B.T.U. (Calculated)		Carbon dioxide			
60°F. and 14.65 p.s.i.a11	07.	Hydrogen sulfide		0	
		Methane		86.64	
Special CDAVITY (Coloridated) 0.	656	Ethane		6.91	
SPECIFIC GRAVIII (Calculated)	660			2.35	0.537
Specific Gravity by Weight		Propane		0.25	0.068
VAPOR PRESSURE (Calculated)		Isobutane			0.133
of actual pentanes +9.	71	N-butane		0.51	
Remarks and conclusions		Isopentane		0.14	0.042
The sample was received at a pressur	e of	N-pentane		0.13	0.039
56 psig. with no apparent liquids.		Hexanes		0.18	0.061
All figures have been corrected for	11.04%	Heptanes +		0.15	0.064
air contamination.					
Calculated Pc 678.0		TOTAL		100.00	0.944
Tc 374.5		G.P.M.			
		Actual pentanes $+$			
		Calculated at 12			
		Calculated at 15			0 070
		Calculated at 22 Calculated at 26			0 000
		Culculated at 20			

Edmonton — Fort St. John — Calgary

GAS ANALYSIS REPORT: Lab. No. E25	585	Received: June 18,1965 Re	ported: June	25, 1965
Well: Soc. Mob. W. Mins. S. Birch Y. Eagle Plain Area,	T. B-34	Operator Socony Mobil 0i	1 Of Canada	Limited
Field or Area: Yukon Loca Territories	ition: 000 03	3.74" N. Elev.: K.B	Grd	
Zone and Formation: Permo-Pennsylvania	n Sample l	nterval: 5195' - 5413'		
Well production at sampling time: Oil	bpd	; Gas MCFD;	Water	bpd
Sampled from:	San	ıpled by:	Date: <u>J</u>	une 4,
Pressure: (a) at point of sampling	psig	(b) Gas Bomb pressure		965 psig
Temperature: (a) at point of sampling	°	(b) Separator		°F
Pressures: ReservoirTubing		Se	eparator	
OTHER PERTINENT DATA D.S.T	. #9.		·	
		(Signed)		
HYDROGEN SULFIDE (by Tutwiler Method)		COMPOSITION	% by Volume	G.P.M. in Imp. Gal. @ 60°F. & 14.65 PSIA
rains of hydrogen sulfide per 100 cu. ft.		Helium		14.05 131A
of gas at 60°F. and 14.65 p.s.i.a	Nil	Oxygen	0	
		Nitrogen	0.58_	
GROSS B.T.U. (Calculated)		Carbon dioxide	1.13	
60°F. and 14.65 p.s.i.a.	1077.	Hydrogen sulfide	0	
	*	Methane	90.63	
SPECIFIC GRAVITY (Calculated)	0.624	Ethane	5.21	
Specific Gravity by Weight	0.625	Propane	1.65	0.377
openie Gram, by worght		Isobutane	0.14	0.038
VAPOR PRESSURE (Calculated) of actual pentanes +	9.76	N-butane	0.00	0.086
Remarks and conclusions		Isopentane	0.00	0.024
The sample was received at a pre		N-pentane	2.20	0.024
2 psig. with no apparent liquids.			2 24	0.020
figures have been corrected for 1.		Hexanes		0.047
		Heptanes +		
		TOTAL	100.00	0.616
3		TOTAL	200,00	0.020
<u> </u>		G.P.M.		0,115
		Actual pentanes + Calculated at 12 lbs		
		Calculated at 15 lbs		0.127
		Calculated at 22 lbs.		0.150
		Calculated at 26 lbs.		0.167